Permutations groups - Exercise sheet 2

Unless otherwise stated, in these exercises, G is a group which acts on a set Ω.

1. Show that a group G is k-transitive if and only if G is transitive and G_{α} is $(k-1)$-transitive on $\Omega-\{\alpha\}$, for any $\alpha \in \Omega$.
2. (a) Show that S_{n} is n-transitive.
(b) Show that A_{n} is $(n-2)$-transitive, provided $n \geq 3$.
3. Show that if G is 2-transitive, then it is primitive.
4. Let $G=P G L_{2}(q)$. We may view \mathbb{P}_{1} as being $\mathbb{F}_{q} \cup\{\infty\}$, where

$$
\langle(x, y)\rangle \mapsto \begin{cases}x / y & \text { if } y \neq 0 \\ \infty & \text { if } y=0\end{cases}
$$

Then, $P G L_{2}(q)$ acts by so called fractional linear transformations:

$$
z \mapsto \frac{a z+c}{b z+d}=\frac{a+c / z}{b+d / z}
$$

where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(q)$ and the above should be interpreted where ∞ obeys the usual rules: $1 / 0=\infty, 1 / \infty=0, \infty+a=\infty$ and, if $a \neq 0, \infty a=\infty$. We use either the first or the second form to avoid meaningless expressions such as ∞ / ∞.
(a) Show that the kernel of the action is indeed the scalar matrices.
(b) Show that $P G L_{2}(q)$ acts sharply 3-transitively on $\mathbb{F}_{q} \cup\{\infty\}$.
(c) Conclude that $P S L_{2}(q)$ acts 3-transitively if $q=2^{a}$ is a power of 2 and 2-transitively otherwise.

You may use that $\left|G L_{2}(q)\right|=q\left(q^{2}-1\right)(q-1)$ and $\left|P G L_{2}(q)\right|=q\left(q^{2}-1\right)$.
5. Let $n \geq 2$. Show that
(a) $A G L(V)$ is 2-transitive,
(b) $A G L_{n}(q)$ is 3-transitive if and only if $q=2$,
(c) $A G L_{n}(q)$ is 4-transitive only if $q=n=2$.

Can you say what is $A G L_{n}(q)$ isomorphic to when $q=n=2$?
6. Let G be a sharply 4 -transitive group of degree $p+2$, where p is an odd prime. Suppose that S is a subgroup of G which is generated by a p-cycle.
(a) By considering how such a subgroup acts on Ω, deduce that $N_{G}(S)$ has order $2 p(p-1)$. (You may use without proof that G acts transitively by conjugation on the set of all such subgroups S in G and that groups H of order $p(p-1)$ have exactly one subgroup of order p and this is normal in H.)
(b) Name a subgroup of G which $N_{G}(S)$ must contain.
(c) Consider the conjugation action of $N_{G}(S)$ on non-trivial elements of S and deduce that the centraliser, $C_{G}(S) \leq N_{G}(S)$, contains a transposition. (Hint: If $s=\left(1 a_{2} \ldots a_{p}\right)$ is a p-cycle, then where 1 is mapped determines the power of s and vice versa)
(d) Conclude that G is the full symmetric group and hence that there are no sharply 4 -transitive groups of degree 7 , or 9 .
7. Prove Lemma 7.2: Let G act on Ω and $\Sigma \subseteq \Omega$. Show that the following are all equivalent:
(1) Σ is a base for G.
(2) Σg is a base for G, for all $g \in G$.
(3) For all $g, h \in G$, if $\alpha g=\alpha h$ for all $\alpha \in \Sigma$, then $g=h$.
(4) $\Sigma \cap \operatorname{supp}(g) \neq \emptyset$, for all $1 \neq g \in G$.
8. Show that the smallest base for $A G L_{n}(F)$ has size $n+1$.
9. Let G be a primitive group acting on Ω. Suppose $g \in G$ such that $|\operatorname{supp}(g)|=m$ and g has exactly s non-trivial disjoint cycles. Show that, for any $\alpha \in G$, the maximal number of orbits of G_{α} on Ω is $m-s+1$. [Hint: Show one may pick $\alpha \in \operatorname{supp}(g)$ and then $G=\left\langle g, G_{\alpha}\right\rangle$.] Show that this is not necessarily true for transitive groups.

