
A family of biaffine
geometries and their
resulting amalgams

by

Justin Fergus McInroy

A thesis submitted to

The University of Birmingham

for the degree of

Doctor of Philosophy

School of Mathematics

The University of Birmingham

September 2010



Abstract

Let Π be a thick polar space of rank n at least three. Pick a hyperplane F of

Π and H of Π∗. Define the elements of a biaffine polar space Γ to be those

elements of Π which are not contained in F , or dually in H. We show that Γ

is a non-empty geometry which is simply connected, except for a few small

exceptions for Π. We give two pairs of examples with flag-transitive groups,

which lead to amalgam results for recognising either one of q6 : SU3(q) or

G2(q), or one of q7 : G2(q) or Spin7(q). Also, we give details of a computer

program to calculate the fundamental group of a given geometry.
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Introduction

There have been several different equivalent definitions of polar spaces from

when they were first conceived [2]. They were first introduced by Veldkamp

in his thesis in 1959 and added to by him in 1960 [36]. Tits gave another

definition of them in his celebrated book on buildings and BN -pairs [31]

published in 1974, which reduced the number of axioms from eleven to four.

In this, he also produced a classification of finite polar spaces. However, it was

Buekenhout and Shult who published a paper [3], also in 1974, which defined

polar spaces as a point-line geometry satisfying the “one or all” axiom:

Given a line L, a point p is collinear to either exactly one point of L, or it

is collinear to all points of L.

Hyperplanes have been important since polar spaces were first studied.

Analogously to affine spaces being obtained from projective spaces by remov-

ing a hyperplane, we can remove a hyperplane from a (dual) polar space to

obtain an affine version. In [9], Cohen and Shult determine the structure of

affine polar spaces and classify the hyperplanes of polar spaces. It is easy to

see from this that affine polar spaces are simply connected. Affine dual polar

spaces are also simply connected, except for a few small examples. This was

shown by Cardinali, De Bruyn and Pasini [6] for rank and line size at least
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four and the remaining cases were completed by McInroy and Shpectorov

[20] (part of this also appeared in [19]).

In this thesis, we remove a hyperplane F from the polar space Π and a

hyperplane H from the dual polar space Π∗, to form a biaffine geometry Γ.

Such a construction applied to a projective space leads to geometries. Indeed,

Del Fra, Pasini and Shpectorov have classified all such biaffine projective

spaces which are simply connected [12].

There is one previous biaffine polar space in the literature. In [17], Hoff-

man, Parker and Shpectorov created a specific rank three symplectic biaffine

polar space, by removing a singular hyperplane from Π and another specific

hyperplane from Π∗. They showed that this leads to a geometry and that it

is simply connected, provided |F| ≥ 3. They then give an example and prove

an amalgam uniqueness result.

Our main result is to extend this to an arbitrary polar space of rank n

and arbitrary hyperplanes F of Π and H of Π∗. We show that, in all but one

specific case, the resulting biaffine polar space is a geometry. Furthermore,

except for possibly ten small exceptions for Π, the geometry is simply con-

nected. If further assumptions on F or H are known, then better results can

be obtained: we give one such result.

These are interesting objects purely from a geometric point of view. How-

ever, they also lead to group theoretic results. Let G be a group which acts

flag-transitively on the geometry Γ. Tits’ Lemma says that G is the universal

completion of the amalgam AΓ of flag-stabilisers if and only if Γ is simply

connected. We then wish to reduce our assumptions and show an amalgam

A, where perhaps not all the members are known, is isomorphic to the amal-
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gam AΓ. This gives us an identification theorem for the group G. Suppose

K is a black box group, which has subgroups generating K and satisfying

the conditions for the amalgam A. Then K is a quotient of the group G by

our amalgam uniqueness result.

Using Tits’ Lemma relies on the group acting flag-transitively. Where

Π has small rank, there are several hyperplanes H of Π∗ known for which

there is a flag-transitive group acting on Π∗ − H. However, in removing

another hyperplane F of Π, it is possible to remove enough objects of the

correct type, for there to be a flag-transitive group, even when Π∗−H is not

flag-transitive. This suggests that there are more flag-transitive groups for

biaffine polar spaces that there are for affine dual polar spaces.

In the first chapter, we introduce polar and dual polar spaces. We quote

Tits’ classification and describe polar spaces as the totally isotropic/singular

subspaces of a given form on a vector space. Geometries and their diagrams

are covered in Chapter 2. We also define simple connectedness for a geometry,

and show some reduction lemmas. In Chapter 3, we define amalgams and

quote and prove Goldschmidt’s Lemma. The main results for this thesis can

be found in Chapter 4. We show that a biaffine polar space Γ is nearly always

a non-empty geometry. We also show that, except for one small case for Π,

Γ has diameter three and is also residually connected. Provided Π is not one

of ten small examples, Γ is simply connected. We give some lemmas, which

are useful for calculating members of the amalgam in specific cases, and a

construction for creating a flag-transitive geometry, given another of smaller

rank.
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In Chapter 5, we describe some examples. We give a fuller description of

the example given by Hoffman, Parker and Shpectorov in [17]. We then give

two new pairs of examples, one pair of rank three and the other of rank four.

The two in each pair have similar amalgams, differing by whether certain

subgroups commute or not. This leads to an amalgam uniqueness result for

each pair. For the first pair, this gives a recognition theorem for either G =

q6 : SU3(q) or G = G2(q) depending on whether certain subgroups commute.

For the rank four example, G = q7 : G2(q), or G = Spin7(q). Finally,

Chapter 6 describes a computer program for calculating the fundamental

group. This is important, since for many small geometries it is difficult to

prove simple connectedness by hand. We also complete the small cases from

our examples, finding their fundamental groups.

There is some possible further work in this area. Firstly, the amalgam

uniqueness result in [17] assumes that certain subgroups commute. In the

two pairs of examples given in this thesis, the second example in the pair

corresponded to when the subgroups do not commute. To create these, F

was chosen to be a hyperplane which was not the perp of a singular point.

However, the example in [17] comes from a symplectic polar space, so all

points are singular. Is there another example which corresponds to where

the subgroups do not commute, and if so, where does it come from?

The example in [17], when q = 3, is related to the 3-local subgroup 35 :

SL2(9).2 of the Thompson sporadic simple group Th. There is an exceptional

hyperplane in DH(5, 22), on whose complement the group U4(3).22 acts flag-

transitively [24]. Does this lead to a biaffine geometry and amalgam for the

2-local subgroup 21+12
+ ˙3U4(3).22 inside the Fischer sporadic group Fi′24?
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Since affine (dual) polar spaces and biaffine polar spaces are simply con-

nected, this suggests the question ‘how much can one “remove” from a polar

space for it to still be a simply connected geometry?’. We have also only

considered removing hyperplanes from the points and maximal dimensional

elements, others should be considered too. Finally, projective spaces and

polar spaces are buildings of type An and Cn, respectively. There are some

other results for removing one hyperplane from a building. For example, F4

[34], which also produced related geometries for Co2 and 211 : M24, and Dn

and E6 [25]. However, no results for removing more than one hyperplane

other than mentioned above are known to the author.
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Chapter 1

Polar spaces and forms

In this chapter we shall define polar spaces and list some of their properties.

We will quote the theorem in Buekenhout and Shult’s paper [3] to show the

equivalence of their definition with Tits’ definition. We will then use either

definition to show some properties of polar spaces and dual polar space, which

we also define. We describe how forms on a vector space lead to examples of

polar spaces and we quote Tits’ classification to show that these are indeed

the only finite examples. Finally, we give some counting lemmas. We note

that the author has given a fuller exposition of this material in [19].

1.1 Polar spaces

Definition 1.1.1 A thick polar space is a thick point-line geometry Π =

(P,L) such that:

• Given a line L, a point p is collinear to either exactly one point of L,

or to every point of L.
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This is called the Buekenhout-Shult “one or all” axiom. Clearly, if p ∈ L,

then p is collinear to all points of L, so the above axiom is non-trivial when

p 6∈ L.

We use the standard notation that a space is thick if every line contains at

least three points. Throughout this thesis we will only consider polar spaces

which are thick unless otherwise stated.

We use the notation x ⊥ y for x and y being collinear, that is contained

in at least one common line. It turns out that two collinear points are

always contained in a unique line. This will be clear once we have stated the

equivalence with Tits’ definition.

A subspace X of Π is a set of points such that any line meeting X in more

than one point is fully contained in X. A singular subspace is a subspace

where all the points are pairwise collinear. We say that the dimension of a

singular subspace X is the largest integer n such that ∅ 6= X0 ⊂ X1 ⊂ · · · ⊂

Xn = X is a chain of singular subspaces strictly contained in one another. If

no such finite chain exists, then X is infinite dimensional.

A polar space Π is said to have finite rank if n is the largest integer such

that ∅ 6= X0 ⊂ X1 ⊂ · · · ⊂ Xn = Π is a chain of subspaces where all the

subspaces are singular except Xn; if so, then we say Π has rank n. Otherwise,

we say Π has infinite rank. We use the convention that a polar space of rank

one is a set of points with no lines. When the polar space has finite rank

we define the codimension of a singular subspace to be equal to n minus the

dimension of the subspace.

Clearly, points have dimension zero and, once we have shown that there

is at most one line through any two distinct points, we see that lines have
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dimension one. We call singular subspaces of dimension two, planes, singu-

lar subspaces of dimension k , k-spaces, and singular subspaces of maximal

dimension, maxes. It is also clear that the intersection of any two (singular)

subspaces is again a (singular) subspace and that any subspaces of a singular

subspace are singular. Incidence of subspaces is by symmetrised inclusion,

i.e. two singular subspaces are incident if one contains the other.

We define x⊥ := {y ∈ Π : y ⊥ x}. It is obvious that x⊥ is a subspace,

since if two points of a line L are contained in x⊥, then, by the one or all

axiom, p is collinear to all points of L and L ⊂ x⊥. For a set of points X,

we define X⊥ :=
⋂
x∈X x

⊥.

Definition 1.1.2 The radical of a polar space Π is defined as Rad Π := Π⊥.

We say Π is non-degenerate if Rad Π = ∅, that is, if no point of Π is collinear

to every other point of Π; it is degenerate otherwise.

As mentioned before, we have defined a polar space using the Buekenhout-

Shult definition. Tits gave an earlier definition and Buekenhout and Shult,

in their paper [3], proved that the two were equivalent. We shall assume

without proof this equivalence, noting only that the author has given an

exposition of this in [19].

Theorem 1.1.3 A thick non-degenerate space Π is a polar space of finite

rank n if and only if it satisfies the following:

(T1) A subspace L together with the subspaces it contains is a d-dimensional

projective space with −1 ≤ d ≤ n− 1

(T2) The intersection of two subspaces is a subspace
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(T3) Let L be a subspace of dimension n− 1 and p a point not in L. Then,

there exists a unique subspace M which contains p and all points of L

which are collinear to p, dim(M ∩ L) = n− 2

(T4) There exist two subspaces of maximal dimension n−1 which are disjoint

Notice that if the rank of Π is two, then no point can be collinear to every

point of a line disjoint from it. Otherwise, since in rank two a max is a line,

T3 gives a contradiction.

Definition 1.1.4 A generalised quadrangle Q is a partial linear space such

that there exist two non-intersecting lines and for every line L and point p 6∈ L

there exist a unique line M and point q such that p ∈M and q = L ∩M .

From the above discussion a non-degenerate polar space of rank two is

a generalised quadrangle. Note that this is an old fashioned definition of a

generalised quadrangle; a more modern one can be found, for example, in [6].

In light of Theorem 1.1.3, where there is no ambiguity, we will refer to

singular subspaces as just subspaces. We will now give some useful proper-

ties of polar spaces. We will either omit the proofs or use both Tits’ and

the Buekenhout-Shult definition to show the result. So, for the rest of the

chapter, we assume that all polar spaces considered are non-degenerate.

Proposition 1.1.5 Let Π be a non-degenerate polar space of finite rank.

Given a max M , there exists another max N which is disjoint from M . Any

subspace of a polar space is the intersection of two maximal subspaces.

Proof. See [3]. �

9



Definition 1.1.6 Let X be a subspace of a polar space Π, p ∈ Π. We define

Xp := p⊥ ∩X.

Since both p⊥ and X are subspaces it is clear that Xp is a subspace.

We define a hyperplane of X to be a proper subspace Y ⊂ X such that

every line in X intersects Y in at least one point. By the definition of a

subspace, it is clear that a hyperplane either intersects a line in one point or

it contains the line.

Lemma 1.1.7 Let X be a subspace of a polar space Π. A hyperplane Y of

X is a maximal proper subspace of X.

Proof. From Tits’ definition, a subspace X is a projective space and the

result follows. �

Proposition 1.1.8 Let Π be a polar space, X ⊂ Π a subspace and p ∈ Π−X

a point not collinear to every point of X. Then, Xp is a hyperplane of X.

Furthermore, 〈Xp, p〉 is the union of all lines joining p to points of Xp.

Proof. By Lemma 1.1.5, we may pick a max M which contains X but not p.

Then, by Tits’ definition, Mp is a hyperplane of M . Since p is not collinear

to all of X, Mp ∩X is a proper subspace of X. Therefore, by properties of

projective spaces, Xp = Mp ∩ X is a hyperplane of X. Finally, 〈Xp, p〉 is a

projective space and so the union of all lines through p. �

Definition 1.1.9 The collinearity graph for a polar space Π is a graph where

the points of the graph correspond to the points of Π and the points are joined

by an edge if the two points in Π are collinear. We say that the distance
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d(a, b) between two points a and b is the distance in the collinearity graph.

The diameter of a polar space is the diameter of the collinearity graph. That

is, the largest distance d(a, b) between any two points a and b.

Proposition 1.1.10 A polar space of rank n ≥ 2 is connected and has di-

ameter two.

Proof. This follows from the Buekenhout-Shult axiom. �

Proposition 1.1.11 In a thick polar space of finite rank n ≥ 3, if a line L

is finite and has q + 1 points, then all lines are finite and have q + 1 points.

Proof. The result is true for projective spaces and, since all points of a polar

space are connected by a sequence of singular subspaces which are themselves

projective spaces, the result holds. �

Proposition 1.1.12 Let Π be a polar space of rank n and U be a (k − 1)-

space. Then, the subspaces of Π containing U form a polar space U⊥/U of

rank n − k. Furthermore, if Π is non-degenerate, then U⊥/U is also non-

degenerate.

Proof. Let U⊥/U be the factor space where points are k-spaces containing

U and lines are (k + 1)-spaces containing U . Two factor points are collinear

if they are contained in one of the factor lines. Let P be a point and L a line

of U⊥/U where P 6∈ L. If both L and P when viewed as subspaces of Π are

contained in a common subspace (of dimension k + 2), then for every factor

point Q of L, 〈P,Q〉 is a (k+1)-space and hence P is collinear to every point

of L. So suppose that no such subspace exists. In particular, no max of Π

contains both P and L. Let M be a max which contains L and p ∈ P − U
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be a point. In particular, we have p 6∈ M so, by T3, Mp is a hyperplane of

M and N := 〈Mp, p〉 is a max of Π. Clearly, we also have that U ⊂ Mp,

since p is collinear to all points of U as P is a singular subspace. Now, by

assumption, L is not contained in the max N so therefore Lp = Mp ∩ L is a

k-space of Π containing U . This is the unique point of L which is collinear

in U⊥/U to P , hence the Buekenhout-Shult axiom is satisfied. The resulting

space U⊥/U is clearly of rank n− k.

Assume that Π is non-degenerate and we may further assume that U is

not maximal. For a contradiction assume that some point P of U⊥/U is in

the radical of U⊥/U . Let p ∈ P − U be a point of Π. By Corollary 1.1.5, U

is the intersection of two maximal subspaces M and N . Since P is collinear

with every point of the form 〈U,m〉, where m ∈ M , we have p is collinear

with every point of M . This contradicts the maximality of M . �

1.2 Dual polar spaces

Definition 1.2.1 Let Π be a non-degenerate polar space of finite rank n.

We define a dual polar space Π∗ of rank n to be the space with points and

lines corresponding to maxes and (n − 2)-spaces of Π. So two points of

Π∗ are collinear if and only if the corresponding maxes in Π intersect in an

(n − 2)-space. Similarly, we define the k-spaces of Π∗ to correspond to the

(n − k − 1)-spaces in the polar space. In a dual polar space of rank n, we

call 2-spaces quads, 3-spaces hexes and (n− 1)-spaces maxes. We define the

radical and non-degeneracy analogously to polar spaces.

We will only consider dual polar spaces which are thick; these come from

polar spaces where every (n− 2)-space is contained in at least three maxes.
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We also define the collinearity graph, distance and diameter in a dual

polar space analogously to in a polar space.

Lemma 1.2.2 A dual polar space is a partial linear space.

Proof. Let Π∗ be a dual polar space of rank n. Any line L of Π∗ is an (n−2)-

space of Π. By Corollary 1.1.5, there are at least two different maxes through

L, hence every line in Π∗ consists of at least two points. Let M and N be two

points of Π∗. If viewed as maxes of Π they intersect in an (n−2)-space, then

this intersection is clearly unique and therefore they are joined by a unique

line in Π∗; otherwise they are non-collinear. �

Lemma 1.2.3 Let Π be a non-degenerate polar space of finite rank n, then

Π∗ is non-degenerate.

Proof. Suppose for a contradiction that M is a point in Rad Π∗. In the

polar space Π, by Proposition 1.1.5, there is a maximal singular subspace N

which is disjoint from the max M . Hence, in Π∗, the points M and N are

non-collinear, a contradiction. �

Recalling Proposition 1.1.12 we have the following corollary.

Corollary 1.2.4 Let Π∗ be a dual polar space of rank n. Then, any k-space

S of Π∗ together with the subspaces it contains is itself a dual polar space of

rank k. �

Consider a dual polar space Π∗ which is the dual of a non-degenerate

polar space Π. Pick any point A ∈ Π and max b such that A 6∈ b. By

Proposition 1.1.8, there exists another point B ∈ b which is not collinear to

13



A, hence in Π∗, A and B are two disjoint maxes. Furthermore, by the above

proposition, since any k-space is itself a dual polar space, we have shown the

following:

Lemma 1.2.5 Inside a k-space U of a dual polar space, given any (k − 1)-

space A ⊂ U and point b ∈ U − A, there exists another (k − 1)-space B

disjoint to A with b ∈ B. �

Before the next lemma, notice that the concept of a generalised quadran-

gle is a self-dual notion, i.e. the dual of a generalised quadrangle is itself a

generalised quadrangle (although not necessarily an isomorphic one).

Lemma 1.2.6 Let Q be a quad in a dual polar space Π∗. Then, Q is a

generalised quadrangle.

Proof. Consider Q as an (n− 3)-space U in the polar space Π. Dual points

and lines are the maxes and (n− 2)-spaces respectively containing Q. So, by

Lemma 1.1.12, the quad Q in Π∗ is dual to the polar space U⊥/U . We have

noted before that this is a generalised quadrangle, so its dual is too. �

Proposition 1.2.7 Let Π∗ be a dual polar space. Then, the distance between

two dual points is one less than the codimension of their intersection when

viewed as maxes of the polar space Π.

Proof. See [4, Proposition 7.9]. �

Corollary 1.2.8 A dual polar space is connected with diameter equal to its

rank. �

In a dual polar space, we say points x1, . . . , xm generate a k-space X :=

〈x1, . . . , xm〉 if X is the smallest k-space which contains the points x1, . . . , xm.
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Corollary 1.2.9 In a dual polar space of rank n, two points at distance

k < n generate a k-space.

Proof. Let p, q be two points of Π∗ at distance k and view them as maxes in

the polar space. By Proposition 1.2.7, the dimension of the singular subspace

p ∩ q is n− k − 1 > 0. The subspace generated in the dual polar space by p

and q corresponds to all the singular subspaces in the polar space containing

K := p ∩ q. Viewed in the dual polar space, K is a subspace of dimension

k. �

Proposition 1.2.10 Let Π∗ be a dual polar space and U a subspace of Π∗.

Given a point p, there is a unique point πU(p) in U , closest to p. Furthermore,

there exists a path from p, through πU(p), to any point q ∈ U which is of

shortest length between p and q (this path is not necessarily the only path of

shortest length between these two points).

d(p, q) = d(p, πU(p)) + d(πU(p), q)

This defines a projection map π : Π∗ → U onto U which is surjective. We

say that πU(p) is the gate for a given p.

Proof. Let Π∗ be a dual polar space of rank n, U a subspace of dimension k

and p a point. Let V be the (n− k − 1)-space in Π corresponding to U and

P the max corresponding to p. We may assume that p 6∈ U , otherwise we

can choose πU(p) = p, so V 6⊂ P . Also, assume that U has dimension k ≥ 1

in Π∗.

We describe a construction in Π which gives a path from p to πU(p)

in Π∗. Using Proposition 1.1.8, construct a sequence of maxes, P i, with
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P i = 〈P i−1, u〉, where u ∈ V − P i−1 and P 0 = P . Since U has dimension

k, V has dimension n − k − 1 and so the process will terminate with d at

most n−k−1. Therefore, P d is a max containing V which intersects P non-

trivially. Define πU(p) to be the dual point corresponding to P d. We claim

this is the unique max containing V with largest intersection with P . Suppose

not. That is, there is another max M containing V , with intersection with P

at least as large. Since P d is generated by V and P d ∩ P , M ∩ P 6= P d ∩ P .

So we may pick a point m ∈ M − P d which is in P . Now, m is collinear

to P d ∩ P , since m ∈ P , and to V , since m ∈ M . Hence, m is collinear to

every point of 〈P d ∩ P, V 〉 = P d. However, this contradicts the maximality

of P d, so the claim is proved. By Proposition 1.2.7, it is clear that πU(p) is

the unique closest point of U to p.

Let Q be the max corresponding to the dual point q ∈ U . Similarly to

the argument above, the intersection P ∩ Q must be contained in P d ∩ P .

Hence, the path through the gate πU(p) is a shortest path to p for q. Also,

it is clear that πU is a well-defined map and it is surjective since πU(u) = u

for u ∈ U . �

Definition 1.2.11 Let Π and Π′ be two (dual) polar spaces. A map φ : Π→

Π′ is a morphism if it preserves collinearity. An isomorphism is a bijective

morphism with an inverse which is also a morphism.

Since subspaces of dual polar spaces are themselves dual polar spaces,

this definition extends to morphisms between subspaces.

Note that a morphism maps lines to lines (or a point). Suppose that L

is a line and x, y, z ∈ L such that φ(x), φ(y) and φ(z) are pairwise distinct.

Now, φ(x) and φ(y) are collinear, so contained in some line L′ and φ(z)
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has distance one from two points on the line L′. So, by the uniqueness in

Proposition 1.2.10, φ(z) must be in L′, so all three points lie in L′ and lines

map to lines.

Proposition 1.2.12 Let Π∗ be a dual polar space and U a subspace of Π∗.

Then, πU : Π∗ → U is a morphism and, in particular, if M and N are two

disjoint maxes, then πN induces an isomorphism between M and N .

Proof. Let L be a line, x, y ∈ L be two distinct points and assume that

πU(x) 6= πU(y). It follows that d(x, πU(x)) = d(y, πU(y)). Otherwise,

suppose that x has the greater distance from U . Then, d(x, πU(y)) ≤

d(x, y) + d(y, πU(y)) = 1 + d(y, πU(y)) ≤ d(x, πU(x)). Since we assumed

πU(x) 6= πU(y), this contradicts πU(x) being the unique closest point to x in

U , so we have d(x, πU(x)) = d(y, πU(y)).

Now we show that πU(x) and πU(y) are collinear. From Proposition

1.2.10, we have d(x, πU(y)) = d(x, πU(x)) + d(πU(x), πU(y)). We also have

d(x, πU(y)) ≤ d(x, y) + d(y, πU(y)) = 1 + d(y, πU(y)). Since we have seen

above that d(x, πU(x)) = d(y, πU(y)), we see that πU(x) and πU(y) are

collinear.

Let M and N be two disjoint maxes and consider the map induced by

πN on M . Suppose that this map were not surjective. Since M and N are

disjoint, every point of M is at least distance 1 from any point of N . If

πN were not surjective, then there would be a point in N which is at least

distance 2 from every point of M . However this contradicts the maximality

of M and N , so πN is surjective. It is clear that both πMπN = idM and

πNπM = idN , hence πM and πN are mutually inverse. By symmetry, we see

that the inverse is also a morphism, hence πN is an isomorphism. �
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Again, since subspaces of dual polar spaces are themselves dual polar

spaces, the projection map will induce an isomorphism between any two

disjoint (k − 1)-spaces contained in a k-space.

1.3 Sesquilinear forms

In the first section, we have defined a polar space abstractly without giv-

ing any examples. In this section, we discuss forms on vector spaces and

look at the objects which are the collections of the isotropic spaces of these

forms. These will turn out to be polar spaces, hence providing us with some

motivation and concrete examples. Note that we only give an exposition of

forms on vector spaces over fields F , by which we will always mean that F

is commutative. We will refer to not necessarily commutative F as division

rings. We only mention briefly, in Section 1.7, the more general case of forms

on a left vector space over a division ring in order to state Tits’ classification.

Definition 1.3.1 A σ-semilinear transformation is a map f : V → W be-

tween vector spaces over the same field F such that

f(x+ y) = f(x) + f(y)

f(αx) = ασf(x)

for all x, y ∈ V and α ∈ F , where σ : F → F is a field automorphism.

Definition 1.3.2 Let V be a vector space over a field F . A function b :

V × V → F is σ-sesquilinear (this is French for “one-and-a-half”) if it is
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linear in the first variable and σ-semilinear in the second, i.e.

b(v1 + v2, w1 + w2) = b(v1, w1) + b(v1, w2) + b(v2, w1) + b(v2, w2)

b(αv, w) = αb(v, w)

b(v, βw) = βσb(v, w)

for all α, β ∈ F ; v, w ∈ V and where σ : F → F is a given field automorphism.

If σ is the identity, then b is a bilinear form.

• The form b is reflexive if b(v, w) = 0⇒ b(w, v) = 0.

• The sesquilinear form b is non-degenerate if b(v, w) = 0 for all w ∈ V

implies v = 0.

• The left radical is {v ∈ V : b(v, w) = 0 ∀w ∈ V } and similarly the

right radical is {w ∈ V : b(v, w) = 0 ∀v ∈ V }. Although the left and

right radicals are not equal unless the form is reflexive, they do have

the same dimension, provided V is finite dimensional. So, when V is

finite dimensional, to show a form is non-degenerate, it is enough to

show that either of the radicals is trivial.

• Suppose σ2 = 1. Then, the form b is σ-Hermitian if

b(w, v) = b(v, w)σ ∀v, w ∈ V.

• If σ is the identity, i.e. b(w, v) = b(v, w), then the form is symmetric

and it is also bilinear.

• A bilinear form b is alternating if b(v, v) = 0 for all v ∈ V . This implies

that

b(v, w) = −b(w, v),
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(by expanding b(v + w, v + w) = 0). The opposite implication is true

also whenever the characteristic of F is not 2.

Clearly, Hermitian, symmetric and alternating forms are reflexive.

We quote the following theorem which shows that we need only consider

alternating, symmetric or σ-Hermitian forms.

Theorem 1.3.3 Let b be a non-degenerate reflexive sesquilinear form on a

vector space V over a field F . Then, b is a scalar multiple of either an

alternating, symmetric, or σ-Hermitian form.

Definition 1.3.4 Let b be a non-degenerate sesquilinear form on a vector

space V . A subspace X of V is called totally isotropic with respect to B if,

for every x, y ∈ X, b(x, y) = 0.

Clearly, the intersection of two totally isotropic subspaces is again a to-

tally isotropic subspace.

Definition 1.3.5 Given a non-degenerate reflexive sesquilinear form b on a

vector space V , we say that u and v in V are perpendicular, written u ⊥ v,

if b(u, v) = 0. Note that we require the form to be reflexive, otherwise we

would not have u ⊥ v ⇔ v ⊥ u. We also define the perp of a subspace

U ⊆ V ,

U⊥ := {v ∈ V : b(u, v) = 0 ∀u ∈ U}.
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1.4 Quadratic forms

Definition 1.4.1 Let V be a vector space over a field F . A quadratic form

is a function Q : V → F such that for all λ ∈ F, v ∈ V

Q(λv) = λ2Q(v)

Q(v + w) = Q(v) +Q(w) +B(v, w)

where B is a bilinear form called the associated bilinear form.

