Permutations groups - Exercise sheet 1

Unless otherwise stated, G is a group which acts on a set Ω.

1. Let $\alpha, \beta \in \Omega$. Suppose $g \in G$, such that $\alpha g=\beta$. Show that $\beta g^{-1}=\alpha$.
2. The right regular action of G on itself is defined by $\mu(x, g)=x g$, $g \in G, x \in \Omega=G$. How would you define the left regular action? Check carefully that it satisfies the definition.
3. Show that G acts on a finite set Ω of size $|\Omega|=n$ if and only if there exists a group homomorphism from G to S_{n}.
4. Let $H \leq G$ be a subgroup of G and consider the coset action of G on H. What is the kernel K of this action? Show that if $N \unlhd G$ such that $N \leq H$, then N is contained in K. The kernel K is called the core of H in G, often denoted $\operatorname{core}_{G}(H)$.
5. Let G be a group with a subgroup H which has finite index n. Show that G has a normal subgroup of index at most $n!$. Use this to conclude that any subgroup of index 2 in a group is normal.
6. Let G be the group of symmetries of the cube.

(a) By picking two rotations of the cube, show that G is transitive on Ω, the set of vertices of the cube.
(b) What is the index of G_{1} in G ?
(c) Consider the group G_{1} which is the stabiliser in G of 1 . What are the orbits of G_{1} ?
(d) What is the index of G_{12}, the stabiliser of 2 in G_{1}, in G_{1} ?
(e) What is the order of G_{12}.
(f) Hence, show that $|G|=48$.
(g) Show that G acts imprimitively by describing at least two nontrivial systems of imprimitivity.
7. By considering the action of $G L_{2}(3)$ on the points of $\mathbb{P}_{1}(3)$, show that $P G L_{2}(3) \cong S_{4}$.
8. Let G be a group of order $p^{a} \neq 1$ for p prime and for some $a \in \mathbb{N}$.
(a) Show that

$$
Z(G):=\{g \in G: h g=g h \forall h \in G\} \neq 1
$$

(Hint: use conjugation action and argue by counting.)
(b) Let H be a non-trivial subgroup of G. Show that $H \supsetneqq N_{G}(H)$. (Hint: use coset action.)
9. (Frattini argument) Let G be a group and $N \unlhd G$. Suppose that $P \in$ $\operatorname{Syl}_{p}(N)$. Then, show that $G=N \cdot N_{G}(P)$
Fact: G acts transitively by conjugation on the set $\operatorname{Syl}_{p}(G):=\{P \leq$ $G: p \nmid|G| /|P|\}$. (Hint: Show that G also acts transitively on $\operatorname{Syl}_{p}(N)$ then combine the two actions to get an element of $N_{G}(P)$.)
10. Let Ω be the set of all $n \times n$ matrices over a field F and $G=G L_{n}(F) \times$ $G L_{n}(F)$.
(a) Show that $\mu(\alpha,(x, y))=x^{t} \alpha y$ defines an action of G on Ω, where x^{t} denotes the transpose of x.
(b) Show that G has $n+1$ orbits and describe these.
(c) Choose a suitable $\alpha \in \Omega$ and describe G_{α}.
(Hint: this is a well-known fact in linear algebra)
11. Show that G has a system of imprimitivity iff there is a G-congruence.
12. Show that a transitive group action of prime degree is primitive.
13. Check that the two definitions of the semidirect product are equivalent. For the first definition, check that it actually defines a group. What is the identity and what are inverses?

