Permutations groups – Exercise sheet 2

Unless otherwise stated, in these exercises, G is a group which acts on a set Ω .

- 1. Show that a group G is k-transitive if and only if G is transitive and G_{α} is (k-1)-transitive on $\Omega \{\alpha\}$, for any $\alpha \in \Omega$.
- 2. (a) Show that S_n is *n*-transitive.

(b) Show that A_n is (n-2)-transitive, provided $n \ge 3$.

- 3. Show that if G is 2-transitive, then it is primitive.
- 4. Let $G = PGL_2(q)$. We may view \mathbb{P}_1 as being $\mathbb{F}_q \cup \{\infty\}$, where

$$\langle (x,y) \rangle \mapsto \begin{cases} x/y & \text{if } y \neq 0 \\ \infty & \text{if } y = 0 \end{cases}$$

Then, $PGL_2(q)$ acts by so called fractional linear transformations:

$$z \mapsto \frac{az+c}{bz+d} = \frac{a+c/z}{b+d/z}$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(q)$ and the above should be interpreted where ∞ obeys the usual rules: $1/0 = \infty$, $1/\infty = 0$, $\infty + a = \infty$ and, if $a \neq 0$, $\infty a = \infty$. We use either the first or the second form to avoid meaningless expressions such as ∞/∞ .

- (a) Show that the kernel of the action is indeed the scalar matrices.
- (b) Show that $PGL_2(q)$ acts sharply 3-transitively on $\mathbb{F}_q \cup \{\infty\}$.
- (c) Conclude that $PSL_2(q)$ acts 3-transitively if $q = 2^a$ is a power of 2 and 2-transitively otherwise.

You may use that
$$|GL_2(q)| = q(q^2-1)(q-1)$$
 and $|PGL_2(q)| = q(q^2-1)$.

- 5. Let $n \ge 2$. Show that
 - (a) AGL(V) is 2-transitive,
 - (b) $AGL_n(q)$ is 3-transitive if and only if q = 2,
 - (c) $AGL_n(q)$ is 4-transitive only if q = n = 2.

Can you say what is $AGL_n(q)$ isomorphic to when q = n = 2?

- 6. Let G be a sharply 4-transitive group of degree p + 2, where p is an odd prime. Suppose that S is a subgroup of G which is generated by a p-cycle.
 - (a) By considering how such a subgroup acts on Ω , deduce that $N_G(S)$ has order 2p(p-1). (You may use without proof that G acts transitively by conjugation on the set of all such subgroups S in G and that groups H of order p(p-1) have exactly one subgroup of order p and this is normal in H.)
 - (b) Name a subgroup of G which $N_G(S)$ must contain.
 - (c) Consider the conjugation action of $N_G(S)$ on non-trivial elements of S and deduce that the centraliser, $C_G(S) \leq N_G(S)$, contains a transposition. (Hint: If $s = (1a_2 \dots a_p)$ is a *p*-cycle, then where 1 is mapped determines the power of s and vice versa)
 - (d) Conclude that G is the full symmetric group and hence that there are no sharply 4-transitive groups of degree 7, or 9.
- 7. Prove Lemma 7.2: Let G act on Ω and $\Sigma \subseteq \Omega$. Show that the following are all equivalent:
 - (1) Σ is a base for G.
 - (2) Σg is a base for G, for all $g \in G$.
 - (3) For all $g, h \in G$, if $\alpha g = \alpha h$ for all $\alpha \in \Sigma$, then g = h.
 - (4) $\Sigma \cap \operatorname{supp}(g) \neq \emptyset$, for all $1 \neq g \in G$.
- 8. Show that the smallest base for $AGL_n(F)$ has size n + 1.
- 9. Let G be a primitive group acting on Ω . Suppose $g \in G$ such that $|\operatorname{supp}(g)| = m$ and g has exactly s non-trivial disjoint cycles. Show that, for any $\alpha \in G$, the maximal number of orbits of G_{α} on Ω is m-s+1. [Hint: Show one may pick $\alpha \in \operatorname{supp}(g)$ and then $G = \langle g, G_{\alpha} \rangle$.] Show that this is not necessarily true for transitive groups.