It follows from the second equality in the definition that the associated

bilinear form B is symmetric. If the characteristic of F is not two, then the

bilinear form B is defined by the quadratic form Q and vice versa via

B(v, w) = Q(v + w)−Q(v)−Q(w)

Q(v) =
1

2
B(v, v)

However, if the characteristic of F is two, then B is both a symmetric

and alternating bilinear form, since

B(v, v) = Q(2v) + 2Q(v) = 0.

The quadratic form Q still defines the bilinear form B via the second

equality in the definition of Q, but the quadratic form is not defined by the

bilinear form. So there can be many different quadratic forms corresponding

to the same bilinear form.

Example 1.4.2 Let F be a field of characteristic two and let V = F 2. For

x = (x, y) ∈ V , we can define a quadratic form Q such that

Q(x) = αx2 + βxy + γy2,
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for some α, β, γ ∈ F . Now, for vectors x = (x, y) and s = (s, t) in V , our

bilinear form B is defined as follows.

B(s,x) = Q(s + x)−Q(s)−Q(x)

= α(s+ x)2 + β(s+ x)(t+ y) + γ(t+ y)2 −

− (αs2 + βst+ γt2)− (αx2 + βxy + γy2)

= 2αsx+ β(xt+ sy) + 2γty

However, since the field has characteristic two, we see that

B(s,x) = β(xt+ sy).

Since α and γ do not feature in the formula for the bilinear form, it is clear

that this bilinear form is associated with many different quadratic forms Q

corresponding to different choices of α and γ.

Definition 1.4.3 A quadratic form Q is non-singular if, whenever Q(v) = 0

and v is in the radical of the associated bilinear form B, v = 0. If the

characteristic is not two, then this is equivalent to non-degeneracy of the

bilinear form B.

Definition 1.4.4 A subspace X of a vector space V is called totally singular

with respect to a non-degenerate quadratic form Q on V if, for every x ∈ X,

we have Q(x) = 0.

Clearly, the intersection of two totally singular subspaces is again a totally

singular subspace. In a field of odd characteristic, since a quadratic form

uniquely defines a bilinear form and vice versa, a subspace is totally singular

if and only if it is totally isotropic. However, in characteristic two, we only

have that a quadratic form uniquely defines a bilinear form. Hence, every

totally singular subspace is totally isotropic but the converse does not hold.
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1.5 Classification of forms

Throughout this section, let V be a vector space over a finite field F together

with a form which is either a non-degenerate σ-Hermitian form b, a non-

degenerate alternating bilinear form b, or a non-singular quadratic form Q.

In the first two cases, define f : V → F by f(v) = b(v, v). In the third,

let f = Q and let b be the associated bilinear form of Q. We do not need

to consider symmetric bilinear forms, since they are in 1-1 correspondence

with quadratic forms in characteristic other than two. Also, all alternating

forms in characteristic two are associated to a quadratic form, but there are

more quadratic forms in this characteristic than alternating bilinear forms,

as discussed before in Section 1.4. Therefore, in characteristic two, we only

need consider quadratic and Hermitian forms.

Definition 1.5.1 Let U ⊆ V . Then, U is anisotropic if f(u) 6= 0 for all

u 6= 0 in U . We say L ⊂ V is a hyperbolic line if it is the span of two linearly

independent vectors u, v such that f(u) = f(v) = 0 and b(u, v) = 1. Note

that, since u and v are linearly independent, L is a 2-dimensional space and

so projectively a line.

Definition 1.5.2 Let V be a vector space and b and c be two sesquilinear

forms on V . Then, b is equivalent to c if there exists a non-singular linear

transformation θ : V → V such that for all x, y ∈ V , b(θ(x), θ(y)) = c(x, y).

Let P and Q be two quadratic forms. Then, P and Q are equivalent if the

associated bilinear forms are equivalent and P (θ(x)) = Q(x) for all x ∈ V .

Theorem 1.5.3 Let V be a finite-dimensional vector space together with one

of the above forms. Then, V is an orthogonal sum of n hyperbolic lines and
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an anisotropic space U .

Proof. See, for example, [4, Theorem 6.7]. �

We call n the Witt index of V . Given a decomposition into n hyperbolic

lines, Li = 〈ui, vi〉, it is clear that both 〈u1, . . . , un〉 and 〈v1, . . . , vn〉 are

maximal totally singular or totally isotropic subspaces with dimension n.

Conversely, given any maximal totally singular or totally isotropic subspace,

this gives the number of hyperbolic lines, and so the Witt index.

We will see later that the Witt index is unique for a given vector space

and form, provided the vector space is finite dimensional. In fact, if V has

infinite dimension, then there can exist infinite dimensional maximal totally

isotropic spaces of differing dimension.

If b is alternating, then every vector satisfies f(v) = 0, hence there can-

not be an anisotropic space. So u1, . . . , un, v1, . . . vn, where Li = 〈ui, vi〉

are orthogonal hyperbolic lines, is a hyperbolic basis for V . Hence, a non-

degenerate alternating form can only be defined on spaces of even dimension.

Moreover, for every even dimensional vector space, there is exactly one alter-

nating form up to equivalence. The equivalence simply maps one hyperbolic

basis to another.

We now restrict ourselves to a finite dimensional vector space V over a

finite field F = GF(q), for some prime power q. If b is Hermitian, then we

have the order of the field q = r2 and σ : α 7→ αr.

Proposition 1.5.4 (1) If f is quadratic, then the anisotropic space has

dimension n = 0, 1, 2. The form is unique up to equivalence except

if n = 1 and q is odd, when there are two forms, one a non-square

multiple of the other.
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(2) If b is Hermitian, then the anisotropic space has dimension n = 0, 1.

The form is unique up to equivalence.

Proof. See [4, Theorem 6.10]. �

1.6 Example of a polar space

Let V be a vector space with a form of Witt index n. Let the form be either

a non-degenerate sesquilinear form b or a non-singular quadratic form Q, in

which case let b be the associated bilinear form. We now consider the object

Π, whose subspaces are all the totally isotropic or totally singular subspaces

of the given sesquilinear or quadratic form respectively, with incidence being

symmetrised inclusion.

Theorem 1.6.1 The object described, Π, is a polar space of rank n.

Proof. [4] Clearly, any totally isotropic or totally singular subspace, together

with the subspaces it contains, is a projective space of dimension at most

n− 1, so axiom T1 is satisfied. As already noted, T2 and T4 are satisfied.

Let p = 〈w〉 be a point in Π not contained in an (n − 1)-dimensional

subspace J . Now, the function v 7→ b(v, w) is a linear function on J ; let K

be its kernel, which is an (n−2)-dimensional subspace. Let L be a projective

line from p to a point q in J . Now, p is a isotropic/singular subspace, so

b(w,w) = 0. Hence, the line L is totally isotropic/singular if and only if

b(v, w) = 0, i.e. if and only if q is in K. Let M be the union of all such

totally isotropic/singular lines. Then, M = 〈K,w〉 is an (n− 1)-dimensional

subspace of P and M ∩ J = K, as required for axiom T3. �
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Since Π is a polar space, all maximal totally singular or totally isotropic

subspaces have the same dimension. In particular, this implies that the Witt

index, for a given vector space and form, is unique.

1.7 Tits’ Classification

Before we can state Tits’ classification, we need to generalise the work done

above. For all three forms, the (left) vector space can be taken over a division

ring instead of a field. We can also generalise the quadratic form further by

defining a pseudo-quadratic form. Since all finite division rings are fields, this

only happens when we have infinite lines.

Definition 1.7.1 If K is a division ring, then let ε ∈ K and let σ : K → K

be an antiautomorphism (i.e. an automorphism of the additive group of K

such that (vw)σ = wσvσ) which satisfies

εσ = ε−1

vσ
2

= ε−1vε ∀v ∈ V

Assume further that if σ = id and charK 6= 2, then ε 6= −1. We define

Kσ,ε := {v − εvσ : v ∈ V }

A pseudo-quadratic form associated with a σ-sesquilinear form f : V × V →

K is a function q : V → K/Kσ,ε, satisfying

q(x) = f(x, x) +Kσ,ε

For a fuller definition and discussion see [31], noting that they use a right

rather than left vector space.
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Definition 1.7.2 [33] Let P be a projective plane. It is said to be Moufang

if, for all lines L in P , the pointwise stabiliser of L in Aut(P ) acts transitively

on the points of P outside L.

Theorem 1.7.3 (Tits’ Classification) [31] Let Π be a polar space of finite

rank at least 3. Then, Π is described by exactly one of the following situations:

(1) Π comes from a vector space over a field with a σ-Hermitian form

(2) Π comes from a vector space over a division ring with a pseudo-quadratic

form

(3) Π comes from a vector space over a field of odd characteristic, with an

alternating bilinear form

or to two exceptional cases:

(4) Π is a polar space of rank 3 whose maximal subspaces are all non-

desarguesian Moufang planes

(5) Π is a polar space of rank 3 corresponding to a 3-dimensional projective

space over a non-commutative division ring

The two exceptions are defined over an infinite field or division ring, so

they have infinite lines. We can see from the above theorem that, apart from

the two exceptional cases, every abstract polar space comes from a concrete

example constructed as the isotropic subspaces of a form on a vector space.

In particular, as every finite division ring is a field, all the examples with finite

lines come from a vector space over a finite field. The only pseudo-quadratic

forms which are neither quadratic forms, nor arise from a sesquilinear form
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are those defined over non-commutative division rings of characteristic two.

Therefore, the only examples with finite lines are exactly those described in

Example 1.6.1, coming from an alternating, quadratic, or σ-Hermitian form.

Definition 1.7.4 The symplectic, orthogonal and unitary groups are de-

fined as the subgroups ofGL(V ) which preserve a non-degenerate alternating,

non-singular quadratic, or non-degenerate σ-Hermitian forms, respectively.

That is, the g ∈ GL(V ) such that b(vg, wg) = b(v, w) (or Q(vg) = Q(v)), for

all v, w ∈ V . If V is finite-dimensional and F is finite, recalling Proposition

1.5.4, we see that symplectic Sp(V ) and unitary GU(V ) groups are uniquely

defined by the dimension of V and the size of the field. If dim(V ) = 2n

is even, then there are two non-isomorphic orthogonal groups, GO+(V ) and

GO−(V ) depending on whether the Witt index is n or n − 1, respectively.

We say that the groups and the respective forms are of plus, or minus type.

If dim(V ) = 2n + 1 is odd, then there exists two non-equivalent quadratic

forms, but they give rise to isomorphic groups GO(V ). Indeed, every form of

one class is proportional to one of the other class and proportionality gives

rise to a diagonal outer automorphism of the group. Therefore, if dim(V )

and F are both finite, we may describe all the groups uniquely by dim(V )

and |F | (and the type of the form), i.e. Sp6(2). In general, we will use Atlas

[10] notation for groups.

1.8 Counting points

We assign, in Table 1.8, values of a parameter ε to each type of polar space

which will be used in counting lemmas. Suppose that Π is a finite polar space

with finite lines. Let r be the polar rank and n the dimension of the vector
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space. We give names to each type of polar space in column Π; these are

indexed by the dimension of the projective space they embed into and the

order of the field Fq. Indexing by the dimension of the projective space rather

than the vector space gives rise to a slight notational confusion with the group

acting; for instance, O+
8 (q) is the group which acts on Q+(7, q). Also, Atlas

notation for the unitary group is to index over q, where the group is actually

defined over Fq2 . However, the convention for polar spaces is to index the

Hermitian polar spaces over q2. Finally, the dual of a polar space is notated

by writing a D before the name, e.g. Π = W (5, q), Π∗ = DW (5, q).

Table 1.1: Parameters for polar spaces

Π Type n ε

W (2r − 1, q) Symplectic 2r 0

H(2r − 1, q2) Unitary 2r −1
2

H(2r, q2) Unitary 2r + 1 1
2

Q+(2r − 1, q) Orthogonal 2r −1

Q(2r, q) Orthogonal 2r + 1 0

Q−(2r + 1, q) Orthogonal 2r + 2 1

We note the exceptional isomorphism W (2n − 1, 2r) ∼= Q(2n, 2r), for

r ∈ N. Such a polar space is usually referred to as W (2n − 1, 2r), although

for the purposes of listing its hyperplanes in Chapter 4, we must remember

that it is isomorphic to Q(2n, 2r).

The following two propositions are given without proof; these may be

found in [4]. Alternatively, if both the order of F and dimension of V are

small, to find the number of points in a polar space or dual polar space, one

may look up the appropriate group in the Atlas [10] and find the index of
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the isotropic points or maximal isotropic space respectively.

Proposition 1.8.1 A finite polar space of rank r has (qr−1)(qr+ε+1)
q−1

points,

q2r−1+ε of which are not collinear to a given point.

Proposition 1.8.2 The number of points in a dual polar space of rank r is

r∏
i=1

(1 + qi+ε)

Lemma 1.8.3 The number of lines through a point in a dual polar space of

rank n is qn−1
q−1

.

Proof. Lines through a point p of Π are just the (n− 2)-spaces contained in

the max P , when viewed in the polar space. But the max P is a projective

space, so there are qn−1
q−1

(n− 2)-spaces contained in P . �
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Chapter 2

Simple connectivity, geometries

and diagrams

In this chapter we will will give an introduction to geometries, diagrams and

simple connectedness. We begin by defining posets and their fundamental

group and covers. We then define geometries and describe the flag poset.

This allows us do define the fundamental group of a geometry. We then give

some standard reduction lemmas. Finally, we describe briefly diagrams for a

geometry.

2.1 Posets and simple connectivity

Definition 2.1.1 A poset is a pair (P,≤), where P is a non-empty set and

≤ is a partial ordering on P , i.e. for all x, y ∈ P we have:

Reflexivity x ≤ x

Antisymmetry if x ≤ y and y ≤ x, then x = y
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Transitivity if x ≤ y and y ≤ z, then x ≤ z

Two objects x, y ∈ P are comparable if either x ≤ y, or y ≤ x. A strict

ordering < can also be defined from ≤ in the obvious way. Let x ∈ P . We

define:

res+
P (x) := {y ∈ P : x < y}

res−P (x) := {y ∈ P : y < x}

resP (x) := res+
P (x) ∪ res−P (x)

A path on a poset is a sequence α := (a0, . . . , an) such that for each i, the

elements ai and ai+1 are comparable and not equal. The point a0 is the

start point and similarly the end point is an. Let α := (a0, . . . , an) and

β := (b0, . . . , bm) be two paths. If an = b0, then α and β can be concatenated

to a path α · β = (a0, . . . , an, b1, . . . , bm). We define Π(P, x) to be the set of

all paths in P with start point x.

If there is a path between x and y, then we say they are connected ; in this

way connectivity is an equivalence relation. We shall always assume that all

our posets are connected. A cycle is a path which has the same start and

end point.

Definition 2.1.2 Let α := (a0, . . . , an) and β be two paths. Suppose i ∈

1, . . . , n. We say that β differs from α by the addition of a return if β =

(a0, . . . ai, b, ai, . . . , an), where b is comparable to ai, and by the addition of

a reroute if β = (a0, . . . ai, b, ai+1, . . . , an), where b is comparable to ai and

ai+1. If two paths differ by the addition or removal of a return or reroute,

then they are elementarily homotopic. Two paths are homotopic if one can

be transformed to the another by a sequence of elementary homotopies, i.e.
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α and β are homotopic if α can be transformed into β by the addition or

removal of returns and reroutes. Homotopy is an equivalence relation and

we denote by [α] the homotopy class of α.

Clearly, two paths α and β can only be homotopic if they have the same

start and end points. On cycles we can define class sums [α] · [β] := [α · β].

This is well-defined and associative, since we can perform the elementary

homotopies in any order without affecting the rest of the class sum. If α :=

(a0, . . . , an), then we write α−1 := (an, . . . , a0) for α in reverse. The identity

is the trivial path 1 := (a0), and it follows that [α][α−1] = [α−1][α] = 1. So

π1(P, x), the set of homotopy classes of cycles in P at x, is a group, which is

called the fundamental group.

A cycle is said to be nullhomotopic if it is homotopic to the trivial cycle.

At some base point, x, if every cycle is nullhomotopic, then P is simply

connected at x.

Lemma 2.1.3 Let P be a connected poset and x, y ∈ P . Then, π1(P, x) ∼=

π1(P, y). Also, if P is simply connected, any two paths α and β between two

points x, y ∈ P are homotopic.

Proof. Let γ be a cycle at a point y ∈ P . Since P is connected, we fix a path

α from x to y. Define f : π1(P, y)→ π1(P, x) by f([γ]) = [α ·γ ·α−1]. This is

clearly well-defined. Indeed, let γ1, γ2 ∈ Π(P, y), such that γ1 is homotopic to

γ2. Then, the homotopies used to transform γ1 to γ2, transform α ·γ1 ·α−1 to

α · γ2 ·α−1. We may define f−1 : π1(P, x)→ π1(P, y) by f([γ]) = [α−1 · γ ·α].

It is clear that f−1 is the inverse of f . Analogously to above, f−1 is well-

defined. Moreover, f−1 being well-defined is equivalent to f being injective

and vice versa. Therefore, γ1 and γ2 are homotopic if and only if α · γ1 · α−1
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and α · γ2 · α−1 are. Therefore, as f is a bijection, f preserves the group

multiplication and is an isomorphism of groups.

Suppose P is simply connected. Now, γ = α · β−1 is a cycle at x. So,

[γ] = [x] and

[α] = [α] · [y] = [α] · [β−1 · β] = [γ] · [β] = [x] · [β] = [β] �

In light of the above lemma we can drop the mention of the base point in

the fundamental group and simply talk about π1(P ) in posets. This shows

that simple connectedness is a global property of the poset and not just

a local property. Similarly, when checking properties of cycles or paths in

posets, we only need check them at an arbitrary start point in a connected

poset. So, for a connected poset P , P is simply connected if and only if the

fundamental group π1(P ) is trivial.

There are several ways of making a poset from projective, polar and dual

polar spaces. One is by taking elements of the poset to be elements of the

space and defining a ≤ b, for two elements a and b, if both the dimension

of a is less than or equal to the dimension of b and a and b are incident or

equal.

Example 2.1.4 The poset P formed from a projective space of rank n ≥ 3

by the method above is simply connected. Pick a cycle, α := (a0, . . . , an, a0),

in P . Since ai−1 and ai are incident, there is a point bi which is contained in

both elements ai−1 and ai, and hence comparable with both. So, by adding

reroutes, α is homotopic to a path (a0, b1, a1, b2, . . . , an, bn+1, a0), in which

every other element is a point. Define Li := 〈bi, bi+1〉. Again using reroutes,

α is homotopic to β := (a0, b1, L1, b2, L2, . . . , bn, a0) (Note that if bi = bi+1
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we may simply remove a return). Since P is a projective space, all points

are collinear. Hence, we may reduce β to the trivial cycle. Therefore, P is

simply connected.

The posets formed from polar and dual polar spaces in this way are also

simply connected. We note that later, in Section 2.4, we show that projective,

polar and dual polar spaces can define a flag-poset. By the reductions there,

we see that the flag-poset is simply connected if the poset above is simply

connected.

2.2 Morphisms and coverings

Definition 2.2.1 Let (P,≤) and (Q,v) be posets. A morphism µ : Q→ P

is a map which preserves the ordering, i.e. if x v y, then µ(x) ≤ µ(y).

An isomorphism is a bijective morphism whose inverse is also a morphism.

Lemma 2.2.2 Let µ : Q → P be a morphism of posets, x ∈ Q, y =

µ(x). Then, the appropriate restrictions of µ are morphisms from res−Q(x)

to res−P (y) ∪ {y}, from res+
Q(x) to res+

P (y) ∪ {y}, and from resQ(x) to

resP (y) ∪ {y}. �

Since a morphism µ preserves comparability, it maps paths to paths, therefore

inducing a path mapping µ∗. This means that µ preserves connectivity. Note

that µ∗ is not necessarily injective; it may map several different paths in Q

to the same path in P . The induced mapping preserves path products and

homotopies. Hence, it is a map from the homotopy class of paths in Q to

the homotopy class of paths in P .
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Definition 2.2.3 Let (P,≤) and (C,v) be connected posets, and let ρ :

C → P be a morphism. Then, (C, ρ) is a covering of P if for all x ∈ C

(1) ρ restricted to res−C(x) is an isomorphism from res−C(x) to res−P (ρ(x))

(2) ρ restricted to res+
C(x) is an isomorphism from res+

C(x) to res+
P (ρ(x))

This is equivalent to:

(3) ρ restricted to resC(x) is an isomorphism from resC(x) to resP (ρ(x))

We note that since P is connected, ρ is surjective.

Definition 2.2.4 A covering (U, ν) is universal for P if, given any other

covering (C, ρ), there exists a morphism η : U → C such that (U, η) is a

covering for C and η ◦ ρ = ν.

U C

P

η

ν ρ

It can be shown that for any poset P , there exists a unique (up to isomor-

phism) universal cover. We do not show uniqueness here, but briefly sketch

the proof for existence. We define U to be the set of homotopy classes of

paths with start point x. Let α := (x, a1, . . . , an) and β := (x, b1, . . . , bm) be

two paths on P . The partial order on U is given by [α] v [β] if an ≤ bm

and (x, a1, . . . , an, bm) ∈ [β]. This makes (U,v) into a poset and then we

define a morphism ν : U → P by ν(α) = an, to make (U, ν) a cover. To see
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it is universal, we consider another cover ((C,�), ρ). Then, there is a map

η : U → C, defined by η mapping [α] to the end point of the lifting of α to

C. It can be shown that this gives the universal property.

Lemma 2.2.5 Let (U, ν) be a universal covering for (P,≤). Then, the fol-

lowing are equivalent:

(1) ν is an isomorphism from U to P

(2) P is simply connected

Proof. If the covering map ν is an isomorphism, then, as it is injective, only

one point in U = Π(P, y) has image y. Any such point is a member of π1(P, y)

and we already know that the trivial cycle (y) fulfills this, so therefore π1(P, y)

is trivial and P is simply connected.

Conversely, if P is simply connected, then, by Lemma 2.1.3, all paths

between two given points are homotopic. Hence, ν is injective and there-

fore bijective. To see that its inverse is a morphism, observe that ν is an

isomorphism between residues; hence its inverse preserves order. �

2.3 Geometries and flag posets

We already have a definition of point-line geometries, but we will now define

another type of geometry, called an incidence geometry, which we will refer

to as just a geometry.

Definition 2.3.1 A (typed) incidence system is a quartet Γ = (Γ,∼, I, τ)

such that

(1) Γ is a non-empty set of objects
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(2) ∼ is an incidence relation which is reflexive and symmetric

(3) I is a non-empty type set

(4) τ : Γ→ I is a type function which assigns a type to each element, such

that no two distinct objects of the same type are incident

The type function τ is usually taken to be surjective, otherwise τ(Γ) could

just be used for the type set. A flag F is a collection of pairwise incident

objects in Γ. The type set of the flag is τ(F) ⊆ I. An incidence geometry is

an incidence system where the type set of every maximal flag is I.

The residue of a flag F , resΓ(F), is all the elements of Γ − F that are

incident to every element of the flag F . With the appropriate restrictions

of the original incidence relation and type function, resΓ(F) is an incidence

geometry with type set I − τ(F).

If I is finite, then the rank of Γ is |I|. Let F be a flag with type set K,

then the cotype of F is I −K and the corank is |I −K|; this is the same as

the type set and rank of resΓ(F).

A path in Γ is a sequence α = (a1, . . . , an), such that ai and ai+1 are

incident. A geometry is connected if there is a path connecting any two

elements, and is residually connected if every residue of rank at least 2 is a

connected geometry.

From here on we assume that every geometry in this thesis is connected

and residually connected.

Example 2.3.2 Let Γ be a point-line geometry. Then, if we take subspaces

of dimension k to be objects of type k, then Γ is an incidence system. In
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particular, projective, polar and dual polar spaces are all incidence systems

in this way.

In fact, it can easily be shown that the following is true:

Proposition 2.3.3 Projective and polar spaces are incidence geometries.�

Definition 2.3.4 Let Γ be a geometry of rank n, such that I = {0, 1, . . . , n−

1}. We say Γ is ordered if there exists a partial ordering ≤ on Γ, such that

x ≤ y if and only if x ∼ y and τ(x) ≤ τ(y).

The dual of a rank n ordered geometry Γ is the geometry Γ∗ = (Γ,∼

, I, τ ∗), obtained from the original geometry by taking the new type function

to be τ ∗ = n− 1− τ . Hence, the points and lines of a dual geometry are the

(n− 1)-spaces and (n− 2)-spaces respectively of the original geometry. Two

elements are incident in the dual geometry if the corresponding elements in

the geometry are incident. Note that this agrees with the concept of duality

in projective and polar spaces.

It is easy to see that projective, polar and dual polar spaces are ordered

geometries. Indeed, all geometries that we consider in this thesis are ordered.

Clearly, the double dual Γ∗∗ of a geometry Γ is just the geometry itself again,

Γ∗∗ = Γ.

Proposition 2.3.5 The dual of an ordered geometry is itself an ordered ge-

ometry. �

Corollary 2.3.6 A dual polar space is a geometry. �

39



2.4 Simple connectivity in geometries

A geometry Γ (or a flag F of Γ) can always be viewed as a flag poset, F(Γ),

by letting the elements of the poset be flags, with the partial ordering being

inclusion.

A morphism α : Γ→ Γ′ of geometries is an incidence preserving mapping.

That is, for all x, y ∈ Γ

x ∼ y ⇒ α(x) ∼′ α(y)

We say α is type-preserving if I = I ′ and τ(x) = τ ′(α(x)) for all x ∈ Γ.

Isomorphisms are morphisms with an inverse which is also a morphism, and

automorphisms are isomorphisms between the same geometry.

We define homotopies and the fundamental group as before on the flag

poset of the geometry. We say Γ has fundamental group π(Γ) = π(F(Γ)),

where π(F(Γ)) is the fundamental group of the flag poset; Γ is simply con-

nected if π(Γ) is trivial.

In order to make some reductions for deducing simple connectedness, and

for the next section, we make some further definitions.

Definition 2.4.1 Let Γ be a geometry with point set P and line set L.

The collinearity graph, C(Γ), of a geometry Γ is defined with point set P

and joining two points with an edge if the two points are collinear. We will

use d(x, y) for the distance between two points x and y in the collinearity

graph.

The incidence graph, I(Γ), of a geometry Γ is defined with point set

being all the elements of Γ and joining two points with an edge if they are

incident. We will use dI(x, y) for the distance between two points x and y in
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the incidence graph.

Definition 2.4.2 A geometric cycle is a cycle in a geometry which lies fully

in the residue of some element.

To an ordered geometry Γ, we can associate several groups, in an anal-

ogous way to fundamental groups. To define these groups, we need only

define the cycles and the elementary homotopies; then the group is formed

by considering the cycles modulo the new homotopy. We have already seen

the first way to define a poset F(Γ), being the flag poset with elementary ho-

motopies being returns and reroutes. The second group, π(I(Γ)), is formed

from cycles from I(Γ), the incidence graph. The elementary homotopy is

addition or removal of returns and reroutes, which are triangles, in the in-

cidence graph. Finally, to define π(C(Γ)), we pick two types, usually points

P and lines L and we further assume that (P,L) is a partial linear space.

We use cycles from the collinearity graph, C(Γ), and say two cycles are ele-

mentarily homotopic if they differ by the addition or removal of a geometric

cycle.

Proposition 2.4.3 Let Γ be an ordered geometry of rank at least three. If

π(I(Γ)) is trivial, then Γ is simply connected.

Proof. Firstly, a return (a, b, a) in I(Γ) corresponds, in the poset of flags,

to a double return (a, {a, b}, b, {a, b}, a) . Secondly, consider a reroute in

I(Γ). Suppose α := (a, b, c) is a cycle, then this corresponds to α :=

(a, {a, b}, b, {b, c}, c, {c, a}) in the flag poset. Now, a, b and c are all in-

cident but not equal, therefore all elements in α are contained in the flag

{a, b, c}. So, a reroute in I(Γ) corresponds to homotopy in the poset of flags.
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It remains to show that every path of flags in Γ can be reduced to a path

(x1, {x1, x2}, x2, . . . , {xn−1, xn}, xn), where the only elements are flags of rank

one and two. Then, this reduced path, (x1, {x1, x2}, x2, . . . , {xn−1, xn}, xn),

can be interpreted as a path (x1, x2, . . . , xn) in the objects of Γ.

Let α = (a0, . . . , an) be a path in the flag poset of Γ. We proceed by

double induction on the rank and number of longest flags in α. If the rank of

the longest flag is two, then there is nothing to show. Suppose that ai is a flag

of longest length in α with rank k > 2. Without loss of generality, we may

assume that the flags ai−1 and ai+1 are both of rank k− 1, otherwise we may

insert a reroute giving us this property. Now, either ai−1 = ai+1, in which case

we can remove ai using a return, or ai−1 and ai+1 are non-equal and are both

incident to a flag ã of rank k − 2. Using reroutes, transform (ai−1, ai, ai+1)

to (ai−1, ã, ai, ã, ai+1), then, using a return, we get (ai−1, ã, ai+1). Hence, we

have removed a flag of longest length and the induction is complete. �

Proposition 2.4.4 Let Γ be a residually connected geometry, a, b be ele-

ments of Γ and i, j be two different types. Let α be a path from a to b.

Then, there exists a path α from a to b, homotopic to α in I(Γ), using only

elements, except possibly a and b, of type i and j.

Proof. The proof is by induction on the rank n of Γ. If the rank is two,

then there are just two types and so every path is trivially homotopic to

a path, itself, using only two types. Let Γ be a geometry of rank n and

assume the claim holds for all geometries of smaller rank. Consider a two

step path (c, x, d) which is in α. Both c and d lie in the residue of x, so

as Γ is residually connected, there exists a path (c = x1, . . . , xn = d) from

c to d with each xi lying in the residue of x for all i = 1, . . . , n. By the
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induction hypothesis, we may choose x2, . . . , xn−1 to be of types i or j. By

addition and removal of returns and reroutes in I(Γ), this path is homotopic

to (c = x1, x, x2, x, . . . , xn = d), and then to (c, x, d). Therefore, we can

remove (c, x, d) from α and replace it with (c = x1, . . . , xn = d), without

changing the homotopy type. This new path has fewer elements which are

not of type i or j. We perform this process iteratively until we obtain a path

α, homotopic to α, with only elements, except possibly a and b, of types i or

j. �

Corollary 2.4.5 Assume that, for every element x of Γ, the set of points

incident with x is a subspace of (P,L). Then π(C(Γ)) ∼= π(I(Γ)).

Proof. By Lemma 2.1.3, we may pick a base point of each group to be a point

of Γ. Using Proposition 2.4.4, we see that every cycle of I(Γ) is homotopic to

a cycle using just points and lines and these are in bijection with the cycles

of C(Γ). It remains to show the equivalence of the homotopies of C(Γ) and

I(P,L).

Let (x1, . . . , xn) be a geometric cycle in the residue of some element x.

Since the set of points X incident with x is a subspace of (P,L), by addition

and removal of returns, this path is homotopic to (x1, X, x2, X, . . . , xn) and

then to (x1, xn). So two paths which differ by a sequence of addition or

removal of geometric cycles are homotopic in π(I(P,L). Finally, it is clear

that both a return (a, b, a) and a reroute (a, b, c) in π(I(Γ)) lie in the residue

of an element of the geometry, and so differ by a geometric cycle. �

From the two above reductions, Proposition 2.4.3 and Corollary 2.4.5, we

see that the geometry Γ is simply connected if the group π(C(Γ)), formed from
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the point-line geometry of Γ, with homotopies being addition and removal of

geometric cycles, is trivial.

2.5 m-gons

In this section, we will discuss rank two geometries. We call one type points,

and the other lines.

First, however, we make some more definitions for a geometry of arbitrary

finite rank.

Definition 2.5.1 If a graph has simple cycles (ones with no repeated ver-

tices and at least three vertices), then define the girth to be the length of the

smallest simple cycle. If it does not have any cycles, then we say the girth is

infinite.

Both the incidence and collinearity graphs of a geometry are connected if

and only if the geometry itself is connected. Clearly, when the geometry has

only two types, the incidence graph is bipartite, since the points of the graph

can be naturally partitioned into two sets, points P and lines L, where edges

of the graph always contain exactly one point of each type. Hence, for two

points x and y in a rank two geometry, their distance apart dI(x, y) in the

incidence graph is twice the distance d(x, y) in the collinearity graph.

Definition 2.5.2 The distance between two points, x and y, in a geometry Γ

is their distance d(x, y) in the collinearity graph (we use the same notation as

in the collinearity graph). If all the distances between elements in a geometry

are finite, then the diameter of a geometry is d := max{d(a, b) : a, b ∈ Γ}.

Otherwise, the diameter is said to be infinite.
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Definition 2.5.3 Let Γ be a rank 2 geometry with point set P and line set

L. Define P-diameter and L-diameter to be respectively

dP := max{dI(a, x) : a ∈ P, x ∈ P ∪ L}

dL := max{dI(l, x) : l ∈ L, x ∈ P ∪ L}

Note also that the diameter of the incidence graph is equal to max{dP , dL}.

Definition 2.5.4 Let Γ be a rank 2 geometry with the incidence graph hav-

ing diameter m, girth 2m and dP = dL = m. Then, Γ is called a generalised

m-gon.

Note that the definition of an m-gon is symmetric with respect to points

and lines, hence the dual of an m-gon is another m-gon.

Lemma 2.5.5 A generalised 2-gon, called a digon, is simply a complete

bipartite graph. �

Lemma 2.5.6 A generalised 3-gon is exactly a projective plane.

Proof. Let P be a projective plane. Then, there exists a line L and a point p

not incident to L; however, every line through p has non-trivial intersection

with L. By considering the distances in the incidence graph, we see that

dL = dP = 3; hence we also have the diameter of the incidence graph being

three. Clearly, since the diameter of the incidence graph is three, the girth

is less than or equal to six. Since the incidence graph is bipartite, the girth

is an even number. There are no cycles of length four, since it would require

there to be more than one line through two points. Hence, every projective

plane is a 3-gon.
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Conversely, let Γ be a 3-gon. The girth of the incidence graph being six

implies that there are no 4-cycles, so there is at most one line between two

points. Since the incidence graph is bipartite, it follows from dP = 3 that

the distance between any two points is exactly two; hence any two points lie

on a unique line. Similarly, dL = 3 implies that any two lines intersect in a

unique point. Therefore, Γ is a projective plane. �

Lemma 2.5.7 A generalised 4-gon is exactly a generalised quadrangle.

Proof. First, let Q be a 4-gon. Then, dP = dL = 4. Since the incidence graph

is bipartite and dP = 4, for any point p not on a line L, there must exist

a path between them in the incidence graph of length at most four. Hence,

there exists a line M on p which intersects L in a point q. Suppose that

there exists a second line M ′ and point q′ with the same properties. This

would give a cycle of length six in the incidence graph, but the girth of Q is

eight, giving a contradiction. Similarly, dL = 4 implies that there exist two

non-intersecting lines. Since the girth of the incidence graph is eight, there

are no 4-cycles, which implies that Q is a partial linear space. Therefore, it

is a generalised quadrangle.

Suppose that Q is a generalised quadrangle. Fix a point p and pick

another point r. There is at least one line L through q, otherwise it could

not be connected to any other line in Q. By the same property, there is

another line M containing p and intersecting L; this gives a path in the

incidence graph of length four between a point and any other point. Any

line L is at distance at most three from p, so we have dP = 4. By a similar

argument, and since there exists two non-intersecting lines, we have dL = 4

and so we also have the diameter of the incidence graph being four. There are
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no cycles of length six, since a point would need to have two lines through it

intersecting the opposite line, contradicting the uniqueness in the intersecting

line property. Let L and L′ be two non-intersecting lines and pick two distinct

points p, q ∈ L′. Then, there is a line M through p intersecting L at p′ and

a line N through q intersecting L at q′. Since there are no six cycles, p′ 6= q′

and there is an 8-cycle. Hence, the girth is eight and Q is a 4-gon. �

Note that a generalised quadrangle is usually defined to be a 4-gon, but

the above lemma shows that the definition we have given in Definition 1.1.4

is equivalent.

2.6 Diagrams

Definition 2.6.1 A diagram D over a type set I is a system

D := {D{i,j} : i, j ∈ I, i 6= j},

where D{i,j} is a class of rank 2 geometries closed under isomorphism.

A geometry Γ with type set I belongs to a diagram D if, for any distinct

i and j, any residue in Γ with type set i, j is a member of D{i,j}.

We now describe the lexicon for the diagrams. Nodes represent different

types of element and may be labeled above with the type. Two nodes, i and

j, are joined by some type of arc if the residue of type i, j has a particular

type. The following notation is used for different m-gons:
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Digon
i◦

j
◦

Projective planes
i◦

j
◦

Generalised quadrangles
i◦

j
◦

m-gons with m > 4
i◦ (m) j

◦

Note that we do not need to specify the points and lines in an m-gon,

since it is self-dual.

Proposition 2.6.2 A projective space of dimension n admits a diagram An:

0◦ 1◦ 2◦ · · · n−2◦ n−1◦

Proof. Pick a flag F of cotype i, j. We consider elements in the residue of

F . Without loss of generality, assume that i < j. There are two cases to

consider.

First, assume that j 6= i + 1. Let a and b be elements of type i and j,

respectively, in the residue of F . Since j 6= i + 1, both a and b are incident

to the element c in F of type i + 1. Therefore, a is incident to b and the

residue is a digon.

Now, let j = i + 1. If n = 2 or i = 0, then we are done. So, we may

assume that there is an element, c, of type i − 1. Let C be the element of

type i+ 2 or, if no such element exists, then let C = P . So, C is a projective

space. The quotient C/c by an element of codimension 2 in a projective

space is a projective plane, as required. �

Theorem 2.6.3 A polar space of rank n admits a diagram Cn:

0◦ 1◦ 2◦ · · · n−3◦ n−2◦ n−1◦
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Proof. Again, we pick a flag F of cotype i, j and consider elements in the

residue of F . Without loss of generality, assume that i < j.

If j 6= i+ 1, then the same proof as in Proposition 2.6.2 holds.

We may assume n ≥ 3. Let i+1 = j 6= n−1. Then, F has an element c of

type n− 1. Since c is a projective space, the result follows from Proposition

2.6.2. Finally, we may assume that i = n − 2 and j = n − 1. Let c be the

element of F of type i − 3. By Proposition 1.1.12, c⊥/c is a polar space of

rank 2, a generalised quadrangle, as required. �

Corollary 2.6.4 A dual polar space of rank n admits a diagram:

0◦ 1◦ 2◦ · · · n−2◦ n−1◦ �

Notice, from the diagram, we can see that any subspace of a dual polar space

has the same type of diagram. This is to be expected, since any subspace of

a dual polar space is itself a dual polar space.

We may further label the order below the nodes, labelling a node i with

order xi, where xi + 1 is the number of elements in the residue of a flag of

cotype i. This can be shortened to (x0, x1, . . . , xn−1). For further details,

please see [22].

Proposition 2.6.5 [22, Excercise 3.15] A finite projective space has order

(q, q, . . . , q).

Finite polar spaces have the following orders:

W (2n− 1, q) and Q(2n, q) (q, q, . . . , q)

Q+(2n− 1, q) (q, q, . . . , q, 1)

Q−(2n− 1, q) (q, q, . . . , q, q2)

H(2n− 1, q2) (q2, q2, . . . , q2, q)

H(2n, q2) (q2, q2, . . . , q2, q3)
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From these diagrams it is easy to read of the number of points per line,

which is the order on node 0, and dual points per dual line, the order on

node n − 1. Note that, W (2n − 1, q) and Q(2n, q) have the same diagram

and orders, however, if q is odd, they are non-isomorphic. This shows that a

geometry is not necessarily determined by its diagram.
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Chapter 3

Amalgams and Tits’ Lemma

In this chapter, we define abstractly an amalgam. For rank two amalgams,

we define type and state and prove Goldschmidt’s lemma which counts the

number of amalgams of a given type up to isomorphism. We also give an

example of two non-isomorphic amalgams of the same type. We finish by

stating Tits’ lemma.

3.1 Amalgams

Definition 3.1.1 An amalgam A = (A, {Gi}i∈I) is a non-empty set A en-

dowed with partial multiplication, together with a collection of subsets Gi

over some index set I such that the following hold:

(1) A =
⋃
i∈I Gi

(2) the partial multiplication restricted to Gi, for all i ∈ I, makes Gi into

a group

(3) for any a, b ∈ A, the product ab is only defined when a, b ∈ Gi, for
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some i ∈ I

(4) for all i, j ∈ I, Gi ∩Gj is a subgroup of both Gi and Gj

The Gi are called the members of the amalgam. If |I| is finite, then the rank

of the amalgam is |I|.

In an abuse of notation, we will sometimes write A =
⋃
i∈I Gi as an

amalgam and we will think of an amalgam as being an “amalgamation” of

the groups Gi. Note from the definition, that the intersection of these groups

is fixed even if it is not explicit in the notation A =
⋃
i∈I Gi. For finite rank

n, we will often label the intersections GJ :=
⋂
j∈J Gj i.e. G12 = G1 ∩G2.

Definition 3.1.2 A completion of an amalgam A is a pair (G, φ), where G

is a group and φ : A → G is a map such that for all i ∈ I, the restriction

φ|Gi : Gi → G of φ to Gi is a group homomorphism. A completion (Ĝ, φ̂) is

the universal completion if, given any other completion (G, φ), there exists

a group homomorphism θ : Ĝ → G, such that φ = φ̂ ◦ θ. That is, such that

the following diagram commutes.

A Ĝ

G

φ̂

φ θ

We will often abuse this notation and just say that G is a completion.

Since the restriction of φ is only required to be a group homomorphism,

52



the trivial group is always a completion. In particular, if an amalgam has

no non-trivial completions, then we say that the amalgam collapses. Note

that an amalgam can have an infinite completion, even if all its members are

finite. Of particular interest, however, are those amalgams with only finite

completions.

It is clear that, if Ĝ is the universal completion of an amalgam A, Ĝ is

unique up to isomorphism. In fact, every amalgam has a universal comple-

tion. We see this by writing a presentation for a group isomorphic to Ĝ. Let

U be a group with generators {gx : x ∈ Gi for some i ∈ I} subject to the

relations gxgy = gxy if and only if x, y ∈ Gi for some i ∈ I. It is clear that

this is a completion of A. Moreover, since any other completion must have

these relations, U is isomorphic to Ĝ.

Lemma 3.1.3 Every completion G of an amalgam is a quotient of its uni-

versal completion Ĝ. �

Definition 3.1.4 Let A =
⋃
i∈I Gi and B =

⋃
i∈I Hi be two amalgams of

the same rank. An isomorphism of amalgams is a bijection φ : A → B of sets

such that whenever it is restricted to a member Gi of A, it is an isomorphism

of groups between Gi and Hi.

Notice, in particular, that an isomorphism of amalgams maps the inter-

sections of members in A exactly onto the corresponding intersections of

members in B.

Lemma 3.1.5 If A and B are two isomorphic amalgams, then every com-

pletion of A is a completion of B. In particular, their universal completions

are isomorphic.
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Proof. Let (G, β) be a completion of B and φ : A → B be an isomorphism

from A =
⋃
i∈I Gi to B. Now, (G, φ ◦ β) is a completion for A. Indeed,

(φ◦β)|Gi = φ|Gi ◦β, for i ∈ I, is the composition of a group isomorphism with

a group homomorphism, which is certainly another group homomorphism.

Using the universal property and that φ−1 is an isomorphism of amalgams,

we see that the universal completions of A and B are isomorphic groups. �

3.2 Rank two amalgams

In this section we discuss rank two amalgams and state and prove Gold-

schmidt’s lemma for calculating the number of rank two amalgams of a given

type.

If A = G1∪G2 is a rank two amalgam, we often write A = (G1, G2, G12 =

G1 ∩ G2, φ1, φ2). Here, φi : G12 → Gi is a monomorphism which is the

inclusion of G12 in Gi, for i = 1, 2. Where these maps are clear, we often

omit them. We write G1∗G12G2 to denote the amalgamated product of G1 and

G2 over G12, which is defined to be the universal completion of the amalgam

A.

With our new notation, we say two amalgams A = (G1, G2, G12, φ1, φ2)

and B = (H1, H2, H12, ψ1, ψ2) are isomorphic if there exist isomorphisms

θJ : GJ → HJ , for ∅ 6= J ⊆ {1, 2}, such that φiθi = θ12ψi for i = 1, 2. That

is, such that the following diagram commutes.
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G1

H1

G2

H2

G12

H12

φ1 φ2

ψ1 ψ2

θ1 θ12 θ2

We can see that this notion of isomorphism and the one given in the above

section are, in fact, equivalent. Indeed, let θ := A → B be an isomorphism

of amalgams as in the above section. Since φi and ψi are inclusions and θ

maps intersections of members in A onto the corresponding intersections of

members in B, we see that θJ := θ|GJ , ∅ 6= J ⊆ {1, 2} are the required maps.

Conversely, if we start with the second definition and define θ : A → B

by θ(x) := θJ(x) when x ∈ GJ , then φiθi = θ12ψi gives precisely that θ is

well-defined on the intersection.

Definition 3.2.1 LetA = (G1, G2, G12, φ1, φ2) and B = (H1, H2, H12, ψ1, ψ2)

be two amalgams. We say A and B have the same type if there exist isomor-

phisms θJ : GJ → HJ , for ∅ 6= J ⊆ {1, 2}, such that Im(φiθi) = Im(θ12ψi)

for i = 1, 2.

Note that type is a weaker concept than isomorphism. Moreover, isomor-

phism is an equivalence relation on the set of amalgams of the same type.

We denote the equivalence class of amalgams which are isomorphic to A by

[A]. The following is a well-known example of two non-isomorphic amalgams

of the same type, which can be found, for instance, in [21].

Example 3.2.2 For the first example, A1, let G1, G2
∼= S4, be represented

by the standard action on 4 points, and G12
∼= D8 = 〈(12)(34), (13)〉. The
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second example , A2, also has H1, H2
∼= S4 and H12

∼= D8 = 〈(12)(34), (13)〉.

We must now describe how G12 and H12 embed into the symmetric groups

in each example. In A1, let φ1 and φ2 be the identity maps. In A2, let

ψ1 = φ1 be the identity map. However, we define ψ2 by ψ2((12)(34)) = (13)

and ψ2((13)) = (12)(34).

We see that A1 and A2 have the same type, by taking θJ as the identity

map, ∅ 6= J ⊂ {1, 2}. To see they are not isomorphic, we consider the

Klein four group, V4 := 〈(12)(34), (13)(24)〉, in D8. Considering its natural

embedding in S4, we see it contains all the double transpositions, and so

is normal in S4. Hence, φ1(V4) / G1, ψ1(V4) / H1 and φ2(V4) / G2. Noting

that (13)(24) = (12)(34)(13), we see that ψ2(V4) = 〈(13), (24)〉. However, this

is certainly not normal in H2
∼= S4. Hence, there can be no isomorphism

between A1 and A2.

It is now natural to ask how many amalgams of a given type there are

up to isomorphism. Before we do this, we state one final piece of notation.

Suppose H < G. We define the quotient group Aut(G,H) of Aut(G) by

Aut(G,H) := NAut(G)
(H)/CAut(G)

(H)

The preimage of a non-trivial element of Aut(G,H) in Aut(G) is an auto-

morphism which fixes H as a set, but not pointwise i.e. it acts non-trivially

on H.

Proposition 3.2.3 (Goldschmidt’s Lemma) [15] Let A be the rank two

amalgam (G1, G2, G12, φ1, φ2) and define

G∗i := {φiαφ−1
i : α ∈ Aut(Gi, φi(G12))}
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Then, the amalgams of the same type as A up to isomorphism are in bijection

with the (G∗1, G
∗
2) double cosets of Aut(G12).

Proof. Pick γ ∈ Aut(G12) and let Aγ = (G1, G2, G12, φ1, γφ2). Clearly, Aγ is

an amalgam of the same type as A. We denote the set of all isomorphism

equivalence classes of amalgams of the same type as A by C(A). We now

define a map from the double cosets to C(A) and show it is a bijection.

f : G∗1\Aut(G12)/G∗2 → C(A)

G∗1γG
∗
2 7→ [Aγ]

Let G∗1γG
∗
2 and G∗1δG

∗
2 be two representatives of the same double coset. Then,

there exist αi ∈ Aut(Gi, φi(G12)), i = 1, 2, such that

δ = (φ1α1φ
−1
1 )−1γφ2α2φ

−1
2

φ1α1φ
−1
1 δφ2 = γφ2α2

Since α1 preserves G12 and φ1 is just inclusion, α12 := φ1α1φ
−1
1 is an automor-

phism of G12. We see that α12(δφ2) = (γφ2)α2 and α12φ1 = φ1α1. Therefore,

[Aδ] = [Aγ] and f is well-defined. The converse of the same argument shows

that f is injective.

To show that f is surjective, we need to show that an amalgam B =

(G1, G2, G12, ψ1, ψ2) of the same type as A is isomorphic to Aγ, for some

γ ∈ Aut(G12). Since B has the same type as A, there exist isomorphisms

θJ : GJ → GJ such that Im(ψiθi) = Im(θ12φi) for i = 1, 2. Therefore,

θ′12 := ψ1θ1φ
−1
1 ∈ Aut(G12). Set γ := (θ′12)−1ψ2θ2φ

−1
2 . Similarly to before,

ψ2θ
−1
2 φ−1

2 ∈ Aut(G12), hence γ ∈ Aut(G12). Define θ′i := θi, for i = 1, 2. We

now see that B is isomorphic to Aγ via the isomorphisms θ′J .
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G1

G1

G2

G2

G12

G12

φ1 γφ2

ψ1 ψ2

θ′1 := θ1 θ′12 := ψ1θ1φ
−1
1 θ′2 := θ2

�

Note that, since the inner automorphisms of G12 are contained in G∗i , for

i = 1, 2, we need only count double cosets of the outer automorphisms of

G12.

Corollary 3.2.4 Suppose that every automorphism of G12 is induced by an

automorphism of either G1, or G2. Then, the amalgam A is unique.

Proof. Since every automorphism of G12 is induced by an automorphism of

either G1, or G2, there is only one double coset G∗1G
∗
2. �

3.3 Tits’ Lemma

In this section we will state Tits’ lemma, which provides the link between

geometries and groups, via the language of amalgams. First, we need one

more piece of notation.

Let Γ = (Γ,∼, I, τ) be a geometry and let G ≤ Aut(Γ). Pick a maximal

flag F = {Fi}i∈I and define Gi := stabG(Fi).

Lemma 3.3.1 The set A :=
⋃
i∈I Gi is an amalgam of rank I.
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Proof. Certainly A is non-empty and the multiplication between a and b in

A is defined if and only a, b ∈ Gi for some i ∈ I. Since the stabiliser of Fij is

the stabiliser of Fj in Gi, Gij ≤ Gi. By symmetry, we see the Gij ≤ Gj too.

In fact, Gij = Gi ∩Gj. �

We call A the amalgam of flag stabilisers.

Definition 3.3.2 A group G ≤ Aut(Γ) acts flag-transitively on Γ if it acts

transitively on the maximal flags of Γ. That is, for any two maximal flags

{Fi}i∈I and {F ′i}i∈I there exists g ∈ G such that, for all i ∈ I, Fgi = F ′i .

Theorem 3.3.3 (Tits’ Lemma) [32, Corollaire 1] Let Γ be a connected,

residually connected geometry and suppose G ≤ Aut(Γ) be a group which

acts flag-transitively on Γ. Then, Γ is simply connected if and only if G is

the universal completion of the amalgam of flag stabilisers, A.
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Chapter 4

Biaffine geometries

In this chapter we will introduce biaffine polar geometries and show that they

are always geometries and are simply connected, provided the polar space

they are formed from is not one of ten small exceptions. We will then discuss

briefly some properties of the group which acts on them and give some useful

lemmas, which may be used when working in a specific example to prove

some amalgamation results. First we need some facts about hyperplanes of

both polar and dual polar spaces.

4.1 Hyperplanes

We recall the definition of a hyperplane for an arbitrary geometry.

Definition 4.1.1 A hyperplane H of a geometry is a proper subspace which

intersects every line.

Since H is a subspace, every line intersects H in either a single point, or is

fully contained in it. We say that an element of the geometry is deep with
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respect to H if it is fully contained in H. A singular hyperplane of a geometry

is the set of points at non-maximal distance from a given point.

It is well known that a hyperplane of either a polar, or dual polar space is

a maximal subspace and that its complement is connected. For a exposition

of this for dual polar spaces, see, for instance, [19]. For polar spaces, see [9,

Lemma 1.1].

Lemma 4.1.2 [9, Theorem 5.11] A hyperplane F of a polar space Π of rank

at least three, arises from a suitable embedding of Π into a projective space

by intersecting Π with a hyperplane of that projective space. �

In particular, if Π is finite, then, by Tits’ classification, Π is the set of

totally isotropic/singular subspaces of a form on a vector space V . Note that

when Π = W (2n−1, 2r) = Q(2n, 2r), we shall always take V to be the vector

space for Q(2n, 2r). Then, a counting argument shows that every hyperplane

of Π is induced by a hyperplane (i.e. a subspace of codimension one) of V .

Before we state the next Lemma, we need a short definition.

Definition 4.1.3 Suppose V is a vector space over a field of characteristic

two. Let Q be a quadratic form on V and B the associated bilinear form.

The nucleus is the radical of the alternating form B.

Lemma 4.1.4 Suppose that Π is a finite polar space. Then either

(1) F = z⊥ ∩ Π where z ∈ PG(V ) singular or non-singular, or

(2) Π ∼= Q(2n, 2r) for some n ≥ 2, r ∈ N and F is a non-singular hyper-

plane. Moreover, F 6= z⊥ ∩ Π for any singular or non-singular point

z in PG(V ) and the subspace of V spanned by F does not contain the

nucleus of Π.
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Proof. By [9], every hyperplane of a polar space Π is induced from a hy-

perplane of the vector space V . That is, some codimension one space W

in V . If B is non-degenerate, then every such subspace W is the kernel of

y 7→ B(z, y), and so F = z⊥ for some vector z. If Π is of symplectic or unitary

type, or of orthogonal type in odd characteristic, then the respective form B

is non-degenerate. Suppose Π is of orthogonal type and the characteristic is

two. Then, B is also an alternating form.

If V is even dimensional, then the radical of B must be either empty, or

have dimension two. In either case, there is no vector which is collinear with

all others in V . So, F = z⊥ for some z.

Finally, if V is odd dimensional, B has a one dimensional radical called

the nucleus. Let W be the subspace of V spanned by F . If F is non-singular,

then W is non-degenerate. Since in even characteristic a non-singular point

z is not collinear to itself, either W = z⊥ for some non-singular vector such

that V = 〈z〉 ⊕W , or W does not contain the nucleus of Π and F 6= z⊥ ∩Π

for any singular or non-singular point z in PG(V ). �

Corollary 4.1.5 Suppose we are in case (2) of the above lemma; let z span

the nucleus of Π. Suppose U is a subspace of V such that all the singular

points of U⊥ lie in F . Then, U⊥ ⊂ U ⊕ 〈z〉 and hence U⊥ is the radical of

the bilinear form restricted to U ⊕ 〈z〉.

Proof. Let W be the subspace of V spanned by F . Since V = 〈z〉 ⊥ W ,

U⊥ = 〈z〉 ⊥ R, where R := W ∩ U⊥. We claim that R is totally singular.

For a contradiction, suppose that t ∈ R was non-singular. Consider a line

through z and t. Since we are in even characteristic, every element of the field

is a square, so there exists α ∈ F such that Q(αz + t) = α2Q(z) +Q(t) = 0.
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So, the line through z and t contains a singular point, which by assumption

must be in R. Hence, z is in R, a contradiction. Therefore R is totally

singular.

We now work in Π/〈z〉. Let Û⊥ = U⊥/〈z〉 and R̂ = R ⊕ 〈z〉/〈z〉. Note

that Û⊥ = Û⊥ since z spans the nucleus. Then, R̂ = Û⊥ implies R̂⊥ = Û .

Since R is totally singular, Û⊥ ⊂ R̂⊥ = Û . So, U⊥ ⊂ U ⊕ 〈z〉 and U⊥ is the

radical of the bilinear form restricted to U ⊕ 〈z〉. �

We now consider hyperplanes of a dual polar space Π∗. Here, there are

many different types. Indeed, there is work being done to classify the hyper-

planes for a given dual polar space. This is only known for small rank cases,

or under specific conditions. However, all dual polar spaces admit a singular

hyperplane.

Lemma 4.1.6 Let U be a k-space of a rank n dual polar space Π∗. Suppose

that X is a hyperplane of the dual polar space U . Then, the set of points at

distance at most n− k from X form a hyperplane.

Proof. This follows from the distance property in Proposition 1.2.10. �

We note that a point is the hyperplane of a line of a dual polar space, so

the above lemma gives a singular hyperplane in this case.

Let Q be a finite classical generalised quadrangle, that is, both a polar

and dual polar space of rank two. It is well known that there are exactly three

types of hyperplanes (see for instance [23]). There are singular hyperplanes

and two other types called ovoids and subquadrangles. In Q, if every line has

s+ 1 points and every point is on t+ 1 lines, then we say Q has order (s, t).

An ovoid is a set of points, which intersect every line in exactly one point.
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In a quadrangle of finite order, an ovoid has st+1 points. A subquadrangle is

a quadrangle of lesser order contained in Q. We say a subquadrangle is full

provided, if it contains two points of a line, then it contains all of the line.

The third type of hyperplane that can occur in a generalised quadrangle is a

full subquadrangle of order (s, t′), where t′ < t. Note that full subquadrangles

do not always exist, and even when they do, they are not always hyperplanes.

Note that, in any given generalised quadrangle, ovoids and subquadran-

gles might not exist, but singular hyperplanes always exist. Also, for a hy-

perplane in a dual polar space of rank greater than two, a quad can either be

fully contained in the hyperplane, or can intersect it in any of the three ways

above. A singular hyperplane will always either contain the quad, or inter-

sect it in a singular hyperplane, but any other type might intersect different

quads in different ways.

We note further that Pasini and Shpectorov determined all flag-transitive

hyperplane complements of classical generalised quadrangles in [23].

Finally, we quote a lemma which will limit the size of hyperplanes in a

dual polar space. In the following lemma, the convention is that a dual polar

space of rank one is a line.

Lemma 4.1.7 [6, Lemma 3.1] Let ∆ be a dual polar space of rank n ≥ 1

and H1, . . . , Hl be l ≥ 1 hyperplanes of ∆. If every line of ∆ has at least l+1

points, then there exists a point not contained in H1 ∪ · · · ∪Hl.

4.2 The geometry

Let Π be a polar space of rank n ≥ 3, which is thick and dually Π∗ is thick.

Pick a hyperplane F of Π and H of Π∗. Let Γ be the pre-geometry formed
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by taking all elements of Π which are neither in F , nor dually in H. We shall

refer to such a Γ as a biaffine polar space.

Definition 4.2.1 An element U of Π is F -bad (respectively H-bad) if it is

in F (respectively H). It is F -good (respectively H-good) otherwise. We say

an element is good if it is both F - and H-good.

So, the elements of Γ are those which are good. However, by removing

both F and H, we might have removed every element, leaving Γ empty. We

first need a lemma (note that Q+(2n − 1, q), even though not considered in

this section, is included for the sake of completeness):

Lemma 4.2.2 Let ∆ be a polar space and F a hyperplane of ∆. Suppose

that U was a submax contained in F and at least k maxes containing U are

also in F , where

• k = 2, if ∆ = W (2n, q), q 6= 2r; Q+(2n− 1, q); H(2n− 1, q2)

• k = 3, if ∆ = Q(2n, q),W (2n, 2r)

• k = q + 2, if ∆ = H(2n, q2), Q−(2n+ 1, q)

Then, every max containing U is in F .

Proof. The maxes containing U correspond to the points of the rank one

polar space U⊥/U . Suppose that U is not in F , then F induces a hyperplane

F ′ of U⊥/U . All hyperplanes of U⊥/U are induced from a codimension one

subspace of the underlying vector space V . It suffices to take k as one plus

the maximum number of singular vectors in any possible codimension one

subspace. We note that U⊥/U has the same type as ∆.
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When V is 2-dimensional (∆ = W (2n, q), q 6= 2r; Q+(2n− 1, q); H(2n−

1, q2)), a codimension one subspace has dimension one, therefore is either

singular, or not. So k = 2 suffices. If V is 3-dimensional, a 2-dimensional

subspace W cannot be totally isotropic, as U⊥/U has rank one. For W to

contain more than one singular point, we must assume it is non-degenerate.

Hence, if ∆ = Q(2n, q) or W (2n, 2r), W is isomorphic to Q(1, q) and k = 3

suffices; or, if ∆ = H(2n, q2), W is isomorphic to H(1, q2) and k = q + 2

suffices. Finally, if V is 4-dimensional, then ∆ = Q−(2n + 1, q). For a

3-dimensional subspace W to contain at least two singular points, it must

contain the hyperbolic line spanned by them. Therefore, W is isomorphic to

Q(2, q) and so k = q + 2 suffices. �

Corollary 4.2.3 Except possibly when Π = Q(2n, 2), the set Γ is non-empty.

Proof. Suppose that Γ is empty. Pick a point p ∈ Π∗−H and a line L on p.

Let P and U be the max and submax, respectively, in Π corresponding to p

and L. Since every line L through p has exactly one point in H, every max

on U , except possibly one, must be in F . Let Π have t+1 maxes per submax,

which is the same as the number of points on a dual polar line. By Lemma

4.2.2, provided t + 1 ≥ k, all the maxes on U are in F . This is satisfied

unless q = 2 and Π = Q(2n, 2). Since L was arbitrary, every submax U in

P has all the maxes containing it in F . Pick any point u ∈ Π − F . Then,

U ′ := 〈P ∩ u⊥〉 is a submax of P with a max 〈u, U ′〉, not in F , containing it,

a contradiction. �

Proposition 4.2.4 If Π = Q(2n, 2), F is a hyperplane of Π isomorphic to

Q+(2n − 1, 2) and H is the complement of F , then Γ = ∅. Otherwise, Γ is

non-empty.
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Proof. By Corollary 4.2.3, we may assume Π = Q(2n, q). Let W be the 2n-

dimensional subspace of V which induces the hyperplane F . There are three

cases: F is singular, W is of plus type, or W is of minus type.

First, assume that F is singular and F = z⊥. Let Z be the max in

Π∗ corresponding to z. There exists a point p outside Z which is not in

H, otherwise H and a singular hyperplane on any point of Z cover Π∗,

contradicting Lemma 4.1.7. Let P be a max on p which is parallel to Z.

Then, P is not in F or H.

Secondly, assume that W is of minus type. Then, it contains no elements

of dimension n − 1. Therefore, no max of Π is in F . Hence, there is a dual

point which is neither in F , nor H.

Finally, assume thatW is of plus type. We assume for a contradiction that

Γ is empty. Let M be a max of Π not contained in F . So, the corresponding

point m of Π∗ is in H. We note that there is exactly one submax M ∩ F of

M which is in F , all the others are not. Therefore, in Π∗, there is exactly

one line through m which is F -bad, whilst all the others are F -good. Also,

in Π∗, every point on an F -good line is F -good.

In Π∗, let p be a closest point to m which is not in H. Suppose the

distance k from m to p is at least 2. Consider the space N0 spanned by m

and p (N0 is possibly Π∗). Since there is at most one F -bad line through m

in N0, there is a point m1 ∈ N0 collinear to m via an F -good line, which is

at distance k−1 from p. Define N1 = 〈p,m1〉. We continue this construction

recursively until p is at distance two from mi and Ni is a quad. By the

choice of p and construction of Ni, mi is the deepest point of the singular

hyperplane Ni ∩H in Ni. Let L be an F -good line through mi in Ni. Since
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there is at most one F -bad line though each point mi+1 6= mi of L, there is

a good line from mi+1 to some point p′ not in H. Therefore, p′ is both F -

and H-good and so Γ is not empty.

It remains to consider the case where, for all F -good points m of Π∗, the

closest point p to m not in H is at distance one. Let Q be a quad through

p and m. Since we assumed that Γ = ∅, the line through p and m must

correspond to M ∩ F in Π and every other line through m in Q must be

in H. This requires H ∩ Q to be a subquadrangular hyperplane with order

(q, q − 1), hence q = 2. Conversely, suppose that Q is a quad which is not

contained in H. Pick any point p ∈ Q not in H. Then, since Γ = ∅, the

corresponding max P in Π must be in F . Since F ∼= Q+(2n − 1, 2), for

any line L through p in Q, L ∩ H is the point which corresponds to the

max containing L in Π which is not in F . By the previous argument, H is

subquadrangular. Therefore, H is locally subquadrangular (for every quad

Q, Q is either in H, or Q∩H is subquadrangular). It is well known that the

only locally subquadrangular hyperplane of Q(2n, 2) is the complement of a

hyperplane isomorphic to Q+(2n − 1, 2), see for example [24]. Since Γ = ∅,

H is the complement of F . �

From now on we assume that Γ is non-empty.

Lemma 4.2.5 Let U be an element of Γ. Then, Res−(U) are those elements

of Π contained in U which are not in F and Res+(U) are those elements of

Π containing U which are not in H.

Proof. Let U∗ be the element of Π∗ corresponding to U . Now, U is in Γ, so

U is not in F or H. In particular, all the elements which contain U∗ in Π∗
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are not in H. So, every element contained in U in Π is not in H. Therefore,

Res−(U) are those elements of Π not in F . Similarly, we obtain the result

for Res+(U). �

Corollary 4.2.6 If U is an element of Γ, then Res−(U) is an affine space

and the dual of Res+(U) is an affine dual polar space. �

Corollary 4.2.7 The pre-geometry Γ is in fact a geometry.

Proof. Lemma 4.2.5 shows that all maximal flags have the same type. �

Lemma 4.2.8 All proper residues of Γ of rank at least two are connected.

Proof. Let F be a proper flag of Γ of corank k ≥ 2 and let Θ be the residue

of F . If F contains an element U of dimension 0, then Θ is contained in

Res+(U). By Corollary 4.2.6, Res+(U) is dually an affine dual polar space

and hence residually connected. So, Θ is connected. Similarly, if F contains

an element U of dimension n − 1, then Θ is contained in Res−(U), which

is residually connected, and hence Θ is connected. Finally, we may assume

that F contains an element U of dimension 0 6= k 6= n − 1 and Θ contains

elements of dimension 0 and n − 1. Then, every element of Θ of dimension

greater than k is connected to every element of Θ of dimension less than k,

hence Θ is connected. �

By an abuse of notation, we say that U is an H-bad element of Γ if U is

an element of Π which is F -good, but H-bad. For example, an H-bad line L

of Γ is a line of Π which has q good points (and one F -bad point), but L is

not a line of Γ.
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The following lemma will be very useful when Γ has H-bad lines. We

will use it frequently in the subsequent proofs to ensure that Γ is “connected

enough” and this will place a lower bound on the size of the field, for a given

type of polar space. We note that in many of these proofs, when Γ has no

H-bad lines we need not appeal to Lemma 4.2.9 and the proofs will hold with

lower or even no bounds on the field. The results in this chapter are given

by a restriction on the field for a given polar space Π, with no assumption

on F , or H. It should be noted, however, that for specific F and H, some

proofs might hold with tighter bounds. In particular, in the proof of the

below Lemma 4.2.9, the restrictions of two or q+ 1 arise from the possibility

of subquadrangular quads. If H admits no such quads, then tighter bounds

will hold in the below Lemma and hence several others too.

Lemma 4.2.9 Let p be an H-good point contained in a plane π of Π. Sup-

pose that there exists at least one H-good line through p in π. Then, either

all lines through p in π are H-good, or at most q + 1, if Π = H(2n− 1, q2);

two, if Π = W (2n− 1, q), Q(2n, 2r); or one otherwise, are H-bad.

Proof. If π is H-good, all lines through p in π are H-good. Suppose π is H-

bad. Let P be the max and U ⊂ P be the (n− 3)-space in Π∗ corresponding

to p and π, respectively. A line through p in π corresponds in Π∗ to an

(n−2)-dimensional subspace, hereafter called a submax, in P which contains

U . Since there is at least one H-good line on p in π, there is some submax

M1 on U in P which is not contained in H. Pick any point m1 in M1 which

is not in H. Let x be the (unique) point in U which is the projection of m1

to U .

Pick any quad Q on the line xm1 in P which intersects U in a single point
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x. Then, every submax on U in P intersects Q in a distinct line through

x. Conversely, every line in Q through x defines a unique submax on U .

Therefore, the submaxes M1, . . . ,Mk on U in P are in bijection with the

lines xm1, . . . , xmk through x in Q. Moreover, Mi is in H only if xmi ⊂ H.

Note that it is possible for xmi to be in H, but Mi 6⊂ H.

Since m1 was chosen outside H, Q ∩ H is a proper hyperplane of Q.

Moreover, x cannot be the deepest point of a singular hyperplane in Q. By

[23, Lemma 2.2], the hyperplane Q ∩ H of Q must be ovoidal, singular or

subquadrangular. If it is ovoidal, then no line through x is contained in H.

If Q ∩H is singular, x is not the deepest point, so exactly one line through

x in Q is fully contained in H. Finally, if Q∩H is subquadrangular, then Π

must be one of W (2n− 1, q), Q(2n, 2r) or H(2n− 1, q2) [23, Table 1]. Then,

the number of lines through x in Q which are contained in H is at most two

in the first two cases and q + 1 in the last case. �

We measure distance between elements of Γ to be their distance in the

collinearity graph of Γ. Since we may have removed a number of H-bad lines

and other H-bad elements to form Γ, the distance in Γ between points may

be different from that in Π− F . Clearly, points which are joined by a good

line will still be at distance one, but other distances in Γ may have increased.

Lemma 4.2.10 Let p and r be two points of Γ which are joined by an H-bad

line L. Then, p and r are at distance two in Γ, provided Π 6= W (2n−1, 2) ∼=

Q(2n, 2).

Proof. Let P andR be the maxes in Π∗ corresponding to p and r, respectively.

Since L is H-bad, P ∩ R ⊂ H. Let M be a max disjoint from both P and
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R. Such a max certainly exists; it corresponds to a point in Π not collinear

to p or r, but to a another point of L. Then, πM(P ∩H) and πM(R∩H) are

two hyperplanes of M . By Lemma 4.1.7, we may pick a point u ∈ M which

is not in either of these hyperplanes. Also, since P ∩ R is an (n − 2)-space

in the (n − 1)-space P , there is a (unique) point v in πM(P ∩ R) which is

collinear to u. Let a and b be the projections of u to P and R, respectively,

and c be the projection of v to P ∩ R. Therefore, ac and bc are lines in P

and R, respectively. So, a is at distance 2 from b and Q := 〈a, b, c〉 is a quad.

Let N be any max containing Q. Since u was chosen outside πM(P ∩H) and

πM(R ∩ H), a and c are both outside H. Therefore, N ∩ P , N ∩ R and N

are all H-good. Let n be the point of Π corresponding to N . In Π, all lines

on p and r are F -good. In particular, the lines np and nr are both good. If

n is not in F , then we have created a path of length two.

Suppose that n ∈ F . Let π be the plane containing p, r and n. Now, np

is a good line on p in π. So, by Lemma 4.2.9, if Π 6= W (2n−1, 2) ∼= Q(2n, 2),

then there is another line through p in π which is good. As π is a plane, this

intersects nr in some point n′ not in F . Furthermore, n′ is H-good, since it

is on an H-good line. Therefore, pn′r is the required path. �

We note that if there are no H-bad lines, then we would not have to

appeal to Lemma 4.2.9 in the proof of the above lemma. Then, the above

Lemma 4.2.10 would hold for all polar spaces. The same is true for the

following two lemmas.

Lemma 4.2.11 Let p and r be two points of Γ which are not collinear in Π.

If there exists some F -good point u collinear in Π to both p and r, then p and

r are distance two in Γ, provided Π 6= W (2n− 1, 2) ∼= Q(2n, 2).
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Proof. First, note that the distance must be at least two. We start by as-

suming that pu and ru are both H-bad and we reduce to the case where one

line, suppose pu, is good.

Let P , R and U be the maxes in Π∗ which correspond to p, r and u,

respectively. Then, P and R are parallel, but U intersects both P and R.

By Lemma 4.1.7, we may pick a point x in P , which is outside P ∩ H and

πP (R ∩ H). Since pu is H-bad, P ∩ U ⊂ H and so y := πP∩U(x) is at

distance one from x. Define Q := 〈xy, πR(xy)〉 and let M be any max which

contains Q. In Π, M ∩ U ∩ P and M ∩ U ∩ R correspond to two planes

π and σ on p and r, respectively, which intersect in a line through u and

m, the point corresponding to M . Moreover, since x and πR(x) are not in

H, the lines pm and rm are H-good. If m is not in F , then this is the

required path. Otherwise, suppose m ∈ F . Use Lemma 4.2.9 to see that, if

Π 6= W (2n− 1, 2) ∼= Q(2n, 2), there is a point m′ 6∈ F on um, such that pm′

is an H-good line. We have now reduced to the case that pu is good.

Let W be a submax of R, which is disjoint from R∩U and not contained in

H. Since pu is good, P ∩U is not contained in H. So, by Lemma 4.1.7, there

exists a point y of R ∩U which is not contained in either of the hyperplanes

πR∩U(W ∩ H), or πR∩U(P ∩ U ∩ H). Let M be any max which contains

the quad 〈yπP (y), πW (y)〉 and m be the point in Π corresponding to M . By

construction, pm and rm are good lines. Moreover, since πP (y) = πP∩U(y)

is not in H, the plane σ = 〈p, u,m〉 is good. If m 6∈ F , then the required

path is pmr. Otherwise suppose m ∈ F . Again by Lemma 4.2.9, if Π 6=

W (2n− 1, 2) ∼= Q(2n, 2), there is a point m′ 6∈ F on um, such that rm′ is an

H-good line. Since σ is a good plane, pm′ is good too. Hence, pm′r is the
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required path. �

Lemma 4.2.12 Let p and r be two points of Γ which are not collinear in

Π. Suppose that there is no F -good point collinear in Π to both p and r.

Then, p and r are at distance three, provided Π 6= W (2n− 1, 2) ∼= Q(2n, 2).

Moreover, any point p′ collinear to p in Γ is at distance two from r.

Proof. Since p and r have no common neighbours in Γ, they must be at

distance at least three. Let p′ be a point which is collinear in Γ to p and

let L = pp′ be the good line connecting them. Pick a max M on r which is

disjoint from L. Now, p⊥ ∩M 6= p′⊥ ∩M . Otherwise, p′ ∈ N := 〈p, p⊥ ∩M〉

and so, since p⊥∩M is a hyperplane of N , L would intersect M non-trivially,

a contradiction. However by assumption, p⊥ ∩M = M ∩ F . So, there exists

an F -good point u collinear in Π to both p′ and r. By Lemma 4.2.11, p′ and

r are at distance two, whence p and r are at distance three. �

These Lemmas taken together give us the following:

Corollary 4.2.13 The geometry Γ is residually connected with collinearity

graph having diameter three, provided Π 6= W (2n− 1, 2) ∼= Q(2n, 2). �

We again make the note that if there are no H-bad lines, and therefore

no H-bad points, then the above corollary holds without restriction.

4.3 Simple connectivity

A cycle is geometric if it is contained in the residue of an element of the

geometry. All geometric cycles are nullhomotopic. Thus, to show that a

particular cycle is nullhomotopic, it suffices to decompose it as a product of
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geometric cycles. A cycle is isometric if the distance between two points in

the cycle is the same as the distance between those two points in the whole

collinearity graph. It is clear that any cycle can be decomposed as a product

of isometric cycles, therefore we need only consider these. Hence, to show

that every cycle is nullhomotopic, it is enough to show that every isometric

cycle can be decomposed into geometric cycles.

Since the collinearity graph of Γ has diameter three, by Corollary 4.2.13,

in principle we have isometric cycles of length up to seven. However, Lemma

4.2.12 implies that there are no isometric 7-cycles. It therefore suffices to

show that all cycles of length 6 or less can be decomposed into smaller cycles,

and then show that every 3-cycle is geometric.

Throughout this section, where γ is a cycle and a, b, c, d, e or f are points

in this cycle, let A, B, C, D, E and F , respectively, be the corresponding

maxes in Π∗.

Recall from Section 2.6, that finite polar spaces have order (s, . . . , s, t),

where s and t depend on the type of the polar space. In this section, we

shall be counting using both s and t. However, when stating the Lemmas

and Propositions, we combine these and just list the exclusions.

For example, in the next proposition, we will make use of Lemma 4.1.7

with t ≥ 3. This excludes Π being W (2n− 1, 2) ∼= Q(2n, 2), or H(2n− 1, 22)

(note that Q+(2n− 1, q) is not considered as its dual is not thick). We then

use Lemma 4.2.9, which restricts s for different types of polar space. In this

case, it only excludes Π = W (2n− 1, 2) ∼= Q(2n, 2), which has already been

discounted before.

Proposition 4.3.1 Every 3-cycle, γ = abca, is the product of geometric
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3-cycles, provided n ≥ 4 and Π 6= W (2n− 1, 2) ∼= Q(2n, 2), H(2n− 1, 22).

Proof. We may assume that γ is contained in an H-bad plane π. Let M1,

M2 and M3 be the maxes in Π∗ corresponding to a, b and c respectively.

Since a, b and c are points of Γ, M1, M2 and M3 are not contained in H. Let

Lij := Mi ∩Mj, for {i, j} ⊂ {1, 2, 3}, be the three submaxes corresponding

to the lines ab, bc and ac. The Lij are also not contained in H, since the

lines are good. Let P := M1 ∩M2 ∩M3 be the (n− 3)-space corresponding

to π; this is fully contained in H.

Let Aij be an (n − 3)-space of Lij, disjoint to P and not contained in

H. Since the Aij are not contained in H, the projections of Aij ∩H onto P

give three hyperplanes of P . By Lemma 4.1.7, provided t ≥ 3, there exists a

point p ∈ P which is not contained in any of the hyperplanes projected from

Aij. Let aij be the point of Aij which projects onto p, for {i, j} ⊂ {1, 2, 3}.

By construction, aij is not contained in H. Also, since aij is the point of Aij

which projects onto p in P , the distance from aij to p is one.

Define Q to be the 3-space generated by aij and p, for {i, j} ⊂ {1, 2, 3}.

Let D be any max containing Q, and let d be the point in Π corresponding to

d. Since aij ∈ D ∩ Lij, the plane 〈x, y, d〉 is good for every {x, y} ⊂ {a, b, c}.

Hence, the lines ad, bd and cd are all good and the point d is H-good. If

d 6∈ F , then this decomposes γ as the product of geometric triangles.

Suppose that d ∈ F . We claim that U := 〈a, b, c, d〉 is a 3-space. That is

that P 6⊆ D. Otherwise, D ∩M1 contains both P and a12, hence D ∩M1 =

M1∩M2. However, a13 is also inD∩M1, but is not inM1∩M2, a contradiction.

So, U is indeed a 3-space.

We note that ∆ := a⊥/a is a polar space. Since M1 6⊆ H, this induces
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a hyperplane H ′ = M1 ∩ H on ∆∗ = M1 such that an element containing

a is in H if and only if the corresponding element in ∆ is in H ′. Observe

that, in ∆, U corresponds to a plane on the good point L := 〈a, b〉 and

〈a, b, d〉 corresponds to a good line on L. Therefore, by Lemma 4.2.9, if

Π 6= W (2n− 1, 2) ∼= Q(2n, 2), then there is another good plane σ 6= 〈a, b, d〉

in Π on ab. Since σ ⊂ U , σ intersects cd in a good point d′ not equal to c or

d. This decomposes γ as the product of geometric triangles. �

Points can be at distance two in two ways, either they can be joined by

an H-bad line, or they can be distance two in Π−F . We will say that a cycle

in (the collinearity graph of) Γ has a bad internal edge (possibly more than

one) if there exists an H-bad line joining two points of the cycle, if not it

has no internal edges. So, a bad internal edge is an edge between two points

of the cycle which is in Π, but not Γ. We now proceed by dealing with the

4-cycles with bad internal edges:

Lemma 4.3.2 If γ = abcda is a 4-cycle in Γ with bad internal edges, then it

can be decomposed as the product of triangles and a 4-cycle with no internal

edges, provided Π is not W (2n−1, 2) ∼= Q(2n, 2), W (2n−1, 3), Q−(2n+1, 2),

or H(2n− 1, 22).

Proof. First suppose that γ has two bad internal edges, ac and bd. Then,

π := 〈a, b, c, d〉 is an H-bad plane or 3-space. Now, ac 6= bd, otherwise ab = ac

is H-bad. Suppose that π is a plane. We may assume that the two points

ab ∩ cd and bc ∩ ad are in F , otherwise these decompose γ into a product of

triangles. Consider the lines through a. The line ac is already H-bad, and

ab and ad are both good. So, by Lemma 4.2.9, if Π satisfies the restrictions,
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there is another good line L in π through a. Since ad already intersects bc in

its only F -bad point, L must intersect bc in some F -good point u not equal

to b or c. Similarly, L intersects cd in an F -good point v not equal to c or

d. Both u and v are F -good points on a good line, therefore, they are good.

This decomposes γ into triangles abua, ucvu, vdav and auva.

Now, assume that π is a 3-space. In Π∗, U := C∩A∩B andW := D∩A∩B

are two intersecting maxes in the dual polar space A ∩ B of rank n − 2,

which are deep in the induced proper hyperplane A ∩ B ∩ H. There exists

a point p ∈ A ∩ B not in H at distance one from U − (U ∩W ). Suppose

not. Pick an (n − 3)-space M of A ∩ B containing p and disjoint from U .

Since πM(U ∩W ) ⊂ p⊥ ∩M , M is covered by the two proper hyperplanes

p⊥ ∩M and M ∩H, contradicting Lemma 4.1.7. Hence, there exists a point

p ∈ A∩B not in H at distance one from U − (U ∩W ). Pick an (n−3)-space

σ ⊂ A∩B containing the line 〈p, πU(p)〉 which is disjoint from W . In Π, this

corresponds to a good plane σ on ab such that c is collinear to every point

of σ, but d⊥ ∩ σ is a line. We note that since d is collinear to b, d⊥ ∩ σ = ab.

Pick a line L 6= ab through a in σ; it is good. Consider the plane 〈c, L〉.

By Lemma 4.2.9, if Π satisfies the restrictions, there exists a good point a′

of L such that a′c is a good line. The lines aa′ and a′b are also good as σ is

good. This splits abcda as a 4-cycle aa′cda and two triangles aba′a and bca′b.

Since d⊥ ∩ σ = ab, the quadrangle aa′bca has only one bad internal edge, ac.

Finally, suppose that γ has one bad internal edge, say ac. We pick a

good plane σ on ab such that c⊥ ∩ σ = ab. Such a plane certainly exists.

Indeed, all planes on ab are F -good so it remains to show we can pick an

H-good plane. In Π∗, the submax U corresponding to ab intersects C in a
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deep (n− 3)-space. Since ab is good, we may pick σ to be any (n− 3)-space

in U disjoint from U ∩ C, but not contained in H. So σ is a good plane on

ab such that c⊥ ∩ σ = ab. Since d is not collinear with b, we now perform

the same construction as above. However, this time since c⊥ ∩ σ = ab, c will

not be collinear in Π to the new vertex created. So, γ is decomposed into

the product of triangles and a 4-cycle with no internal edges. �

From now on, in light of the above lemma, we will assume that all 4-

cycles have no bad internal edges. If γ = abcda is such a 4-cycle, consider

X := 〈a, b, c, d〉. We say that if X⊥ 6⊆ F , then γ is a nice 4-cycle. We will

decompose 4-cycles by first decomposing them into the product of 3-cycles

and nice 4-cycles, then decomposing nice 4-cycles.

The following lemma is an adaptation of [17, Lemma 3.4]:

Lemma 4.3.3 Let γ = abcda be a 4-cycle in Γ. Suppose Π is not W (2n −

1, q), q ≤ 4; Q(2n, q), q ≤ 4; Q−(2n + 1, q), q ≤ 3; or H(2n − 1, 22). Then

γ decomposes as a product of triangles and a nice 4-cycle.

Proof. We may assume that γ is a 4-cycle which is not nice, that is X⊥ ⊆ F .

By Lemma 4.1.4, F = z⊥ for some singular or non-singular point z, or Π =

Q(2n, 2r) and F is a hyperplane not containing the nucleus n of Π. Suppose

for a contradiction that we are in the second case. Now, X is a 4-dimensional

non-degenerate subspace, so the radical of X⊕〈n〉 is 1-dimensional. However,

since Π has rank at least 3, X⊥ is at least 3-dimensional. This contradicts

Corollary 4.1.5. So, we may assume that F = z⊥ for some singular or non-

singular point z. Now, X⊥ ⊂ z⊥ if and only if z ∈ X.

Let P := 〈a, b, c〉 and Q := 〈c, d, a〉. There exists some good point y ∈ P⊥

such that ay, by and cy are all good lines. Indeed, let π be a good plane on
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ab. Now, c is collinear to a line c⊥ ∩ π of π via the good line bc. By Lemma

4.2.9, when Π satisfies the restrictions, there exists a good point y 6= b in

π, such that cy is good and y is not collinear with d in Π. Note that ay

and by are good also, since they lie in π. Hence, we have decomposed γ into

triangles abya and bcyb and a 4-cycle aycda with no internal edges. Assume

for a contradiction that aycda is not nice; that is z ∈ 〈Q, y〉. By the same

construction above, there is some good point in Q⊥. In particular, z 6∈ Q.

So, z ∈ 〈Q, y〉 = 〈Q, z〉 = X. However, P⊥ ∩ X = b, which implies that

y = b, a contradiction. Hence, z 6∈ 〈Q, y〉 and aycda is a nice 4-cycle. �

We now introduce the idea of a cap for a 4-cycle γ = abcda, that is a

vertex point e which is collinear to a, b, c and d together with the four side

planes 〈a, b, e〉, 〈b, c, e〉, 〈c, d, e〉 and 〈a, d, e〉.

Lemma 4.3.4 [17, Lemma 4.1] Let γ = abcda be a 4-cycle in Π with no

internal edges. Then, the following hold:

(1) The vertex of every cap is in X⊥ = 〈a, b, c, d〉⊥. Conversely, every point

of X⊥ is the vertex of a unique cap

(2) Different caps on γ have different side planes

We note that, if Γ has no H-bad lines (and therefore no H-bad points),

then Lemma 4.3.2 is not needed. Furthermore, since we need not refer to

either Lemma 4.3.2, or 4.2.9 in the proof of Lemma 4.3.3, the result holds

without restriction. Therefore, by Lemma 4.3.3 and 4.3.4, there is a cap with

a good vertex for every 4-cycle and so 4-cycles are decomposed.

So, we must now consider the more general case where there are H-bad

lines and points. We will prove the following proposition via a series of
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lemmas.

Proposition 4.3.5 Let γ = abcda be a 4-cycle in Γ. Suppose Π is not

W (2n− 1, q), q ≤ 4; Q(2n, q), q ≤ 5; Q−(2n+ 1, q), q ≤ 3; or H(2n− 1, q2),

q ≤ 4. Then γ decomposes as a product of triangles.

By the above Lemma 4.3.3, we may assume that X⊥ 6⊆ F . Therefore,

there are caps with a vertex which is not in F . We need to show that at least

one of these caps has a vertex e which is also not in H and that all the side

edges ae, be, ce and de are not in H. Note that it is sufficient to show that

all the side planes are H-good.

Lemma 4.3.6 Let L be an edge from γ. Then, X⊥ ∼= L⊥/L.

Proof. Let U be a singular subspace of X⊥ of dimension k. Then, 〈U,L〉 is a

singular subspace of dimension k + 2 which contains L. Moreover, 〈U,L〉/L

is in L⊥/L. Conversely, given any singular subspace W of L⊥/L, there is

a unique singular subspace U ′ of L⊥ containing L of dimension k + 2, such

that W = U ′/L. Then, we may uniquely decompose U ′ as U ⊥ L, where

U := U ′ ∩X⊥. This defines a bijection between X⊥ and L⊥/L and it is easy

to see that incidence is preserved. �

The dual of L⊥/L embeds into Π∗ in a natural way, as all the subspaces

contained in the subspace corresponding to L. Since abcda has no internal

edges, the four lines define four disjoint (n − 2)-spaces of Π∗, M1, . . . ,M4.

Now, every edge L is good, so Mi ∩ H is a proper hyperplane of Mi, for

i = 1, . . . , 4.

We note that Π∗ has t + 1 points per line (since we do not consider

Π = Q+(n − 1, q) as its dual is not thick). So, by Lemma 4.1.7, there is
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a point y1 ∈ M1 outside the four hyperplanes H1 and Hi := πM1(Mi ∩ H),

i = 2, 3, 4, provided t ≥ 4.

Then, yi := πMi
(y1) is not in H for i = 2, 3, 4. Since Mi and Mj are at

distance one are at distance one if i−j is odd, the yi generate a quad Q which

is not in H. In Π, the yi correspond to good maxes on the respective edges,

and Q corresponds to their H-good intersection, which is an (n − 3)-space.

Any point of this (n − 3)-space defines a cap for γ which has H-good side

planes. If, further, the vertex is F -good, then this decomposes γ.

Let N be any line on y1 in M1. On N , exactly one point is contained

in each hyperplane Hi. So, at most four points on N can lead to bad caps

and the other t − 3 points must lead to H-good caps. We suppose, for a

contradiction, that every such point on every line N which leads to an H-

good cap is dually in F .

In the rank n−2 polar space X⊥, via the isomorphism in Lemma 4.3.6, N

corresponds to an (n−4)-space U , Q and every point of N corresponds to an

(n− 3)-space on U . Since, by assumption, X⊥ 6⊆ F , F defines a hyperplane

F ′ = F ∩ X⊥ of X⊥. Our hypothesis implies that U ⊆ F ′ and, moreover,

every max on the submax U which leads to an H-good cap is in F ′.

Lemma 4.3.7 If Π satisfies the restrictions, then all maxes of X⊥ on the

submax U are in F ′.

Proof. The number of maxes in X⊥ on a submax is the same as the number

of points in a dual polar line in Π∗, which is t + 1. By our contradiction

hypothesis, all but possibly four maxes on U lead to maxes which are in F ′.

So, by Lemma 4.2.2, we must solve (t + 1) − 4 ≥ k, where k is the number

of maxes on U in F ′ needed to make every max on U in F ′. �

82



Let Y be the max in X⊥ corresponding to y1. Since N was chosen to be

an arbitrary line of M1 on y1, we have:

Lemma 4.3.8 Let U be any submax of Y . Then, every max of X⊥ contain-

ing U is in F ′. �

However, by assumption from Lemma 4.3.3, X⊥ 6⊆ F . Pick some point u

of X⊥ which is not in F ′. Then U ′ := u⊥∩Y is a submax of Y and 〈u, u⊥∩Y 〉

is a max containing U ′, which is not in F . This contradicts Lemma 4.3.8 and

so, Proposition 4.3.5 is proved. We note that the restrictions in Lemma

4.3.7 are stronger than t ≥ 4 as required previously, hence these give the

restrictions for Proposition 4.3.5.

What remains is to decompose 5- and 6-cycles.

Lemma 4.3.9 If γ = abcdea is a 5-cycle with a bad internal edge, then it

decomposes as the product of 3- and 4-cycles, provided Π 6= W (2n − 1, 2) ∼=

Q(2n, 2).

Proof. Suppose ad is an H-bad line. Hence, A ∩ D ⊆ H. Pick a submax

U in D disjoint from A ∩D (and B ∩D if this is non-empty), which is not

in H. By Lemma 4.1.7, pick a point x in U which is neither in U ∩H, nor

πU(A ∩ B ∩H). Let y := πA∩B(x). Since U and A ∩ B are submaxes, they

are at most distance two apart. Define Q := 〈x, y〉 and let M be any max

containing Q. Since x and y are not in H, A∩B ∩M and D ∩M are not in

H.

In Π, let m be the point corresponding to M . So, dm is a good line and

π := 〈a, b,m〉 is a good plane. If m is not in F , then we have decomposed

γ. Otherwise, suppose that m is in F . Then, dm is an H-good line on d
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inside the plane 〈a, d,m〉. By Lemma 4.2.9 and our restriction on Π, since

ad is already an H-bad line, there exists an F -good point m′ ∈ am such that

dm′ is a good line. Since π is good, am′ and bm′ and m′ itself are all good.

This decomposes Γ into a triangle abm′a and two quadrangles bcdm′b and

am′dea. �

Lemma 4.3.10 Let γ = abcdea be a 5-cycle in Γ. Suppose Π is not W (2n−

1, q), q ≤ 4; Q(2n, 2); Q(2n, 4); Q−(2n + 1, 2); or H(2n − 1, 22). Then γ

decomposes as a product of 3- and 4-cycles.

Proof. We may assume from Lemma 4.3.9 that γ does not have any internal

bad edges. Also, that a vertex of γ is collinear in Π to the F -bad point of the

opposite edge, i.e. d is collinear to the F -bad point of ab. Otherwise, suppose

d is collinear to a good point u of ab. If du a good line, then this decomposes

γ into two 4-cycles. If it is an H-bad line, then using Lemma 4.2.10, d and

u are joined by a path dvu of length two, and so γ decomposes into two

5-cycles auvdea and bcdvub. Since both these 5-cycles have an internal bad

edge, du, by Lemma 4.3.9, they decompose as products of smaller cycles, and

so therefore does γ.

So d is collinear to the F -bad point on the line ab. Let U1 = 〈a, b, d〉 and

U2 = 〈b, d, e〉. Suppose that U⊥1 6⊆ 〈F 〉. Let p be an F -good point collinear

with a, b and d. Then, π := 〈a, b, p〉 is a plane and d is collinear with the

F -good line π ∩ d⊥. If π is good, then ap and bp are good. Otherwise, if π is

H-bad, since both a and b lie on the good line ab, by Lemma 4.2.9 when Π

satisfies the restrictions, we may choose p on π ∩ d⊥ such that ap and bp are

good. So, p must be good also. If dp is good, this decomposes γ as a product

of the triangle abpa and two 4-cycles bcdpb and apdea. Or, if dp is H-bad, as
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a product of the triangle abpa and two 5-cycles with bad internal edges dp.

Otherwise, we must now assume that U⊥1 and U⊥2 are in the subspace

spanned by F . By Lemma 4.1.4, F = z⊥ for some singular or non-singular

point z, or Π = Q(2n, 2r) and F is a hyperplane whose span in the vector

space does not containing the nucleus n of Π. Suppose we are in the second

case. Now, U1 is a 3-dimensional subspace with 1-dimensional radical ab∩d⊥,

so the radical of U1 ⊕ 〈n〉 is 2-dimensional. However, since Π has rank at

least 3, U⊥1 is at least 4-dimensional. This contradicts Corollary 4.1.5. So we

may assume that F = z⊥ for some z.

Since U⊥1 ⊆ F = z⊥, z ∈ U1. Similarly, z ∈ U2. Hence, z ∈ U1 ∩ U2 =

〈b, d〉, but then, c ∈ 〈b, d〉⊥ ⊆ z⊥ = F , a contradiction. �

Again, we note that the proof of the above Lemma 4.3.10 holds without

restriction, provided there are no H-bad lines.

Lemma 4.3.11 Every isometric 6-cycle, γ = abcdefa, can be decomposed

as a product of 3- and 5-cycles, provided Π 6= W (2n− 1, 2) ∼= Q(2n, 2).

Proof. Let π be a good plane on ab and pick a good point p not on ab in π.

Since π is a good plane, both ap and bp are good. By Lemma 4.2.12, since a

and d are at distance three, p is at distance two from d. Let dup be a path in

Γ. Similarly, considering b and e, we get a path evp. Hence, γ is decomposed

into a triangle abpa and three 5-cycles, bcdupb, pudevp and apvefa. �

Propositions 4.3.1 and 4.3.5 and Lemmas 4.3.10 and 4.3.11 now give us

our conclusion to this section:

Theorem 4.3.12 Suppose Π is not W (2n − 1, q), q ≤ 4; Q(2n, q), q ≤ 5;

Q−(2n + 1, q), q ≤ 3; or H(2n − 1, q2), q ≤ 4. If Γ has rank at least four,

then Γ is simply connected. �
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Theorem 4.3.13 If Γ has rank at least four, has no H-bad lines and Π 6=

W (2n− 1, 2) ∼= Q(2n, 2), H(2n− 1, 22), then Γ is simply connected. �

4.4 Simple connectedness in rank three

In order to show simple connectedness when Γ has rank three, it is enough to

show that every triangle is the product of geometric triangles. The proof of

Lemma 4.3.1, as it stands, cannot be adapted to rank three, since it creates

a point d collinear with all the three points a, b and c. This generates an

element of Γ of dimension three. Hence, we adopt another approach for the

rank three case. In [17], the authors only dealt with rank three. We adapt

their proof for triangles, ensuring that all lines and points used are good. We

first state an easy property of the rank three case:

Lemma 4.4.1 If Γ has rank three, then there is exactly one H-bad plane

through every H-good line of Γ.

Proof. A plane on a line corresponds to a point on a line in Π∗. �

We will decompose triangles via a specific class of isometric 4-cycles,

those that are nice with no bad internal edges. We reiterate that since we

may consider just isometric 4-cycles, there are no “good” internal edges. We

again use a cap.

Lemma 4.4.2 Let γ = abcda be a nice 4-cycle in Γ with no bad internal

edges. Suppose Π is not W (5, q), q ≤ 4; Q(6, q), q ≤ 5; Q−(7, 2); or H(5, q2),

q ≤ 4. Then γ decomposes into geometric triangles.
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Proof. Recall that X := 〈a, b, c, d〉; it is non-degenerate since γ has no bad

internal edges. By Lemma 4.1.2, let PG(V ) be the projective space which

induces the hyperplanes of Π. Since γ is a nice 4-cycle, X⊥, which has

dimension dim(PG(V ))− 4, has a proper hyperplane F ′ = F ∩X⊥ induced

by F . We count the minimum number of points of X⊥ outside F ′.

If Π ∼= W (5, q), then X⊥ is a line of PG(V ) and therefore has q points

outside F . If Π ∼= H(5, q2), then X⊥ is again a line of PG(V ). This contains

q + 1 isotropic points, of which one, if F ′ is isotropic; or none, if F ′ is

anisotropic, are in F . So there are at least q points outside F . When Π ∼=

H(6, q2), X⊥ is a projective plane and contains q3 + 1 isotropic points. Now,

F ′ contains either 1, or q + 1 isotropic points, so X⊥ contains at least q3− q

points outside F . If Π ∼= Q(6, q), X⊥ is again a projective plane and now

contains q + 1 singular points. Now, F ′ contains none, one or two singular

points, so X⊥ contains at least q − 1 points outside F . Finally, if Π ∼=

Q−(7, q), X⊥ is a 3-space of PG(V ) such that X⊥ ∩ Π is an ovoid of X⊥.

Hence, X⊥ contains q2 + 1 singular points. So, F ′ contains 0, 1, or q + 1

singular points. Therefore, X⊥ contains at least q2 − q points outside F .

By Lemma 4.4.1, each line of γ is contained in exactly one H-bad plane.

So, since different caps on γ contain different side planes by Lemma 4.3.4 (2),

we must ensure X⊥ has at least five points outside F . If e is such a point,

there is a cap with vertex e, where all the side planes are good. We note that

the lines ae, be, ce and de, and point e are all good, since they are contained

in good side planes. So the Lemma is proved, subject to the restrictions on

Π. �
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We will now decompose triangles by showing that we can construct a

4-cycle, where γ = abca is the one H-bad side plane, with the other three

being good. Therefore, we have an “octahedron” with one side generated by

γ and the other 7 being good. We note that these methods were developed

for Phan-theory [1].

Lemma 4.4.3 Every 3-cycle is the product of geometric 3-cycles, provided

Π has rank three and is not W (5, q), q ≤ 4; Q(6, q), q ≤ 5; Q−(7, 2); or

H(5, q2), q ≤ 4.

Proof. Let γ = abca be a non-geometric triangle in Γ. Then, the plane

π := 〈a, b, c〉 is H-bad. Pick a good plane ρ on a such that ρ∩π = a. This is

possible simply by picking a good line L 6⊂ π on a and observing that there

is one plane on L which is H-bad and at most one more which intersects

π in a line. Let d and e be two F -good points not equal to a on the good

lines b⊥ ∩ ρ and c⊥ ∩ ρ, respectively. Since a good line lies in exactly one

H-bad plane and π is H-bad, the planes 〈a, b, d〉 and 〈a, c, e〉 are both good.

Therefore, bd and ce are good lines and, furthermore, the triangles abda, acea

and adea are all geometric. Now, ad 6= ae, otherwise d and e are collinear

to three non-collinear points in π and therefore must be contained in π, a

contradiction. Hence, b 6⊥ e and c 6⊥ d, so bcedb is an isometric 4-cycle with

no internal edges. Now, by Lemma 4.4.2, bcedb is the product of geometric

triangles and we see that γ is decomposed. �

From the above Lemmas 4.4.2 and 4.4.3 combined with Lemmas 4.3.2,

4.3.3, 4.3.10 and 4.3.11, we get the same restrictions on Π as in Theorem

4.3.12. Therefore we have the following:
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Theorem 4.4.4 The biaffine geometry Γ is simply connected, provided Π is

not one of the following exceptions:

W (2n− 1, q) q ≤ 4

Q(2n, q) q ≤ 5

Q−(2n+ 1, q) q ≤ 3

H(2n− 1, q2) q ≤ 4

4.5 Group

In this section we will describe a method of creating a flag-transitive biaffine

polar space given one of rank one less. First we give a lemma which will be

useful in calculating stabilisers of elements of the geometry.

Lemma 4.5.1 Suppose G is a group acting flag-transitively on a geometry

Γ. Let p be a point of Γ and x be any element of the geometry containing p.

Suppose Qx ≤ Gx acts regularly on the points of Γ in x . Then, Gx = QxGpx.

Proof. Clearly, we have Gx ≥ QxGpx. Pick g ∈ Gx and consider its action on

the point p which is contained in x. By assumption, Qx acts regularly on the

points contained in x, so there exists a unique h ∈ Qx such that g′ := h−1g

fixes p. However g′ also fixes x, so g′ ∈ Gpx and we have g = hg′ ∈ QxGpx.�

For our construction, choose F to be z⊥ for a singular point z. Then, let

Z be the max in Π∗ corresponding to z. Let X be a hyperplane of the dual

polar space Z, with a group K acting flag-transitively on the complement

Z −X. We may extend X to a hyperplane H of Π∗, by taking as the points
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of H all points of Π∗ at distance at most one from X. We now define Γ as

the biaffine polar space obtained by removing F and H.

Lemma 4.5.2 There are no H-bad points in Γ.

Proof. Let u be an F -good point and U the corresponding max in Π∗. Since

u is not collinear with z, U and Z are disjoint. By the definition of H as an

extension of the hyperplane X of Z, U is not contained in H. �

Via the natural isomorphism, we have K acting on z⊥/z. Pick another

point p 6∈ z⊥; hence p and z span a hyperbolic line. We now embed K in the

automorphism group of Π, by letting it act trivially on 〈z, p〉.

In Π, let M be the point stabiliser of z, and Q be the unipotent radical

of M , which acts trivially on z⊥/z and V/z⊥. Define G := QK.

It is well known that the unipotent radical Q acts regularly on the points

of the far-away geometry Σ = Π− z⊥. By Lemma 4.5.2, the points of Γ are

exactly the points of Σ, so Q acts regularly on the points of Γ.

Proposition 4.5.3 The group G acts flag-transitively on Γ.

Proof. We must show that there is a element of G which takes any given

maximal flag r ⊂ L1 ⊂ · · · ⊂ Ln to another r′ ⊂ L′1 ⊂ · · · ⊂ L′n. Since Q

acts regularly on Γ, there is an element of Q which takes r to r′. For any

k-space U of Γ, where k ≥ 1, F ∩U is a (k− 1)-space. Also, if r is any point

of U not in F , then U = 〈F ∩ U, r〉. So, it is enough to show that there is

an element of K taking L1 ∩ F ⊂ · · · ⊂ Ln ∩ F to L′1 ∩ F ⊂ · · · ⊂ L′n ∩ F .

But these are just two maximal flags in z⊥/z and, by assumption, K acts

flag-transitively on Z −X. �
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Let p ⊂ L1 ⊂ · · · ⊂ Ln be a maximal flag of Γ. Define A to be the

amalgam of maximal parabolics formed by the stabilisers of flags in Γ. Since

G acts flag-transitively on Γ and Γ is simply connected, by appealing to Tits’

Lemma we get the following:

Theorem 4.5.4 The group G is the universal completion of the amalgam A

if Π is not one of the exceptions listed in Theorem 4.4.4.

In order to work out the amalgam explicitly in a given example, we note

the following:

Lemma 4.5.5 [17, Lemma 5.4] Let x be an element of Γ. Then, the sta-

biliser Qx of x in Q acts regularly on the points of x.

Proof. Although here we deal with a general polar space of any rank, the

proof in [17] still applies. �

Since we may pick p such K = Gp, we see that Gpx is the group in K

which fixes the image of πZ(x) in the dual of z⊥/z. Then, Lemmas 4.5.5 and

4.5.1 allow us to express all flag stabilisers as a product of a subgroup of Q

and a subgroup of K.
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Chapter 5

Examples

In this chapter we shall give some examples of biaffine polar spaces which

will lead to amalgamation results. The first such example of a biaffine polar

space was given by Hoffman, Parker and Shpectorov in [17]. They described

a specific biaffine polar space and showed simple connectivity in this specific

case. In fact, this was the motivation for the generalisation in Chapter 4.

In the language of Chapter 4, their example is as follows. Let Π =

W (5, q), z be a (singular) point and Z be the quad in Π∗ = DW (5, q) corre-

sponding to z. Pick X to be an ovoid of Z and extend this to a hyperplane

H of Π∗. Hoffman, Parker and Shpectorov showed that Γ, formed by re-

moving F := z⊥ and H, is simply connected if |F| ≥ 3 and is always a

geometry. Furthermore, if F is a finite field and X is the classical ovoid,

they showed that G := q1+4 : SL2(q2) acts flag-transitively on Γ. This gives

an amalgam uniqueness result for G, provided certain subgroups commute.

They were interested in this since 35 : SL2(9).2 is a 3-local subgroup of the

Thompson sporadic simple group Th, for which they were trying to create a

computer-free uniqueness proof.
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Note that, since dually an ovoid is a spread, this is removing from Π a

singular hyperplane z⊥ and a spread in the residue of a singular point z.

We do not know of any classification of the spreads in the residue of a point

for an arbitrary rank 3 polar space Π, however we are interested in those

geometries which are flag-transitive.

Indeed, any flag transitive geometry Γ will be flag transitive on the residue

of a point, which, when Π has rank three, is a generalised quadrangle. Since

a spread and an ovoid are dual concepts, the residue of a point in Γ is the

dual of the complement of an ovoid. In [23, Table 2], the only ovoids with

flag-transitive complements in finite classical generalised quadrangles are the

elliptic quadric in Q(4, q) and the hermitian unital in H(3, q2). Since the

duals of these generalised quadrangles are W (3, q) and Q−(5, q), respectively,

when F is finite, the only two geometries to consider come from a symplectic

polar space (the geometry considered in [17]) and an orthogonal polar space

of minus type.

This provides us with our first example, using Π = Q−(7, q). In order to

produce a more general amalgam result, we also describe a second, related

geometry using a hyperplane of the polar space which is not the perp of a

singular point.

Finally, we describe a rank four example formed from Π = Q(8, q), using

hyperplanes H related to the hexagonal hyperplane of DQ(6, q). Here too,

we describe two related examples which lead to an amalgamation result.

However, before describing any of these examples, we need to describe

the hexagonal hyperplane inside DQ(6, q) and the group G2(q).
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5.1 Preliminaries

5.1.1 Half-spin modules and G2(q) inside O+
8 (q)

This section briefly describes the relation between G2(q) and the orthogonal

groups O+
8 (q) and O7(q) via their Dynkin diagrams. For a more detail ex-

position see, for example, [7]. The group O+
8 (q) is a Chevalley group of type

D4. Therefore, it has Dynkin diagram

This diagram clearly exhibits S3 as an automorphism group, interchang-

ing the outer nodes. The automorphisms of the Dynkin diagram for a Lie

group induce the graph automorphisms of the corresponding finite group of

Lie type. So, S3 is the group of graph automorphisms of O+
8 (q). A triality is

a diagram automorphism of order three.

Let M0 be the 8-dimensional irreducible natural module on which G :=

O+
8 (q) acts. Since G has a triality τ , there are two more 8-dimensional

irreducible modules M1 and M2 for G. The action of g ∈ G on Mi is defined

to be the same as the action of gτ
i

on M0, for i = 1, 2. These modules are

called the half-spin modules. It is clear that the module Mi has a quadratic

form which is induced by τ from M0.
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Now, G2(q) has diagram

Let τ be a triality of the diagram D4 (Note that we will also use τ for the

graph automorphism induced on O+
8 (q)). This triality can be used to “fold”

the D4 diagram. That is, identify the nodes which are in a τ -orbit.

The result of this is the G2 diagram. In the finite groups of Lie type, this

corresponds to:

Lemma 5.1.1 G2(q) is the centraliser in O+
8 (q) of the graph automorphism

τ . Equivalently, if S ∼= S3 is a complement of O+
8 (q) in Aut(O+

8 (q)), then

G2(q) is the stabiliser of the group S, which is isomorphic to the outer auto-

morphism group S3 of graph automorphisms.

We note further that the diagram for O7(q) can be obtained by folding

two of the outer nodes together.

So, O7(q) is the stabiliser of a graph automorphism of order two. Since

G2(q) is the stabiliser of (a group isomorphic to) an outer automorphism

group S3, we see that G2(q) is a subgroup of O7(q).
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5.1.2 The D4 geometry and a hyperplane

We will now describe the D4 geometry - this may be found, for example, in

[35, Section 2.4]. There are four different types of object: 0-points which

are points of the polar space Q+(7, q), 1-points and 2-points which are the

two different classes of 3-spaces in Q+(7, q) and lines which are the lines

of Q+(7, q). The two classes of 3-spaces are defined by the property that

any two 3-spaces of the same type intersect in a subspace of odd projective

dimension, whereas two 3-spaces in a different class intersect in an even

dimensional subspace.

We denote the set of i-points by Pi and the lines by L. Since the D4

geometry is in fact a building, the incidences between the different elements

are given by the diagram.

P0

L

P1

P2

By definition, the 0-points P0 are the singular points of a quadratic form on

an 8-dimensional irreducible module M0 for G := O+
8 (q). By the symmetry

of the D4 diagram, we see that the i-points Pi must be singular points of a

quadratic form on another 8-dimensional irreducible module Mi, for i = 1, 2.
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In fact, these are the irreducible modules introduced in the previous section

and the action of g ∈ G on the 3-spaces of class Pi corresponds to the action

of gτ
i

on the points of the module Mi.

The triality of the group G induces a triality of the modules Mi and i-

points Pi. So for the geometry, there is an incidence-preserving map, also

denoted by τ , which takes Pi to Pi+1 modulo 3 and L to L.

Definition 5.1.2 An i-point p is an absolute point if p is incident to pτ .

Then, p, pτ and pτ
2

are pairwise incident. A line is an absolute line if it is

preserved by τ .

The geometry with points being orbits of absolute points and lines being

absolute lines is a split Cayley hexagon. The group which stabilises this is

precisely the stabiliser in O+
8 (q) of the triality. That is, G2(q).

We can embed the split Cayley hexagon in Q+(8, q) by taking a 0-point

for a representative of each orbit.

5.1.3 Trilinear form

We now introduce a trilinear form which makes it easy to express the triality

and split Cayley hexagon explicitly. Pick a basis e1, e2, e3, e4, f4, f3, f2, f1 for

M0, where (ei, fi), i = 1, . . . , 4, are hyperbolic lines. This induces bases,

eτ
i

1 , . . . , e
τ i

4 , f
τ i

4 , . . . , f
τ i

1 , i = 1, 2, of Mi, where (eτ
i

j , f
τ i

j ) are hyperbolic lines.

Let T : M0×M1×M2 → GF (q) be the following (note that we have changed

the labelling from [35, Section 2.4] to fit our own, where xi, yi, zi are the

coefficients of the ith basis vector of M0, M1 and M2, respectively, as given
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by the ordering above).

T (x, y, z) =

∣∣∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
x8 x7 x6

y8 y7 y6

z8 z7 z6

∣∣∣∣∣∣∣∣∣
+x4(z1y8 + z2y7 + z3y6) + x5(y1z8 + y2z7 + y3z6)

+y4(x1z8 + x2z7 + x3z6) + y5(z1x8 + z2x7 + z3x6)

+z4(y1x8 + y2x7 + y3x6) + z5(x1y8 + x2y7 + x3y6)

−x4y4z4 − x5y5z5

This has the property that an i-point and a j-point are incident if and only

if T , evaluated at the coordinates for the i- and j-point, gives the null linear

functional in the remaining entry. Furthermore, the map τ : Pi → Pi+1 given

by (xj) 7→ (xj) with i = 0, 1, 2 modulo 3, is a triality.

Given a point p of Q+(7, q) (viewed in M0), the 3-space of M0 correspond-

ing to pτ ∈ M1 is the left radical of the bilinear form B(x, z) = T (x, pτ , z).

Similarly, the 3-space of M0 corresponding to pτ
2 ∈M2 is the right radical of

B(x, y) = T (x, y, pτ
2
). This notation makes it easy to calculate whether

a point is absolute or not. An absolute point p is one where p is con-

tained in the 3-space corresponding to pτ . For instance, it is easy to see

that e1, e2, e3, f1, f2, f3 are all absolute points, but e4 and f4 are not.

Lemma 5.1.3 The absolute points are exactly the points of a polar space

∆ := Q(6, q) embedded in Q+(7, q), whilst the absolute lines are (some of

the) lines of ∆.

Proof. A point p is absolute if and only if it is contained in pτ . That is,

T (p, pτ , z) is identically zero. By looking at the coefficients of the zi, we see
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that we have the equations p4 + p5 = 0 and p1p8 + p2p7 + p3p6 − p2
i = 0

for i = 4, 5. These equations define an odd dimensional polar space Q(6, q).

Since absolute lines are lines between absolute points, these are also lines of

Q(6, q). �

To each point p of Q(6, q) we can associate a plane p̂ which is the inter-

section of the two 3-spaces pτ and pτ
2

of Q+(8, q). We note that p ∈ p̂ and all

points of p̂ are absolute. Let X be the set of points in DQ(6, q) corresponding

to the p̂ for all polar points p.

Before proving that X is in fact a hyperplane of ∆∗ = DQ(6, q), we make

some observations. Assume that p and r are distinct polar points such that

r ∈ p̂. Firstly, the absolute lines through p are exactly the lines through p

contained in p̂. In particular, pr is an absolute line. Therefore, by symmetry,

p ∈ r̂. Furthermore, since p̂ 6= r̂, p̂ ∩ r̂ = pr.

Lemma 5.1.4 The set X is a hyperplane of ∆∗ = DQ(6, q).

Proof. We will work in the polar space. Let L be a line of Q(6, q) which is

not contained in X. We must show that L is contained in a unique r̂ for some

polar point r. Let p be a point of L. Now, L is not contained in p̂ otherwise

L would be a line of X. So, M := L⊥ ∩ p̂ is a line of p̂. Let π = 〈L,M〉.

Now, each point a ∈M gives a plane â containing M . Moreover, since every

line in Q(6, q) is contained in exactly q + 1 planes and â 6= b̂ for distinct a

and b, π = r̂ for a unique point r in M . �

The hyperplane X is known as the hexagonal hyperplane of DQ(6, q).

We make this further observation about the structure of X which we will use

later to achieve better bounds for our results.
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Lemma 5.1.5 No quad in ∆∗ is deep in X and moreover, X∩P is a singular

hyperplane for every quad P .

Proof. Let p be the polar point corresponding to the quad P . From our

observations above, the absolute lines through p are exactly those contained

in p̂. That is, the lines of X in the quad P are exactly those which go through

the point corresponding to p̂. �

5.1.4 G2(q) and its action on the hyperplane comple-

ment

We describe G2(q) in terms of the BN -pair below, which acts on the 8-

dimensional vector space V . This description can be found, for example, in

[37] (we have again changed the notation to fit our own).

The torus T of diagonal matrices is {diag(λ, λ−1µ, µ−1, 1, 1, µ, λµ−1, λ−1)}

for all λ, µ ∈ F ∗q . This is generated by

h1 = diag(1, α, α−1, 1, 1, α, α−1, 1)

h2 = diag(α, α−1, 1, 1, 1, 1, α, α−1)

The normaliser N of the torus is generated by h1, h2 and the involutions

below. Note that N/T ∼= D12.

r : (x1, . . . , x8) 7→ (−x1,−x3,−x2, x4, x5,−x7,−x6,−x8)

s : (x1, . . . , x8) 7→ (−x6,−x7,−x8, x5, x4,−x1,−x2,−x3)

The Borel subgroup has order q6(q− 1)2 and is generated by T and U . Here

the unipotent subgroup U , of order q6, is generated by the following roots,
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where λ ∈ GF (q) and the root fixes a basis vector unless otherwise stated:

A(λ) : e3 7→ e3 − λe1, f1 7→ f1 + λf3

B(λ) : e2 7→ e2 − λe1, f1 7→ f1 + λf2

C(λ) : e2 7→ e2 − λf3, e3 7→ e3 + λf2, e4 7→ e4 − λe1,

f4 7→ f4 + λe1, f1 7→ f1 − λe4 + λf4 + λ2e1

D(λ) : e3 7→ e3 − λe4 + λf4 + λ2f3, e4 7→ e4 − λf3,

f4 7→ f4 + λf3, f2 7→ f2 − λe1, f1 7→ f1 + λe2

E(λ) : e3 7→ e3 + λe2, f2 7→ f2 − λf3

F (λ) : e2 7→ e2 + λe4 − λf4 + λ2f2, e4 7→ e4 + λf2,

f4 7→ f4 − λf2, f3 7→ f3 − λe1, f1 7→ f1 + λe3

The root subgroup generated by roots A(λ) we will call A. Similarly for the

other root subgroups. These root subgroups have diagram as in Figure 5.1.

A

BE

F

CD

Figure 5.1: root system diagram for G2(q)
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It is easy to see that the Borel subgroup and r stabilise 〈e1〉. In fact, from

[37], the stabiliser of a point p in G2(q) is generated by these and has shape

q2+1+2 : GL2(q). We write Gp ∼ q2+1+2 : GL2(q) to mean Gp has shape

q2+1+2 : GL2(q).

Since G2(q) is the stabiliser of the split Cayley hexagon in the D4 geom-

etry, it preserves X. By the remark at the end of Section 5.1.1, G2(q) is a

subgroup of O7(q), so G2(q) is the full stabiliser in DQ(6, q) of X.

A proof of the following proposition can be found in [8], but, since this

will be important for us, we give a proof here.

Proposition 5.1.6 The group G2(q) acts flag-transitively on the comple-

ment of X in ∆∗ = DQ(6, q).

Proof. The order of G = G2(q) is q6(q6−1)(q2−1). Since |Gp| = q6(q2−1)(q−

1), it has index (q6−1)
(q−1)

in G. However, this is exactly the number of points

in Q(6, q), hence G = G2(q) acts transitively on the points of ∆ = Q(6, q).

Therefore, it is enough to show that Gp acts flag transitively on the residue

of the point p = 〈e1〉. First we show that the radical RG
p of the action of G

on ∆−X is equal to the intersection of Gp with the radical RO
p of the action

of O7(q) on ∆. Clearly, if g ∈ RO
p and also in Gp, then g ∈ RG

p , so it remains

to prove the other containment.

Let g ∈ RG
p . That is, g fixes all lines in ∆−X through p, which implies

it also fixes all planes in ∆−X on p. Dually, this is equivalent to fixing all

dual points not in p̂⊥ in the quad p. Therefore, g must fix all dual points in

the quad p and g, as an element of O7(q), is in the kernel of the action on

the residue, as required.

Consider Gp ∼ q2+1+2 : GL2(q) acting on 〈e1, e2, e3, e4, f4, f3, f2〉/〈e1〉. We

102



note that A and B act trivially and so are in the radical. Now, A and B gen-

erate a normal subgroup in Gp, therefore we may consider Gp := Gp/AB ∼

q1+2 : GL2(q). We claim Gp acts faithfully on 〈e1, e2, e3, e4, f4, f3, f2〉/〈e1〉.

Suppose it does not; let g ∈ Gp be in the kernel of the action. Now,

g may be written as cdfw, where c ∈ C, d ∈ D, f ∈ F and w is a word

in E, r and T . Both w and c act trivially on 〈e1, e4〉/e1, so, since g acts

trivially by assumption, df must do too. This then implies that d = f = 1.

By considering the action of g on 〈e1, e2〉/e1, we see that c = 1 and w = 1,

hence g = 1. Therefore, Gp acts faithfully on 〈e1, e2, e3, e4, f4, f3, f2〉/〈e1〉, as

required.

Dually p is a quad, so by Lemma 5.1.5 we have Gp/R
G
p acting as q1+2 :

GL2(q) on the complement of a singular hyperplane in DQ(4, q) (a quad of

DQ(6, q)). However, it is known that the point stabiliser in DQ(4, q) is pre-

cisely q1+2 : GL2(q) and moreover it acts flag-transitively on the complement

of a singular hyperplane. �

For our rank four example, we will need the stabilisers in G2(q) of flags

of ∆∗ − X. We are interested in those objects in the complement of X. If

p = e1, then p̂ = 〈e1, f3, f2〉 and the lines on e1 are those contained in p̂.

Hence, we pick L′ := 〈e1, e2〉 and π′ := 〈e1, e2, e3〉, to get a maximal flag

p ⊂ L′ ⊂ π′. We already know that Gp ∼ q2+1+2 : GL2(q); before we work

out the other parabolics we first find their order.

First, note that (GL′)p = GpL′ = (Gp)L′ . We also know that the index

of (Gp)L′ in Gp is equal to the number of lines not deep in X on p, which is

q2(q + 1). Since |Gp| = q6(q2 − 1)(q − 1), |GpL′ | = q4(q − 1)2. Furthermore,

the index of (GL′)p in GL is equal to the number of points in the line L′,
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which is q+ 1. Therefore, |GL′ | = q4(q2− 1)(q− 1). Similarly, we get |Gπ′ | =

q3(q3−1)(q2−1), |Gpπ′ | = |GL′π′| = q3(q2−1)(q−1) and |GpL′π′| = q3(q−1)2.

By inspection, A, B and E all stabilise p, L′ and π′. By looking at the

root system diagram, Figure 5.1, we see that these together with T generate a

group q1+2 : (q−1)2. Since this has the required order, GpL′π′
∼= q1+2 : (q−1)2.

We now observe that D also preserves p and L′. So, again referring to

the root system diagram, observing that D commutes with A, B and E

and arguing by orders, we see that GpL′
∼= (q × q1+2) : (q − 1)2. Now, srs

swaps e1 and e2, so it preserves L′. It also normalises D, so D is normal in

GL′ . Now, by calculation, A(λ)srs = E(−λ) and E(−λ)B(1) = A(λ)E(−λ).

Hence, A and E generate a natural module for a GL2(q) generated by B,

T and srs. So, arguing again by orders, GL′ ∼ (q × q2) : GL2(q). We note

that A, B, E, T and srs all preserve π′ too, whereas D does not. Hence,

GL′π′ = q2 : GL2(q).

For Gpπ′ , A, B both stabilise p and π′. So do E, T and r, and we observe

that in Gp these generate a GL2(q) which acts on A and B. Similarly to

above, A and B form the natural module for GL2(q) and Gpπ′ = q2 : GL2(q).

We note that srs also stabilises π′. Considering a vector space spanned by

e1, e2 and e3, we see that A, B, E, Bsrs, E(sr)2 and Er generate a subgroup

which acts on this subspace as an SL3(q). Since this has the correct order,

we conclude that Gπ′
∼= SL3(q).

In summary, the Cayley hexagon defines a hyperplane X in the dual

polar space DQ(6, q) and G2(q) acts flag-transitively on the complement of

X in DQ(6, q). We have also worked out the stabilisers Gp
∼= q2+1+2 :

GL2(q), GL′
∼= (q × q2) : GL2(q) and Gπ′

∼= SL3(q) and their intersections
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GpL′
∼= (q × q1+2) : (q − 1)2, Gpπ′

∼= q2 : GL2(q), GLπ′
∼= q2 : GL2(q) and

GpL′π′
∼= q1+2 : (q − 1)2.

5.2 Rank three example

5.2.1 First geometry

Let Π = Q−(7, q). We follow the construction in Section 4.5 for a singular

hyperplane. Pick a singular point z, and let Z be the max in Π∗ corresponding

to z. Since Π has rank three, Z is a quad. Pick X to be the ovoid in Z defined

by the hermitian unital and define H to be hyperplane which is the extension

of X. Then Γ, formed by removing F := z⊥ and H from Π, is a biaffine polar

space. It is well-known that SU3(q) acts flag-transitively on Z − X, hence,

by Proposition 4.5.3, G ∼= q6 : SU3(q) acts flag-transitively on Γ.

Proposition 5.2.1 Γ is a residually connected geometry. Furthermore, if

|F| ≥ 4, then Γ is simply connected.

Proof. By Corollary 4.2.7, Γ is a geometry. We note that, since X is an

ovoid, Γ will have no H-bad lines. Hence, by the remark after Corollary

4.2.13, Γ is residually connected for all F. Theorem 4.4.4 gives that Γ is

simply connected, provided |F| ≥ 4. �

So, appealing to Tits’ Lemma, we have the following:

Corollary 5.2.2 The universal completion of the amalgam is isomorphic to

G, provided |F| ≥ 4. �

In order to show an amalgamation uniqueness result, we must describe

the geometry and the stabilisers explicitly.
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Let F be a field which has a quadratic extension E, 〈σ〉 = Gal(E/F). Let

Tr : a 7→ a + aσ be the trace map. Then, Tr is an F-linear map on the

2-dimensional vector space E over F. We note that since Tr is not the zero

map, it is surjective, and its kernel is a 1-dimensional F-subspace in E. In

particular, if char(F) = 2, then ker(Tr) = F.

Let W be a 3-dimensional vector space over E and E be a non-degenerate

σ-Hermitian form of Witt index one on W . Let e, f be a hyperbolic pair and

d ∈ {e, f}⊥ be an anisotropic vector to complete the basis. Set Q(x) :=

E(x, x) and view W as a 6 dimensional vector space over F.

Lemma 5.2.3 The map Q : W → F is a non-singular quadratic form, with

associated symmetric bilinear form B(x, y) := Tr(E(x, y)), of Witt index

two.

Proof. First, we observe that since E has values in F, Q does too. For α ∈ F,

Q(αx) = E(αx, αx) = αασQ(x) = α2Q(x). Also,

Q(x+ y) = Q(x) +Q(y) + E(x, y) + E(y, x) = Q(x) +Q(y) +B(x, y)

where B(x, y) := E(x, y) + E(y, x) = E(x, y) + E(x, y)σ = Tr(E(x, y)). It

is clear that B is symmetric, additive in both components, since E is, and

F-linear in both components, since σ acts trivially on elements of F. Hence,

it is a symmetric bilinear form.

Suppose x ∈ Rad(B). Then, B(x, y) = 0 for all y ∈ W . This implies that

E(x, y) is in the kernel of the trace map, for all y ∈ W . However, since the

image of y 7→ E(x, y) is either E, or zero, we have E(x, y) = 0 for all y ∈ W ,

a contradiction. Hence, B is a non-degenerate symmetric bilinear form and

Q is non-singular, since E is non-degenerate.
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Finally, it is clear from the definition of Q that any singular point with

respect to Q is isotropic with respect to E and vice versa. Therefore, since

E has Witt index one in the 3-dimensional vector space over E, Q has Witt

index two in the 6-dimensional space W over F. �

We now wish to describe a basis for W as a 6-dimension vector space.

When char(F) 6= 2, let µ ∈ E∗ such that Tr(µ) = 0 (Note that since

char(F) 6= 2, µ 6∈ F). Then, we define a basis (u1, u2, d1, d2, v2, v1) :=

(e, µe, d, µd, 1/µσf, f) for W , with hyperbolic lines (ui, vi), for i = 1, 2. Sim-

ilarly, if char(F) = 2, pick µ ∈ E − F such that Tr(µ) = 1. Then, define a

basis (u1, u2, d1, d2, v2, v1) := (e, µe, d, µd, f, µf).

Let K be the special unitary group SU(W,E). Since the action of K on

W is E-linear and it preserves the form E, it is also F-linear and it preserves

the forms Q and B. Therefore, we have an embedding of K = SU(W,E)

into SO(W,Q). In the case of a finite field GF (q), this gives an embedding

of SU3(q) in SO−6 (q).

Let ∆ be the orthogonal generalised quadrangle arising from Q and W .

So, points are the 1-dimensional singular F-subspaces of W and lines are the

2-dimensional totally singular F-subspaces of W . Let P be the set of all

isotropic 1-dimensional E-subspaces of W with respect to the form E.

Lemma 5.2.4 The set P is a spread of ∆ (dually an ovoid of ∆∗).

Proof. Let U ∈ P . Since it is totally isotropic with respect to E, it is totally

singular with respect to Q. So, when viewed as a 2-dimensional F-subspace

of W , U is a line of ∆. Let p be a point of ∆. Then, p = {αv : α ∈ F}, for

some v ∈ W with Q(v) = 0. Now, p is contained in a unique line from P ,

namely {αv : α ∈ E}. Hence, P is a spread in ∆. �
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Now extend W to an 8-dimensional vector space V over F by adding

another hyperbolic line, spanned by u0 and v0. The extended form (which

we still denote by Q) is now a quadratic form of Witt index three (still of

minus type), and V has basis u0, u1, u2, d1, d2, v2, v1, v0. Let Π be the non-

degenerate rank three orthogonal polar space associated with V and Q. Pick

a point z of Π which is contained in W⊥, say 〈u0〉. By definition, Z ∼= ∆∗

is a quad with ovoid X corresponding to the spread P . So, let H be the

hyperplane of Π∗ which is the extension of X. Now, define Γ to be the

biaffine geometry formed by the removal of z⊥ and H.

Let z be spanned by u0. Pick the maximal flag {p, L, π}, where p = 〈v0〉,

L = 〈v0, u1〉 and π = 〈v0, u1, v2〉. In particular, π is a good plane, since

π ∩ u⊥0 = 〈u1, v2〉, which does not span an isotropic E-subspace of W . We

note that if we had chosen π to be spanned by v0 and either u1, u2, or v1, v2,

then π ∩ u⊥0 would have been the E-span of e or f , respectively.

Let M be the stabiliser of z in O−8 (F) and Q be the unipotent subgroup

of M . Recall from Section 4.5, that the group G which acts flag-transitively

on Γ is the semidirect product of Q and K ∼= SU(W,E). In order to describe

the elements of Q, we first need a definition:

Definition 5.2.5 Suppose V be a vector space with quadratic form Q and

associated bilinear form B. Let u be a singular vector and v be some vector

in u⊥. A Siegel transformation is a map Tu,v : V → V

Tu,v : x 7→ x+B(x, v)u−B(x, u)v −Q(v)B(x, u)u

If we consider the Siegel transformations with u = u0 and v a singular

vector in z⊥, then Tu0,v : x 7→ x + B(x, v)u0 − B(x, u0)v is clearly in the
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unipotent radical Q. In fact, it is known that every element of the unipotent

radical is such a Siegel transformation. For more details see [30].

Through a counting argument, we now see that the stabiliser QL of L in

Q is {Tu0,λu1 : λ ∈ F}, Qπ = {Tu0,λu1 , Tu0,λv2 : λ ∈ F} and QLπ = QL. Note

that QL is isomorphic to the additive group of the field; in particular, it is

cyclic when q is a prime and is elementary abelian when q is a prime power.

Using Lemmas 4.5.5 and 4.5.1, all stabilisers in G are products of either

QL, or Qπ and a stabiliser in Gp = K = SU(W,E). The following lemma

describes the action.

Lemma 5.2.6 [30, Theorem 11.19] Let u be a singular vector, v and w be

vectors in u⊥ and g ∈ O(V ). Then, Tu,v+w = Tu,vTu,w and T gu,v = Tug−1,vg−1.�

In light of this, we need only calculate GpL, Gpπ and GpLπ. We are

interested in the case where F = GF (q) is finite.

We start with GpL. Let g ∈ GpL be represented by a matrix A = (aij)

acting on W with basis e, d, f from before. Since GpL fixes L, GpL must fix

L ∩ z⊥ = 〈u1〉, hence a11 = k, where k ∈ F∗. Since g preserves the form

E, A is lower triangular and a33 = k−1. Then, since g has determinant one,

a22 = 1. In particular, the group

T :=

T (k) :=


k−1 0 0

0 1 0

0 0 k


∣∣∣∣∣∣∣∣∣ k ∈ F∗


preserves {p, L}. Now consider the complement to T , namely those matrices

with 1 on the diagonal. Using again that g preserves the form, we obtain
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relations from the remaining entries, yielding:

U :=

U(a, b) :=


1 0 0

a 1 0

b −aσ 1


∣∣∣∣∣∣∣∣∣ a, b ∈ E, T r(b) + aaσ = 0


So, we see that GpL = UT . We remark that U is a Sylow subgroup of SU3(q)

and T is part of the torus. Also, Z(U) = {U(0, b) : Tr(b) = 0}.

Now, GpLπ is a subgroup of GpL which also fixes π ∩ z⊥ = 〈u1, v2〉. The

group T satisfies this. We consider matrices U(a, b). Clearly a = 0 and we

also require that v2 is mapped to a linear combination of u1 and v2. In odd

characteristic, v2 = 1/µσf , therefore b = βµσ with β ∈ F. We note that

Tr(βµσ) = βTr(µσ) = 0, hence in odd characteristic GpLπ = TZ(U). In

even characteristic, v2 = f , so b must be in F, but again, these are precisely

those elements with trace zero. Hence, GpLπ = TZ(U) in all characteristics.

Finally, Gpπ must fix v0 and 〈u1, v2〉. We note that this is the F-span

of u1 and v2, not the E-span, which is 〈u1, u2, v1, v2〉. Since it stabilises the

F-subspace 〈u1, v2〉, it is a subgroup of the stabiliser of the E-subspace 〈u, v〉.

Therefore, it also stabilises 〈d〉E and so has shape:
a 0 b

0 e 0

c 0 d


In odd characteristic, u1 = e and v2 = 1/µσf . So, a, d ∈ F and b, c, e ∈ E.

In particular, b = 1/µσb′, where b′ ∈ F, and similarly, c = µσc′, where c′ ∈ F.

Furthermore, the matrix is unitary, therefore eeσ = 1. Now, the determinant

equals one and so e(ad − bc) = 1. However, ad − bc = ad − 1/µσb′µσc′ =

ad− b′c′ ∈ F, so e ∈ F. Together with eeσ = 1, this implies that e = ±1.
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We claim that e = 1. Viewed in Π∗, p is a quad isomorphic to H(3, q2)

and π is an isotropic point in the quad. The automorphism group of the

quad is SU4(q). Let U ∼= H(2, q2) be the ovoid stabilised by SU3(q). Hence

SU3(q) fixes all vectors of the 1-dimensional space U⊥. Let u ∈ U⊥; we may

assume it has norm 1. The isotropic points outside the ovoid U correspond

bijectively to the vectors u + x, where x is a vector in the span of U with

norm -1. So, since SU3(q) stabilises the vector u, the stabiliser in SU3(q) of

an isotropic point π outside U stabilises the anisotropic vector x and not just

the point spanned by it. Hence e = 1.

It follows that ad−b′c′ = 1. Therefore, Gpπ is just an embedding of SL2(F)

into SU(W,E). Similarly, in even characteristic, we see that a, b, c, d ∈ F and

Gpπ
∼= SL2(F). In even characteristic, Gpπ is just a restriction of SL2(E) to

the field F, but in odd characteristic, it is embedded non-trivially.

Let A1 be the amalgam for this first geometry Γ1, with members G1
F . By

calculation using Lemma 5.2.6, we see that Q1
L commutes with U . Hence,

Op(G
1
pL) commutes with Op(G

1
Lπ).

5.2.2 Second geometry

For the second example, let Π = Q−(7, q) and V be the 8-dimensional vector

space, as before. This time, pick F to be a hyperplane of Π which is not the

perp of a singular point. By Lemma 4.1.2, F is induced by a 7-dimensional

subspace W of V . Using Lemma 4.1.4, we see that W = z⊥, for some

non-singular point z. If the characteristic is odd, then z is also anisotropic

with respect to the associated bilinear form B. Hence, V is decomposed as

〈z〉 ⊥ W . However, if the characteristic is even, then B is an alternating
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form, hence B(z, z) = 0. So, z ∈ z⊥ = W .

Since W is 7-dimensional, F is an embedding of Q(6, q) inside Π. For H,

we use the following hyperplane construction from [26]. We note that this

was generalised to arbitrary rank in [11].

Let X be the hexagonal hyperplane in the dual of F ∼= Q(6, q). Since F

embeds into Π, the lines of X are embedded as lines of Π∗. Let H be the set

of all points of Π∗ which are incident with a line of X.

Lemma 5.2.7 [26] The set H is a hyperplane of Q−(7, q). �

Let Γ be the geometry obtained by removing F and H from Π. By

appealing to Theorem 4.4.4, we have the following

Proposition 5.2.8 The geometry Γ is simply connected, provided q ≥ 4. �

The subgroup G0 := O7(q) of O−8 (q) stabilises F and X is stabilised by

G := G2(q), which is a subgroup of G0. In fact, it is clear from the above

construction that G = G2(q) stabilises H. Therefore, G acts on Γ.

Lemma 5.2.9 [26, Theorem 3] The quads of Γ are all ovoidal. �

Lemma 5.2.10 Gp = SU3(q).

Proof. Let p be a singular point not in F . Then, p and z necessarily span

a plus type span of dimension 2 in V . Therefore, 〈p, z〉⊥ is a minus type

space. Suppose that the characteristic is odd. Since V = 〈z〉 ⊥ W , we may

decompose p as 〈z + pW 〉, where pW ∈ W . Since 〈p, z〉⊥ ⊂ W is a minus

type space, the span of pW is a minus point (notation as in [37]). From

[37], the stabiliser in G2(q) of such a point is SU3(q) : 2 (it also stabilises

the 6-dimensional minus space p⊥W ∩W of W ). Now, the involution on the
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top permutes the two singular points in the hyperbolic line 〈p, z〉. Since we

want to stabilise p, we must stabilise the other singular point too. Hence,

Gp = SU3(q).

Now suppose that the characteristic is even. So z ∈ z⊥. Once again,

〈p, z〉⊥ is of minus type. Since Gp stabilises z and p, it stabilises setwise

the hyperbolic line spanned by them and hence its perp, 〈p, z〉⊥. So, Gp is

contained in the stabiliser in W of a minus type space, which is SU3(q) : 2.

By the same argument as above, Gp = SU3(q). �

Proposition 5.2.11 G acts flag-transitively on Γ.

Proof. We first show that G acts transitively on the points of Γ. By Lemma

5.2.9, the points of Π−F are all points of Γ. Since F ∼= Q(6, q), by counting

we see that Γ has q6 − q3 singular points (indeed, if q is odd, this is also the

number of vectors in F of norm −α). However, this is precisely the index of

Gp = SU3(q) in G2(q). So, G is transitive on points.

By Lemma 5.2.9, all the quads are ovoidal. However, it is well known that

Gp = SU3(q) acts flag-transitively on the complement of a classical ovoid in

the generalised quadrangle H(3, q2), which is the dual of Q−(5, q). �

In order to use Lemma 4.5.1, we must find subgroups QL and Qπ in G

which act regularly on the good points of L and π respectively.

In odd characteristic, V = z ⊥ W . So, we may pick a basis e1, e2, e3, d,

f3, f2, f1 of W such that ei and fi are singular points, (ei, fi) are hyperbolic

lines and d is an anisotropic vector in 〈e1, e2, e3, f3, f2, f1〉⊥. We may do this

in such a way that X ⊂ W is described with the same notation for ei and

fi, i = 1, 2, 3, as in Section 5.1.3. Let p be a singular point in 〈z, e3, f3〉 not
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equal to e3 or f3. Note that p is in perpendicular to e1 and e2, but not to z.

So, p 6∈ F . By the choice of basis, the line corresponding to 〈e1, e2〉 in the

dual of F ∼= Q(6, q) is not in X. Hence, in Π, any plane on 〈e1, e2〉 is not in

H. In particular, π := 〈p, e1, e2〉 is not in H. It is not in F either as p is not

in F , so π is good. Similarly, L := 〈p, e1〉 is good.

In even characteristic, z ∈ z⊥ = W . Complete z to a basis e1, e2, e3, z, f3,

f2, f1 of W such that ei and fi are singular points spanning hyperbolic lines

(ei, fi). Pick an anisotropic point d not in W , but in 〈e1, e2, e3, f3, f2, f1〉⊥.

Again, this can be done so that the choice of X agrees with the notation

in Section 5.1.3. Now, choose p to be a singular point in 〈d, e3, f3〉, but not

equal to e3 or f3. So, p 6⊥ z and p is a singular point outside F . Similarly to

above, π := 〈p, e1, e2〉 and L := 〈p, e1〉 are the required good plane and line

respectively.

Consider the Siegel transformations Tf3,ei , i = 1, 2. These clearly fix the

point z since z is not in the span of e1, e2, e3, f3, f2, f1. Moreover, Tf3,e1 acts

on the line L, and 〈Tf3,e1 , Tf3,e2〉 is an elementary abelian group which acts

on the plane π. Recalling the root subgroups of G2(q) from Section 5.1.4, we

see that Tf3,e1 is isomorphic to A and Tf3,e2 to E. By counting orders, we see

that QL = 〈Tf3,e1〉 and Qπ = 〈Tf3,e1 , Tf3,e2〉.

From the end of the previous Section 5.2.1, we see that Gpπ
∼= SL2(q)

which acts on the 2-dimensional subspace spanned by e1 and e2. By Lemma

5.2.6, Gpπ normalises Qπ. Hence, Gπ
∼= q2 : SL2(q).

Let A2 be the amalgam for this second geometry Γ2 with members G2
F .

We note that G1
pF
∼= G2

pF , where F ⊂ {p, L}. We have the following theorem

by Tits’ Lemma.
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Proposition 5.2.12 G = G2(q) is the universal completion of the amalgam

A2, provided q ≥ 4.

Proof. This follows from Propositions 5.2.8 and 5.2.11. �

5.2.3 Amalgam

Note in the next theorem that p, L and π are just labels for the members of

A, with the property that GF ∩GF ′ = GF∪F ′ for any F ,F ′ ⊂ {p, L, π}.

Theorem 5.2.13 Let A be a rank three amalgam with members Gp
∼= SU3(q)

and Gπ
∼= q2 : SL2(q), such that Gpπ

∼= SL2(q), and a third member GL.

We further require that there is an isomorphism from Gp to Gi
p which maps

the intersections GpF onto the corresponding intersections Gi
pF in Gi

p for

∅ 6= F ⊂ {L, π}. Similarly, there is an isomorphism from Gπ to Gi
π which

maps the intersections to the corresponding intersections in Gi
π. We assume

that GL = GpLGLπ. Then, provided q 6= 2, if Op(GpL) centralises Op(Glπ),

then A is isomorphic to A1, otherwise it is isomorphic to A2.

Before we prove this theorem, we first give an easy group recognition

corollary.

Corollary 5.2.14 Let G be a group which is generated by two subgroups

Gp
∼= SU3(q) and Gπ

∼= q2 : SL2(q), such that Gpπ := Gp ∩ Gπ = SL2(q),

where q = pr 6= 2. Suppose that Sp and Sπ are two Sylow p-subgroups of Gp

and Gπ respectively, such that Spπ := Sp ∩ Sπ is a Sylow p-subgroup of Gpπ.

Suppose further that CSπ(Spπ) normalises Sp. If Sp and CSπ(Spπ) commute,

then G is a quotient of q6 : SU3(q). Otherwise, G is a quotient of G2(q).
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Proof. By Lemma 5.2.15, the amalgam Gp ∪ Gπ is unique. Define GpLπ =

NGpπ(Spπ). By calculation, it is easy to see that Sp (respectively Sπ) is the

unique Sylow p-subgroup of Gp (respectively Gπ) containing Spπ. Hence, we

may define GpL = SpGpLπ and GLπ = CSπ(Spπ)GpLπ. Finally, since CSπ(Spπ)

normalises Sp, we may let GL = GpLGLπ = GpLπ〈Sp, CSπ(Spπ)〉. We observe

that Op(GpL) = Sp and Op(GLπ) = CSπ(Spπ). This satisfies the conditions

for Theorem 5.2.13, so the result follows. �

We will prove this theorem via a series of lemmas. Let φ be the isomor-

phism from Gp to Gi
p which preserves the intersections. We will extend φ to

an isomorphism of amalgams.

Lemma 5.2.15 The subamalgam B := (Gp, Gπ, Gpπ) is unique up to iso-

morphism.

Proof. Now, Gpπ
∼= SL2(q). Hence, by [18, page 756], Aut(Gpπ) = PΓL2(q).

We start by observing that Gπ
∼= q2 : SL2(q) embeds into GL3(q):

1 0 0

?

?
SL2(q)


In doing so, we see that a normaliser of this subgroup has the shape:

1 0 0

?

?
GL2(q)


The normaliser inside PΓL3(q) contains the field automorphisms too, so we

see PΓL2(q) as a subgroup of this normaliser. Therefore, every automor-

phism of Gpπ
∼= SL2(q) extends to an automorphism of Gπ. Hence, using
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Goldschmidt’s Lemma (Lemma 3.2.3), there is only one double coset and

therefore the amalgam B is uniquely determined by its type. �

So, φ extends to an isomorphism from B to Gi
p ∪Gi

π.

Lemma 5.2.16 We may choose φ so that it maps the intersections GpF and

GFπ onto the corresponding intersections in Gi
p ∪Gi

π.

Proof. We must identify the intersections uniquely in B up to suitable au-

tomorphisms. Now, GpLπ is the stabiliser of a one-space in Gpπ = SL2(q),

so this is uniquely defined up to conjugation in Gpπ, which extends to an

automorphism of the entire amalgam B. Then, QL is uniquely determined

as the group of order q which is centralised by Z := Op(GpLπ). Hence,

GLπ = QLGpLπ is also uniquely determined up to an automorphism of the

amalgam which fixes GpLπ.

Fix a torus T in GpLπ, this is unique up to conjugation. Let U =

Op(NGp(Z)), note that this is a Sylow subgroup of Gp. So, after we have

chosen a torus T , GpL = UT is uniquely determined. �

We must now identify the third group GL. Since GL = GpLGLπ, we know

it has order |G1
L| = |G2

L|.

Lemma 5.2.17 T acts transitively on Q#
L .

Proof. We may calculate in Gi
Lπ in either amalgam. In A1, QL is generated

by the Siegel transformations Tu0,λu1 . Pick t ∈ T , which is represented by a

matrix T (k). By Lemma 5.2.6, T tu0,λu1 = Tu0,λku1 . Hence, T acts transitively

on QL. �

117



Now, GpL has index q in GL. We consider the action of GL on the

right cosets of GpL by multiplication. We wish to find the kernel of this

action, CoreGL(GpL) =
⋂
k∈GL G

k
pL, which is the largest normal subgroup of

GL contained in GpL.

Lemma 5.2.18 The group QL acts regularly on the cosets of GpL in GL.

Proof. We consider the action of QL on the identity coset. Suppose that

GpLx = GpLy, where x and y are two distinct elements of QL. Then, xy−1 ∈

GpL. However, since GpL ∩ QL = 1, x = y, contradicting the choice of x

and y. Therefore, each coset GpLx, with x ∈ QL, is distinct. There are

|QL| = q such distinct GpLx cosets. However, |GL : GpL| = q, therefore QL

acts regularly on the cosets. �

Corollary 5.2.19 The torus T fixes the identity coset and acts regularly on

the q − 1 remaining cosets of GpL in GL. �

Lemma 5.2.20 The kernel of the action of GL on the cosets of GpL in GL

is CoreGL(GpL) = U .

Proof. Clearly every element of U stabilises the identity coset GpL. Since

U has p power order, each of its orbits has length a power of p. Therefore,

U must have at least p trivial orbits. In particular, the U -orbit of some

non-trivial coset GpLa is trivial. By Lemma 5.2.18, GpLa = GpLx for some

x ∈ Q#
L . Since T normalises U , it preserves the U -orbits. However, by

Lemma 5.2.17, it is transitive on Q#
L . So, since QL acts regularly on the

cosets, T acts transitively on the non-identity cosets. Therefore, all U -orbits

must be trivial and so U is in the core. By Lemma 5.2.18 and Corollary

5.2.19, no other elements are in the core, therefore CoreGL(GpL) = U . �
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Since U = CoreGL(GpL) is normal in GL, we may study the action of QL

on U .

We write X̄ for subgroups X/Z of Q1/Z, where Z ≤ X. Now, Ū is

elementary abelian and so has the structure of a vector space over GF(p).

We write elements in Ū in an additive notation. In particular, for k ∈ GF (p)

we may write ku for the kst power of u. Similarly for QL. Define a form

B : Ū ×QL → Ū by B(x+ Z, u) = [x, u] + Z.

Lemma 5.2.21 The commutator [U,QL]/Z is a T -invariant subgroup of or-

der 1 or q. The double commutator [[U,QL], QL] is a T -invariant subgroup

of Z.

Proof. Since U CGL, [U,QL] ≤ U . If [U,QL] ≤ Z, clearly [[U,QL], QL] = 1.

So we may suppose that [U,QL]/Z is a non-trivial subgroup of Ū . Since U

and QL are T -invariant, [U,QL]/Z is T invariant and so has order either q,

or q2. However, QL and Ū are both p-groups, so the commutator must have

order strictly less than that of Ū . Hence, [U,QL]/Z has order q. Similarly,

[[U,QL], QL]/Z must have order less than 1, hence is trivial. �

Lemma 5.2.22 The map B is well-defined and bilinear over GF(p).

Proof. Suppose u, v ∈ U such that u+Z = v+Z. Then, v = u+ z for some

z ∈ Z. Using a commutator identity, B(v+Z, x) = [v, x]+Z = [u+z, x]+Z =

[u, x]z + [z, x] + Z. However, Z and U commute, so B(v + Z, x) = [u, x] + Z

and B is well-defined. From now on we write B(u, x) = [u, x] for u ∈ Ū .

Again, using a commutator identity, B(u + v, x) = [u + v, x] = [u, x]v +

[v, x]. Once more, since Ū is abelian, B(u+ v, x) = [u, x] + [v, x] = B(u, x) +

B(v, x). Let α ∈ GF(p). Using a similar argument, [αu, x] = [(α− 1)u, x]u +
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[u, x] = [(α − 1)u, x] + [u, x]. Hence by induction, we see that B(αu, x) =

αB(u, x).

For the additivity in the second argument, B(u, x + y) = [u, x + y] =

[u, y] + [u, x]y. However, by Lemma 5.2.21, [u, x]y = [u, x][[u, x], y] = [u, x].

Hence, B(u, x + y) = B(u, x) + B(u, y). As before, we use induction to

show GF (p)-linearity in the second argument. Therefore, B is a well-defined

bilinear form over GF(p). �

We showed in Lemma 5.2.21 that [Ū , QL] has order either 1, or q. We

now show that B is, in fact, trivial.

Assume for a contradiction that B̄ := [Ū , QL] is a non-trivial subgroup of

Ū . Since Ū and T have coprime order, by Maschke’s Theorem, we may choose

a T -invariant complement Ā to B̄. If [Ā, QL] = 1, then [Ū , QL] = [B̄, QL] <

B̄, a contradiction. Therefore, [Ā, QL] 6= 1 and, since the commutator is

T -invariant, [Ā, QL] = B̄.

Let t ∈ T be a generator of the cyclic group T . From a computa-

tion inside SU3(q), there exists isomorphisms φ : T → (GF (q)#, ·) and

ψ : Ā → (GF (q),+) such that ψ(at) = φ(t)ψ(a). In particular, α := φ(t) is

a primitive element of GF (q). We may view Ā as an e-dimensional vector

space over GF (p), where q = pe. Pick a basis x1, . . . , xe. We extend Ā to

an e-dimensional vector space Ã over F := GF (q). So, the action of t ∈ T

extends to an F-linear transformation of Ã. Similarly we define B̃ and Q̃L.

Lemma 5.2.23 We have that t acts with eigenvalues α, αp, . . . , αp
e−1

on Ã,

B̃ and Q̃L.

Proof. We show this for Ã. Since the action of t on Ā is isomorphic to the

action of multiplication by α in the field GF (q), viewing Ā as a 1-dimensional
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vector space over GF (q), α is an eigenvalue for t. When we extend Ā to Ã, α

must still be an eigenvalue for the action of t on Ã. So (x− α) is a factor of

the minimum polynomial for t acting on Ã. Moreover, since α is a (q − 1)st

root of unity and the Frobenius automorphism permutes the roots of the

minimum polynomial, t has eigenvalues α, αp, . . . , αp
e−1

. �

Let σ be the Frobenius automorphism x 7→ xp of F = GF (q). From this,

we define a σ-semilinear transformation θ : Ã→ Ã as follows: (Σe
i=1βixi)

θ =

Σe
i=1β

σ
i xi, where βi ∈ F. It follows from the definition that CÃ(θ) = Ā. We

note that θ has order e, since σ has order e. Similarly we define a σ-semilinear

transformation on B̃ and on Q̃L where we use the same notation θ.

Lemma 5.2.24 The transformations θ and t commute on each of Ã, B̃ and

Q̃L.

Proof. We check this only for Ã. We check this first on basis vectors for Ã.

Let xti = Σe
j=1βijxj, where βij ∈ GF (p) since xi is an element of Ā. Then,

xtθi = (Σe
j=1βijxj)

θ = Σe
j=1βijxj, since σ fixes elements of the base field. Now,

xθti = xti = Σe
j=1βijxj. Therefore, t and θ commute on basis vectors. Let

x ∈ Ã; then x = Σe
i=1γixi, where γi ∈ F. So, xtθ = (Σe

i=1γix
t
i)
θ = Σe

i=1γ
σ
i x

tθ
i .

Whereas, xθt = (Σe
i=1γ

σ
i x

θ
i )
t = Σe

i=1γ
σ
i x

θt
i . Therefore, since t and θ commute

on the xi, they commute for every x ∈ Ã. �

We note that B(a, q) = [a, q] extends to an F-bilinear form from Ã× Q̃L

to B̃, for which we will use the same notation B(a, q). Moreover, we see that

since t and θ both act trivially on these basis vectors, B(at, qt) = B(a, q)t

and B(aθ, qθ) = B(a, q)θ, for all a ∈ Ã and q ∈ Q̃L.
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We now change basis. Let a0, . . . , ae−1 be a basis of eigenvectors for Ã

such that ati = αp
i
ai, for i = 0, . . . , e − 1. Similarly, let q0, . . . , qe−1 and

b0, . . . , be−1 be bases of eigenvectors for Q̃L and B̃ respectively, such that

qti = αp
i
qi and bti = αp

i
bi.

Lemma 5.2.25 We may scale a1, . . . , ae−1 so that aθi = ai+1, where the

indices are taken modulo e. Similarly for the eigenvectors in Q̃L and B̃.

Proof. We use that fact that θ and t commute. So, (aθi )
t = (ati)

θ = (αp
i
ai)

θ =

αp
i+1
aθi . Therefore, aθi is an eigenvector for the eigenvalue αp

i+1
and so aθi is

a scalar multiple of ai+1. We scale basis vectors a1, . . . ae−1 so that aθ
i

0 = ai+1

for i = 0, . . . , e− 1. Since θ has order e, a0 = aθ
e

0 = aθe−1 = λe0. Hence λ = 1

and aθi = ai+1 mod e. �

Lemma 5.2.26 The group Ā = {Σe−1
i=0λ

piai : λ ∈ F}. Similarly for QL and

B̄.

Proof. We know that Ā = CÃ(θ) and we observe that the q distinct elements

of the set given are fixed by θ. Similarly for B̃ and Q̃L. �

We now consider our bilinear form.

Lemma 5.2.27 The bilinear form B if trivial if q is odd. If q is even, it

is given by [ai, qj] = δijcibi+1 mod e, where c0 ∈ F and ci = cp
i

0 . Provided

the form is non-trivial, i.e. c0 6= 0, we may scale the basis vector b0 so that

ci = 1, for all i ∈ 0, . . . e− 1.

Proof. We act by t to get [ai, qj]
t = [ati, q

t
j] = [αp

i
ai, α

pjqj] = αp
i+pj [ai, qj].

So αp
i+pj is an eigenvalue for the vector [ai, qj] ∈ B̄. Since pi + pj ≤ pe,
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pi + pj ≡ pk mod pe for some k = 0, . . . , e − 1 if and only if pi + pj =

pk. This is impossible if p 6= 2. Hence for odd characteristic, there is no

non-trivial bilinear form. For even characteristic we see that α2i+2j is an

eigenvalue precisely when i = j. Therefore, [ai, qj] = δi,jcibi+1 mod e for

some constants ci ∈ F. By Lemma 5.2.25 and since B(aθ, qθ) = B(a, q)θ,

ci = cσ
i

0 = cp
i

i mod e. Provided c0 6= 0, we may scale b0 so that c0 = 1, then

ci = 1 for all i = 1, . . . , e− 1. �

Lemma 5.2.28 For all x ∈ Q#
L , [Ā, x] = B̄.

Proof. Fix x ∈ Q#
L and let a ∈ Ā. By Lemma 5.2.26, we may write x =

Σe−1
i=0λ

2iqi and a = Σe−1
i=0µ

2iai. By Lemma 5.2.27,

[a, x] = [Σe−1
i=0µ

2iai,Σ
e−1
i=0λ

2iqi]

= Σe−1
i=0 (λµ)2i−1

bi

Since x is fixed, µ is fixed. However, we can still vary λ ∈ F by choosing

a different a ∈ Ā, so λµ ranges over all elements in F. Therefore, for fixed

x ∈ Q#
L , given any b ∈ B̄, there exists a ∈ Ā such that [a, x] = b. �

Let A and B be the full preimages in U of Ā and B̄, respectively.

Lemma 5.2.29 Suppose q is even and q ≥ 4. Then the bilinear form B is

trivial, hence [U,QL] ≤ Z.

Proof. Fix an x ∈ QL. Let b + Z be a coset of Z in B. By Lemma 5.2.28,

some element b′ ∈ b+Z can be obtained as a commutator [a, x] for a suitable

a ∈ A − Z. So, ax = ab. Now, ax
2

= abbx. However, x has order two,

therefore bx = b−1. However, b′ + Z = b + Z and all elements of Z are
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involutions. So x inverts every element of b+Z and therefore every element

of B. Since q ≥ 4, we may pick another element x′ 6= x in Q#
L ; this also

acts by inverting every element of B. However, x′x 6= 1 must then fix every

element of B, a contradiction. �

We remark that if q = 2, then the above argument does not work. In fact,

the semidihedral group 〈a, x : a8 = x2 = 1, ax = a3〉 satisfies the requirements

for B to be non-trivial.

If Op(GpL) = U and Op(GLπ) = QLZ commute, then [U,QL] = 1. Hence,

GL = G1
L ∼ (q × q1+2) : (q − 1) and A is isomorphic to A1. So suppose

Op(GpL) and Op(GLπ) do not commute. Thus, [U,QL] 6= 1. We note that

since the commutator is T -invariant, [U,QL] = Z. Recall that there are q+1

T -invariant subgroups of U of size q2 ,which necessarily contain Z.

Lemma 5.2.30 For every T -invariant subgroup A of order q2, the commuta-

tor of Ã with Q̃L is given by [ai, qj] = δijcizi for some ci ∈ F. Moreover, there

exists a unique T -invariant subgroup C of order q2 such that [C,QL] = 1.

Proof. We may suppose that A and B are two T -invariant subgroups of U

of order q2. Then, [A,QL] = [B,QL] = Z. As above, we may consider Ā, B̄,

QL and Z as e-dimensional vector spaces over GF (p). We extend these to

e-dimensional vector spaces Ã, B̃, Q̃L and Z̃ over F := GF (q). Now t acts on

Ã, B̃ and Q̃L with eigenvalues α, αp, . . . , αp
e−1

as above. However, from GpL,

we see that the action of t on Z is isomorphic to the action of multiplication

by α2 on the field GF (q).

We note that if q is even, since every element of GF (q) is a square, the

action of t on Z̃ is the same as that on Ã. Hence, t acts on Z with eigenvalues

α2, α2p, . . . , α2pe−1
.
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Suppose that q is odd. Since α is a primitive element of the field GF (q),

α2 does not lie in any proper subfield. Otherwise, for every α ∈ GF (q)#,

α2 ∈ CGF (q)(σ
i) for some i. Let F0 be the subfield CGF (q)(σ

i) of order r.

Since α2 has precisely two roots in GF (q), q − 1 ≤ 2(r − 1). This implies

that r = q and F0 is not a proper subfield, a contradiction. Hence, α is

a primitive element of the field GF (q) and t acts on Z with eigenvalues

α2, α2p, . . . , α2pe−1
.

We choose a basis of eigenvectors q0, . . . , qe−1 for Q̃L, a0, . . . , ae−1 for Ã

and z0, . . . , ze−1 for Z̃ such that qti = αp
i
qi, a

t
i = αp

i
ai and zti = α2pizi

and θ permutes the basis vectors. We compute the commutator [ai, qj]
t =

[αp
i
ai, α

pjqj] = Σe−1
k=0ciα

2pkzk. Again by comparing eigenvalues, we see that

[ai, qj] = δi,jcizi for some constants ci ∈ F. As before, we scale z0 such that

c0 = 1, then ci = 1 for all i = 0, . . . , e− 1.

Now pick a basis of eigenvectors b0, . . . , be−1 for B̃. A similar calculation

as above shows that, after scaling b0, [bi, qj] = δijzi for all i ∈ 1, . . . , e− 1.

Let C̃ be the subgroup of Ũ with basis a0 − b0, . . . ae−1 − be−1. Since ai

and bi are eigenvectors for t, ai− bi are eigenvectors for the action of t on C̃.

In particular, C̃ is invariant under the action of t. Also, the basis is invariant

under σ. Furthermore, [ai − bi, qi] = zi − zi = 0 and [ai − bi, qj] = 1− 1 = 0,

hence aj − bj ∈ CŨ(qi) for all i, j ∈ 0, . . . , e − 1. Hence, the subgroup C̄,

defined to be the centraliser in C̃ of σ, is a T -invariant diagonal subgroup of

Ā× B̄ such that [C̄, QL] = 1. Finally, define C to be the full preimage in U

of C̄. Since Z commutes with both U and QL, C commutes with QL. �

Lemma 5.2.31 There exists an isomorphism φ : C̄ → QL such that [u, x] =

[u, φ(x)] for all u ∈ U , x ∈ QL.
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Proof. It is clear from the definition of C that C̄ and Ā generate Ū . Hence,

[Ā, C̄] = Z. Using the F-bilinearity of the commutator, we see that [ai, aj −

bj] = δij − zi. Define φ(ai − bi) = −qi and extend linearly to C̄. �

Corollary 5.2.32 The subgroup X = 〈φ(c)c−1 : c ∈ C̄〉Z is of order q2,

centralises U and contains Z.

Corollary 5.2.33 Op(GL) = X ◦ U is the central product of X and U over

the subgroup Z.

Lemma 5.2.34 If q 6= 2, φ extends to an isomorphism of the amalgams A

and A2.

Proof. From Lemma 5.2.16, we have identified U , Z, T and QL. From Lem-

mas 5.2.30 and 5.2.32, it suffices to show that all T -invariant subgroups C of

order q2 in U are conjugate under an automorphism of the amalgam which

centralises Gπ and there is an automorphism of the amalgam which acts

transitively on QL which centralises Gp.

First, we describe an automorphism of Gp
∼= SU3(q). Consider the action

of a matrix m(λ) := diag(1, λ, 1) on elements of SU3(q) by conjugation.

This preserves the Hermitian form if λq+1 = 1. Hence conjugation by m(λ)

is an automorphism of SU3(q). By a computation in SU3(q), the group

M := {m(λ) : λq+1 = 1} centralises Gpπ. Moreover, it permutes the q +

1 T -invariant subgroups of U of order q2 containing Z and extends to an

automorphism of the amalgam which centralises Gπ.

Secondly, we give an automorphism of Gπ = q2 : SL2(q). Let T̂ ∼=

(GF (q), ·) and s ∈ T be a generating element. Let the action of s on Op(Gπ)

be isomorphic to the action of multiplication by an element of the field on
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a 2-dimensional vector space over GF (q) and let s commute with Gpπ =

SL2(q). Then s acts transitively on QL and extends to an automorphism of

the amalgam which centralises Gp. �

This completes the proof of Theorem 5.2.13.

5.3 Rank four example

In this section we will exhibit a rank four example. We look to create exam-

ples leading to amalgams with members Gp = G2(q) and Gσ = q3 : SL3(q),

and to classify all such amalgams under some conditions.

5.3.1 First geometry

We can now create a rank four example. We follow the description for a

singular hyperplane in Section 4.5. Let Π = Q(8, q) and pick a singular point

z. Define F = z⊥. Let Z be the max in Π∗ corresponding to z and pick X

to be the G2(q) hyperplane in Z ∼= DQ(6, q). Extend this to a hyperplane

H of Π∗. Form Γ1 by removing both F and H.

Lemma 5.3.1 Γ1 has no H-bad lines.

Proof. By Lemma 5.1.5, there are no deep quads in X. �

We therefore appeal to Theorem 4.3.13 to get:

Corollary 5.3.2 The geometry Γ1 formed by removing both F and H from

Π is simply connected, provided |F| ≥ 3. �
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We now wish to work out the amalgam explicitly. Let V be the 9-

dimensional vector space over the finite field GF (q), with Q and B quadratic

and bilinear forms on V giving the polar space Π = Q(8, q). We pick the

basis e0, e1, e2, e3, d, f3, f2, f1, f0, where (ei, fi) are a hyperbolic pair and d

is an anisotropic vector orthogonal to both ei and fi, for i = 0, 1, 2, 3. Let

z = 〈f0〉.

We must pick a maximal flag of Γ1. We choose p := 〈e0〉 as a point

not contained in z⊥. We will now pick a 3-space, containing e0, which is

good. Then, by Lemma 4.2.5, any choice of line and plane in it will also be

H-good. We refer to Section 5.1.3. To pick a 3-space outside H, we must

pick a plane in z⊥/z outside X. We can do this by choosing a non-absolute

1-point in the embedding into the D4 building and choosing a plane in the

corresponding 3-space which is also in Q(6, q). As noted in Section 5.1.3, f4

is not absolute. The 3-space corresponding to the 1-point f τ4 is 〈e1, e2, e3, e4〉.

The plane 〈e1, e2, e3〉 is in z⊥/z ∼= Q(6, q).

Therefore, p := 〈e0〉, L := 〈e0, e1〉, π := 〈e0, e1, e2〉, σ := 〈e0, e1, e2, e3〉

defines a maximal flag p ⊂ L ⊂ π ⊂ σ.

As in Section 4.5, let M be the stabiliser in O9(q) of z, and Q ∼= q7 be

the unipotent radical of M . So, we define G := q7 : G2(q).

Lemma 5.3.3 The group G ∼= q7 : G2(q) acts flag-transitively on Γ1.

Proof. This is clear from Proposition 5.1.6 and 4.5.3. �

We know the stabilisers of flags in G2(q), so given the stabilisers of flags

in the unipotent radical Q, we may use Lemma 4.5.1 to find the stabilisers

of flags in Γ1.
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Recall from Section 5.2.3 the definition of a Siegel transformation. We

define Ti(λ) := Tf0,λei for i = 1, 2, 3 and λ ∈ F. We have QL = {T1(λ) : λ ∈

F}, Qπ = {T1(λ), T2(λ) : λ ∈ F} and Qσ = {T1(λ), T2(λ), T3(λ) : λ ∈ F}.

In summary we have:

Gp = G2(q), GL ∼ (q× q2+1+2) : GL2(q), Gπ ∼ (q2× q× q2) : GL2(q) and

Gσ = q3 : SL3(q).

GpL ∼ q2+1+2 : GL2(q), Gpπ ∼ (q × q2) : GL2(q), Gpσ = SL3(q), GLπ ∼

(q×q×q1+2) : (q−1)2, GLσ ∼ (q×q2) : GL2(q) and Gπσ ∼ (q2×q2) : GL2(q).

GpLπ ∼ (q × q1+2) : (q − 1)2, GpLσ = q2 : GL2(q), Gpπσ = q2 : GL2(q),

GLπσ ∼ (q × q1+2) : (q − 1)2 and GpLπσ ∼ q1+2 : (q − 1)2.

Let A1 be the rank four amalgam with members Gp, GL, Gπ and Gσ

coming from our example. We note that A1 has the following property:

Every flag stabiliser GF is a product of its intersection GpF with Gp and its

intersection GFσ with Gσ.

5.3.2 Second geometry

We now create a second rank four example, which will have a rank four

amalgam with similar members as A1. Pick Π = Q(8, q). Let V be the

9-dimensional vector space and Q and B be the quadratic and associated

bilinear form defining Π. Pick an 8-dimensional non-degenerate subspace W

of plus type. Let it be spanned by hyperbolic lines (ei, fi) i = 1, . . . , 4 and

pick a non-zero vector z ∈ W⊥. Note that z is non-singular.

Since W is a subspace of V of codimension one, it induces a hyperplane

F of Π. Recalling Lemma 4.1.4, we see that, if the characteristic is odd,

F = z⊥, and if the characteristic is even, z⊥ = V . In particular, F is not the
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perp of a singular point.

Now, Spin9(q) acts on Π. Let G0 be the stabiliser in Spin9(q) of the

non-singular vector z. Since W is of plus type, G0
∼= Spin+

8 (q). Recall, from

Section 5.1.2, that G′0 = O+
8 (q) has two half-spin modules. Now, Spin+

8 (q)

acts on these modules too. Pick a half spin module M1, and fix a non-singular

vector w ∈ M1. Define G := StabG0(w). Since G is just the stabiliser

in G0
∼= Spin+

8 (q) of a non-singular vector, G ∼= Spin7(q). We note that

Spin7(q) is isomorphic to G = 2˙O7(q) if q is odd and G = O7(q) if q is even.

Recall that there are two classes of 3-spaces in the D4 geometry, P1 and

P2. Furthermore, the singular points of Mi correspond to the 3-spaces in

Pi, for i = 1, 2. Consider a plane U in W . It is contained in exactly two

3-spaces, Ui ∈ Pi, one of each type. Define U to be special if the singular

point of M1 corresponding to U1 is in w⊥. Define a line to be special if the

corresponding line in M1 is fully contained in w⊥.

Define H to be the set of 3-spaces U of V which contain a special plane

or are in P2.

Lemma 5.3.4 The set H is a hyperplane of Π∗.

Proof. Let U be a plane of Π. Suppose U ⊂ W . If U is special, then all the

3-spaces which contain it are in H. Otherwise, it is not special. Now, U is

contained in exactly two 3-spaces, N1 and N2, which are in W , one of each

type, P1 and P2, respectively. The other q − 1 3-spaces containing U are

not in W . Since these intersect W in U , they are not in H. Now, U is not

special, so N1 is not in H. Hence, N2 is the unique 3-space containing U in

H.

Suppose now U 6⊂ W . Then, U∩W is a line. The q+1 3-spaces containing
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U intersect W in q+ 1 different planes P1, . . . , Pq+1. Two 3-spaces of the D4

building in the same class are either disjoint, or intersect in a line. So, each

plane Pi on U ∩W corresponds to a distinct 3-space (1-point) Ni in P1 on

the line L corresponding to U ∩W , with Ni 6= Nj for all i 6= j. Either U ∩W

is special, in which case L ⊂ w⊥ and so all 2-spaces on U ∩W are special, or

exactly one point L∩w⊥ is in w⊥, so there is exactly one Pi which is special.

Hence, either all the 3-spaces on U are in H, or exactly one is. �

The author notes that he subsequently found this hyperplane in [5], where

they call this new type of hyperplane one of Q(6, q)-type.

We can now define Γ2 as the geometry formed by removing F and H. By

construction, G ∼= Spin7(q) acts on Γ2.

Lemma 5.3.5 Γ2 has no H-bad lines.

Proof. An F -good line L is one which is not contained in W . So, L ∩ W

is a point. Suppose for a contradiction that L is in H, then every 3-space

N containing L is also in H. By the hyperplane construction, the plane

U := N ∩W is special. That is, the point of M1 corresponding to the unique

3-space in W of class P1 containing U is in w⊥. So, for L to be in H, every

point of M1 corresponding to a 3-space of type P1 which contains L ∩ W

must be in w⊥. However, L ∩W corresponds to a 3-space in M1. So this

is equivalent to this singular 3-space of M1 being deep in w⊥. But w⊥ is

7-dimensional as a vector space, so cannot contain a singular 3-space. �

Again, since Γ2 has no bad lines, by Theorem 4.3.13 we get:

Corollary 5.3.6 The geometry Γ2 formed by removing both F and H from

Π is simply connected, provided |F| ≥ 3. �
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Lemma 5.3.7 Let p be a point of Γ. Then Gp
∼= G2(q).

Proof. Since p is an isotropic point not in F , p = 〈z + αpW 〉, where 0 6=

pW ∈ W and α 6= 0. So, Gp ≤ StabG(pW ). However, since z is non-singular,

pW is also non-singular. So, Gp stabilises the non-singular vector pW of M0

as well as the non-singular vector w of M1. For a given non-singular vector,

pW , if the characteristic is odd, there is a reflection r with respect to pW

which fixes the 7-dimensional orthogonal complement p⊥W of pW in M0 and

reflects in it. Consider a totally singular 3-space U of the D4 building W . It

must intersect p⊥W in a plane, since the 7-dimensional orthogonal space p⊥W

contains no 3-spaces. Now, r fixes the plane U ∩ p⊥W . Therefore, it must

map U to the unique 3-space of the other type containing the plane U ∩ p⊥W .

Therefore, r is an outer automorphism of O+
8 (q) exchanging M1 and M2.

If the characteristic is even, there is a similar outer automorphism, but it

acts as a transvection on M0. Similarly, there is an outer automorphism

corresponding to the non-singular vector w of M1, which swaps M0 and M2.

These two outer automorphism involutions together generate the fully graph

automorphism group S3. However, Gp stabilises this and so Gp
∼= G2(q). �

Lemma 5.3.8 The group G acts flag-transitively on Γ.

Proof. Any point p of Γ is not in F , therefore it may be decomposed as

p = 〈z + αpW 〉, where 0 6= pW ∈ W and α 6= 0. Since p is singular,

0 = Q(z + αpW ) = Q(z) + α2Q(pW ). Either −1 is a square in the field, or

not. If it is, then Q(z) and Q(pW ) are either both squares in the field, or

both non-squares. If not, then exactly one is a square and one a non-square.

In any case, the projection pW of p onto W being a square or a non-square is
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fixed for all points p. Now, G ∼= Spin7(q) has two orbits on the non-singular

points of W , one orbit of points with square norm and one of points with

non-square norm. So, since G stabilises z, G acts transitively on the points

of Γ.

The residue of a point p is isomorphic to the polar space Q(6, q) with

the G2(q) hyperplane removed from its dual. However, by Lemma 5.3.7,

Gp
∼= G2(q), which acts flag-transitively on the residue of p in Γ. �

We may choose our basis such that pW ∈ 〈e4, f4〉. Then let p ⊂ L ⊂ π ⊂ σ

be a flag in Γ2, where p := z + pW , L := 〈z + pW , e1〉, π := 〈z + pW , e1, e2〉

and σ := 〈z + pW , e1, e2, e3〉.

Now, we can see that Gpσ = SL3(q) acts on σ. Now, σ is an affine

space, so, by counting, we see that Gpσ has index q3 in Gσ. However, the

full automorphism group of the affine space σ is q3 : GL3(q). Therefore, Gσ

must be q3 : SL3(q). We note that QL = 〈Tf4,e1〉, Qπ = 〈Tf4,e1 , Tf4,e2〉 and

Qσ = 〈Tf4,e1 , Tf4,e2 , Tf4,e3〉.

5.3.3 Amalgam

In this section we will prove an amalgam result using the two examples above.

First, we observe some relations which we will need during the proof.
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Lemma 5.3.9

[A(λ), X(λ)] = 1 for X = {B,C,D,E, F}

[B(λ), X(λ)] = 1 for X = {A,C,D, F}

[B(λ), E(λ)] = A(λ2)

[C(λ), E(λ)] = 1

[C(λ), D(λ)] = A(−3λ2)

[C(λ), F (λ)] = B(3λ2)

[D(λ), F (λ)] = C(2λ2)A(−3λ3)B(3λ3)

[D(λ), E(λ)] = 1

[F (λ), E(λ)] = D(−λ2)C(−λ3)A(−2λ5)B(−λ4)

Proof. These are easily checked by calculation. �

Let A1 be the amalgam coming from the first example where z is singular,

and A2 be the amalgam where Z is non-singular. For i = 1, 2, let Gi
F be

the members inside Ai, where F is a subflag of the fundamental chamber

{p, L, π, σ} as defined previously. We use the notation Gi
pF to denote the

stabiliser of the subflag defined by p and the subflag F . We note that the

intersections, G1
pF and G1

Fσ, in the first example A1 are the same up to

isomorphism as those in the the second example A2.

Note in the next theorem that p, L, π and σ are just labels, with the

property that GF ∩GF ′ = GF∪F ′ for F ,F ′ ⊂ {p, L, π, σ}.

Theorem 5.3.10 Let A be any rank four amalgam with two members, Gp
∼=

G2(q) and Gσ
∼= q3 : SL3(q), intersecting in Gpσ

∼= SL3(q). We assume that

the remaining two members, GL and Gπ, are the product of their intersections
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with Gp and Gσ. These intersections GpF in Gp and GFσ in Gσ, for ∅ 6= F ⊂

{p, L, π, σ}, are isomorphic as groups to the corresponding intersections Gi
pF

in Gi
p, respectively Gi

Fσ in Gi
σ. If Op(GpL) commutes with Op(GLσ), then A

is isomorphic to A1, otherwise it is isomorphic to A2.

We shall prove this via a series of lemmas.

Lemma 5.3.11 The rank two subamalgam B = (Gp, Gσ, Gpσ) = (G2(q), q3 :

SL3(q), SL3(q)) is unique up to isomorphism.

Proof. We start by observing that q3 : SL3(q) embeds into GL4(q) as follows

1 0 0 0

?

?

?

SL3(F)


In doing so, we see that it is normalised by a subgroup of the following shape

in GL4(q) 

? 0 0 0

?

?

?

GL3(F)


The normaliser inside ΓL4(q) also contains the field automorphisms. This

normaliser, modulo the centre, is a subgroup of the automorphism group

of q3 : SL3(q). From [13] we know that all automorphisms of SL3(q) are

induced as restrictions of automorphisms ofGL3(q). However, from the above

observation, it is clear that any diagonal, inner, or field automorphisms can

already be seen in the normaliser above. That is, all the automorphisms
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of SL3(q), except the graph automorphisms, come from automorphisms of

q3 : SL3(q) which normalise the SL3(q).

We claim that the graph automorphism comes from an automorphism of

G2(q). Consider the root system diagram for G2(q), Figure 5.1. We see that

the long roots A, B and E generate an A3 root system (precisely the one

for Gpσ = SL3(q)). Take a basis α = E and β = B for this root system.

Now, a reflection with respect to the short root F interchanges α and β.

However, this is exactly the graph automorphism of SL3(q). Hence, the

graph automorphism of Gpσ = SL3(q) is induced from G2(q). Therefore,

using Goldschmidt’s Lemma (Lemma 3.2.3), we see that there is only one

double coset and the amalgam B is unique. �

Since the subamalgam B is unique up to isomorphism, let φ be an iso-

morphism from B to Gi
p ∪ Gi

π. We will extend φ to an isomorphism of the

amalgam A onto Ai, for i = 1 or 2 depending on whether Op(GpL) commutes

with Op(GLσ).

Lemma 5.3.12 We may choose φ so that it maps the intersections GpF and

GFσ in B onto the corresponding intersections in Gi
p ∪Gi

σ.

Proof. Since Gpσ is isomorphic to SL3(q), we may fix a torus T , which is

unique up to conjugation in Gpσ. Pick a Sylow subgroup S of Gpσ. Since S

is also unique up to conjugation in Gpσ, we may identify GpLπσ uniquely up

to conjugation as ST .

We identify GpLσ = q2 : GL2(q) as the parabolic inside Gpσ = SL3(q)

which is the stabiliser of a 1-space and contains GpLπσ. This is unique up

to conjugation in Gσ. Furthermore, it stabilises a unique 1-space QL in
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Op(Gσ) ∼= q3. Therefore, GLσ is uniquely defined by the choice of GpLσ as

GLσ = QLGpLσ. Similarly, Gpπσ = q2 : GL2(q) is identified up to conjugation

as the other parabolic inside Gpσ = SL3(q) which is the stabiliser of a 2-space

containing GpLπσ. Again, we define Gπσ uniquely as the product of Gpπσ and

the 2-space in Op(Gσ) which is stabilised.

The group GpL is the normaliser in Gp of Op(GpLσ) ∼= q2 [37]. We note

that Op′(Gpπσ) ∼= q2 : SL2(q). We identify Gpπ as the product of Gpπσ with

the centraliser in Gp of Op′(Gpπσ). Finally, we note that GpLπ = GpL ∩ Gpπ

and GLπσ = GLσ ∩Gπσ. �

We now extend the isomorphism φ to an isomorphism from the rank three

amalgam defined by B and a further member GL.

By assumption, GL is a product of its intersections in B. In particular,

we know the order of GL is |G1
L| = |G2

L|.

So, GpL has shape q2+1+2 : GL2(q) and GLσ shape q × q2 : GL2(q). Now

we pick some subgroups which we will use in the proof. Let A, B, C, D, E

and F be the root subgroups and T be the torus that are the images under

φ−1 of those in Gi
p
∼= G2(q). Let H ∼= SL2(q) be the image of the subgroup

in Gi
p defined by E and its opposite root subgroup. Let T2 be the image of

〈h2〉 under φ−1. This is the extra torus which, together with H, generates

a subgroup isomorphic to GL2(q). Let U := Op(GpL), where q is a power

of p. Define R := Op(GpLσ), which is the radical of the subamalgam and is

generated by the root subgroups A and B. Let W be the subgroup generated

by the root subgroups A, B and C, giving W = RC ∼ q2+1.

Lemma 5.3.13 The torus T2 acts transitively on Q#
L

Proof. The proof is the same as Lemma 5.2.17. �
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The subgroup GpL has index q in GL. So, consider the action of GL on

the right cosets of GpL in GL by multiplication. We wish to find the kernel of

this action, CoreGL(GpL) =
⋂
k∈GL G

k
pL, which is the largest normal subgroup

of GL contained in GpL.

Lemma 5.3.14 The group QL acts regularly on the cosets of GpL in GL.

Proof. The proof is the same as Lemma 5.2.18. �

Corollary 5.3.15 The torus T2 fixes the identity coset and acts regularly on

the q − 1 remaining cosets of GpL in GL. �

Lemma 5.3.16 The kernel of the action of GL on the cosets of GpL in GL

is CoreGL(GpL) = UH, which has shape q2+1+2 : SL2(q).

Proof. It is clear that the subgroup RH ∼ q2 : SL2(q) of GpL stabilises GpL.

By Lemma 5.3.14, QL acts regularly on the cosets of GpL, so it conjugates

the stabiliser of the identity coset of GpL to the stabiliser of some non-trivial

coset GpLx. Looking inside GLσ = (QL × R) : GL2(q), we see that just T2

acts non-trivially on QL, so QL in fact commutes with R and H. Therefore,

RH ∼ q2 : SL2(q) is in the stabiliser of every coset and so in the core.

It remains to show that the rest of U is in the core. We use the same

argument as in Lemma 5.2.20. By Corollary 5.3.15, we see that T2 does not

lie in the core. �

Let N := CoreGL(GpL). By definition, U := Op(GpL). If the characteristic

is not three, we may further identify R = Z(U) and W as the full preimage

in N of Z(N/R). If the characteristic is three, then we identify W = Z(U).

Consider [W,N ]. Since C commutes with U and H = SL2(q), it is not
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in [W,N ]. However, both A and B have non-trivial commutators with H.

In fact, since [W,N ] is invariant under the action of H, [W,N ] has order

q2. We identify R := [W,N ]. Hence, we see that each of these subgroups is

characteristic in N and so normal in GL. Therefore, we may study the action

of QL on each of these subgroups.

Lemma 5.3.17 We have [U,QL] ≤ W , [W,QL] ≤ R and [R,QL] = 1.

Proof. The final commutator is clear from calculation inside Gi
Lσ. The other

two have similar proofs; we will just show the first.

Consider the action of QLW/W on U/W . Since both groups are p-groups,

CU/W (QLW/W ) 6= 1. From GLσ, we see that QL is invariant under the action

of GpLσ = q2 : GL2(q). Similarly, from GpL, U/W is invariant under the

action of GpLσ. Therefore, CU/W (QLW/W ) is also invariant under the action

of GpLσ. Hence, CU/W (QLW/W ) = U/W and so [U/W,QLW/W ] = 1. That

is, [U,QL] ≤ W . �

Now, C is elementary abelian and so has the structure of a vector space

over GF(p). Hence, W/R does too. We write elements in W/R with the

additive notation. Similarly, both QL and U/W are also elementary abelian.

Define B : U/W ×QL → W/R by B(u+W,x) = [u, x] +R.

Lemma 5.3.18 The map B is well-defined and bilinear over GF(p).

Proof. Suppose u, v ∈ U such that u + W = v + W . Then, v = u + w

for some w ∈ W . Using a commutator identity, B(v + W,x) = [v, x] +

R = [u + w, x] + R = [u, x]w + [w, x] + R. By Lemma 5.3.17, [w, x] ≤ R,

hence B(v + W,x) = [u, x]w + R. Since W/R is elementary abelian and
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[u, x] + R ∈ W/R, [u, x]w + R = [u, x] + R. So, B(v + W,x) = B(u + W,x)

and B is well-defined.

Again, using a commutator identity, B(u + v + W,x) = [u + v, x] + R =

[u, x]v+[v, x]+R. Now, [u, x]+R ∈ W/R and we may assume that u ∈ 〈D,F 〉,

so Lemma 5.3.9 implies that [u, x]v = [u, x]. Hence, B(u + v + W,x) =

[u, x] + [v, x] +R = B(u+W,x) +B(v+W,x). Similarly, using [W,QL] ≤ R

from Lemma 5.3.17, B(u+W,x+ y) = [u, x+ y] +R = [u, y] + [u, x]y +R =

B(u+W,x) +B(u+W, y).

Let α ∈ GF(p). Using the commutator identity and Lemma 5.3.9 again,

[αu, x] = [(α − 1)u, x]u + [u, x] = [(α − 1)u, x] + [u, x]. Hence by induction,

we see that B(αu, x) = αB(u, x). Similarly, the same is true for the second

argument of B. Therefore, B is a well-defined bilinear form over GF(p). �

Lemma 5.3.19 The bilinear map B is trivial.

Proof. It is clear from the definition of B as the commutator that since

H ∼= SL2(q) acts on both QL and U/W , the action of H preserves the form

B. Suppose that B is a non-trivial map, then fx(u + W ) := B(u + W,x)

is a linear map for each x ∈ QL. Moreover, since H acts trivially on QL,

H also preserves the form fx for all x ∈ QL. Now, U/W is an irreducible

GF(q)-module for H, therefore fx is faithful. So, Im(fx) is an irreducible

2-dimensional module for each x ∈ QL. However, W/R is a 1-dimensional

module, hence B is trivial. �

Lemma 5.3.20 [C,QL] = 1 and hence [W,QL] = 1.

Proof. Similarly to above, we consider the commutator mapping B : C ×

QL → R. By Lemma 5.3.17, [C,QL] ≤ R. However, both C and QL are
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centralised by the action of H ∼= SL2(q), but R is a non-trivial irreducible

module for the action of H. Hence, [C,QL] = 1. �

It remains to examine the map B : Ū × QL → R defined by B(x, u) =

[x, u]. By the above Lemma 5.3.20, the map is well defined and with a proof

analogous to that of Lemma 5.3.18, we see that B is bilinear over GF (p). We

write D̄ and F̄ for the two T2-invariant groups DW/W and FW/W which

generate Ū . If Op(GpL) and Op(GLσ) commute, then GL ∼ q × q2+1+2 :

GL2(q) exactly as in the first example, A1. This happens precisely when B

is trivial. So we may assume that Op(GpL) and Op(GLσ) do not commute

and B is not trivial.

Now R is generated by A and B. Since Ū and R are both 2-dimensional

modules over GF (q), define ψ : Ū → R by ψ(D̄(1)) = A(1) and ψ(F̄ (1)) =

B(−1) and extend linearly to Ū . So D̄(1) and F̄ (1) are a basis for Ū and

ψ(D̄(1)) = A(1) and ψ(F̄ (1)) = B(−1) are a basis for R.

Lemma 5.3.21 The map ψ is an isomorphism between Ū and R which com-

mutes with the action of H ∼= SL2(q).

Proof. From Lemma 5.3.9, we see that E commutes with both A and D,

but B(−1)E(λ) = A(−λ)B(−1) and F (1)E(λ) = D(−λ)F (1). Hence, the

matrices for the action of E(λ) on W̄ and on R are both
(

1 0
−λ 1

)
. Recall

that h2(α) = diag(α, α−1, 1, 1, 1, 1, α, α−1). We consider the element r′ :=

h2(−1)r = (e1, e3,−e2, e4, f4,−f2, f3, f1). From a computation inside Gp
∼=

G2(q), we see that A(1)r
′

= B(1), B(−1)r
′

= A(1), D(1)r
′

= F (−1) and

F (1)r
′

= D(1). Hence, the matrices for the action of r′ on W̄ and on R are

both
(

0 −1
1 0

)
. Since E(λ) and r′ generate H ∼= SL2(q) and they have the
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same representation on the bases for Ū and R given above, ψ commutes with

the action of H. �

Lemma 5.3.22 For x ∈ QL, let fx : Ū → R be the map defined by fx(u) =

B(u, x). For all x 6= 1, fx is an isomorphism from Ū to R given by fx(u) =

λxψ(u), where λx ∈ GF (q). Moreover, θ : QL → (GF (q),+) defined by

x 7→ λx is a bijective GF (p)-linear map.

Proof. First suppose that there exists x ∈ Q#
L such that fx has a non-trivial

kernel. Since fx commutes with the action of H ∼= SL2(q) and since both Ū

and R are non-trivial irreducible modules for H, fx must be the trivial map.

So x ∈ CQL(Ū). The centraliser is T2-invariant, but T2 acts transitively on

QL and so CŪ(QL) = QL. This contradicts our assumption that B was non-

trivial. Therefore, for all x ∈ Q#
L , fx is bijective and, since fx is defined from

the commutator, we see that fx is an isomorphism from Ū to R. Furthermore,

fx commutes with H.

We consider the map fx ◦ ψ−1 : Ū → Ū . It is an isomorphism from

the irreducible module Ū to itself which commutes with the action of H ∼=

SL2(q). By Schur’s Lemma, fx◦ψ−1 is multiplication by a scalar λx ∈ GF (q).

Hence, we see that fx(u) = λxψ(u).

Since B is bilinear over GF (p), αλxψ(u) = αB(u, x) = B(u, αx) =

λαxψ(u) for α ∈ GF (p). So λαx = αλx for all x ∈ QL, hence θ : x 7→ λx is

GF (p)-linear. Since θ is additive and no element of x ∈ Q#
L acts trivially on

Ū , the kernel of θ is trivial and hence θ is a bijection from QL to GF (q). �

Lemma 5.3.23 The map θ : QL → (GF (q),+) is GF (q)-linear, B(u, x) =

θ(x)ψ(u) and so B : Ū × QL → R is bilinear over GF (q). Therefore the
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action of QL on U is uniquely defined by the action of a generator of QL on

a single element of U .

Proof. Since B(u, x)h = B(uh, x) for h ∈ H, B is GF (q)-linear in the first

component. Let t be a generator of the cyclic group T2 (we may take t = h2

cf Section 5.1.4) and x be a generator of QL. By a calculation in Gp = G2(q),

we see that t commutes with D and A(µ)t = A(α−1µ), where α is a primitive

element in GF (q). A further calculation in GLσ shows that xt = α−1x for

x ∈ QL. So α−1B(d, x) = B(d, xt) = B(d, x)t = λxψ(d)t = λxa
t = α−1λxa.

Hence, B is bilinear over GF (q). �

Lemma 5.3.24 We can adjust φ so that it extends to an isomorphism from

Gp∪GL∪Gσ to Gi
p∪Gi

L∪Gi
σ which maps the intersections GF , π 6∈ F , onto

the corresponding intersections in A2.

Proof. From Lemma 5.3.12, we have identified GpL, GpLσ, GLσ and QL. By

Lemma 5.3.23, it suffices to show that there exists an automorphism of the

amalgam that centralises Gp and acts transitively on QL. Indeed, if θ2 is the

isomorphism of Q2
L with GF (q) in our example A2, after adjusting ψ by such

an automorphism, we can obtain θ(x) = θ2(φ(x)) for some x ∈ Q#
L . Then, by

the GF (q)-linearity of θ in Lemma 5.3.23, the action of QL on U is isomorphic

to that of ψ(QL) on ψ(U). Since QL commutes with H, the semidirect

product UH : QL is isomorphic to ψ(U)ψ(H) : ψ(QL). Then, since T2 acts

on UH : QL as ψ(T2) does on ψ(U)ψ(H) : ψ(QL), the semidirect product

GL = (UH : QL) : T2 is isomorphic to Gi
L = (ψ(U)ψ(H) : ψ(QL)) : ψ(T2).

Now Gσ = q3 : SL3(q). So there exists an automorphism of Gσ which

fixes Gpσ = SL3(q) and acts as multiplication by the field elements from
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GF (q) on the module Op(Gσ) = q3. Since QL is a one dimensional module

over GF (q), this automorphism acts transitively on QL. It extends to the

required automorphism of the amalgam. �

Lemma 5.3.25 The map φ can be extended to an isomorphism of amalgams

between A and Ai.

Proof. It remains to show that φ can be extended to Gπ. In each example, Gi
π

is the completion of the amalgam of intersections, i.e. the rank 3 amalgam

Pi := Gi
pπ∪Gi

Lπ∪Gi
πσ. Furthermore, this subamalgam is the one associated to

the subgeometry of the residue of π in Γi. The group Gi
π acts flag-transitively

on this subgeometry, since the group acts flag-transitively on Γi. It is also

easy to see that this geometry is simply connected. Indeed, any cycle is

contained in the residue of π and so in the residue of some 3-space. Therefore,

every cycle is geometric. Now we apply Tits’ Lemma and see that Gi
π is the

universal completion of the subamalgam Pi. Hence, for each example, since

Gπ has the same order as Gi
π, it is uniquely determined by its intersections

with Gp ∪GL ∪Gσ. �

This completes the proof of the Theorem 5.3.10.

We note that if the characteristic is not three, then from Lemma 5.3.9

we see that C acts on Ū . Following the same proof as in Lemmas 5.3.22 and

5.3.23, we see that c ∈ C acts on Ū as some element x ∈ QL does. Hence

there exists a diagonal subgroup X of QL × C which commutes with U . So

GL has shape q × q2+1+2 : GL2(q).

If the characteristic is three, then C commutes with U and structure of GL

is more complicated, but is still determined by the action of QL on Op(GpL)

given in Lemma 5.3.23.
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Chapter 6

Fundamental group computer

program

Often, when showing simple connectivity for a geometry, the proof by hand

leaves some small cases. These then require additional arguments to show

simple connectivity and they may have a non-trivial fundamental group. In

many cases, these additional arguments can be long and difficult, and not

be particularly illuminating. However, these can be tackled computationally.

Where there is an amalgam associated with the geometry, this may be done

by writing a presentation for the universal completion and using the Todd-

Coxeter algorithm to find the order. However, this method may not work

with larger, more complicated group presentations. An alternative method

is to calculate the fundamental group directly from the geometry.

We used this method, in individual cases, to calculate the fundamental

groups of small cases of hyperplane complements in dual polar spaces in [20]

(also found in [19]). Rees and Soicher have also written a general program

for calculating fundamental groups [27, 29]. Their implementation, however,
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only decomposes cycles with respect to triangles. Therefore, if your geome-

try has no triangles, their implementation cannot decompose any cycles and

hence will not work. Furthermore, even if the geometry has triangles, not

every cycle may be decomposed as a product of triangles. The general pro-

gram described here decomposes cycles using other elements input by the

user. This ensures that any geometry (size permitting) can be decomposed

and leads to a potentially faster result too.

The other main improvement of our general program over that of [27, 29]

is an extra step (our second main step) of reductions. This reduces the

number of generators in the presentation of the fundamental group, hence

allowing us to write less complicated presentations. This is a real improve-

ment. Indeed, there exist complicated presentations for the trivial group,

which require much work to show that the presentation given is actually one

for the trivial group.

In this chapter, we describe an algorithm for calculating the fundamental

group and details of our implementation of this. We then illustrate this by

completing the small cases left from the two pairs of examples in Chapter 5.

6.1 Background

Recall, from Section 2.4, the definition of the fundamental group π1(Γ, x) of

a geometry Γ. That is, elements of the group are equivalence classes of cycles

through a given base point x, where equivalence is given by homotopy. Two

cycles are elementary homotopic if they differ by the addition or removal of

a geometric cycle (a cycle fully contained in the residue of a element of Γ)

and are homotopic if they differ by a series of elementary homotopies.
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Let C be a set of geometric cycles in Γ, such that any geometric cycle

is the product of cycles from C. Consider the collinearity graph of Γ, which

we will also denote by Γ. Let T be a spanning tree in this graph, with root

x. Then, the non-tree edges of Γ, that is edges (a, b) of Γ which are not

in T , each define a unique cycle (x, . . . , a, b, . . . , x) in Γ, where (x, . . . , a)

and (b, . . . , x) are paths in T . The following Lemma is well-known, see for

example [16, Chapter 4].

Lemma 6.1.1 Every cycle in Γ through x is the composition of cycles defined

by the non-tree edges of Γ.

Proof. Let α := (x = a0, . . . , an = x) be a cycle through x in Γ. Since T

is a tree and therefore every point of Γ lies on T , there exist paths βi from

x to ai which lie in T , for 1 ≤ i ≤ n. Now, α is equal to β0 · (a0, a1) ·

β−1
1 · β1 · (a1, a2) · · · · · (an−1, an) · β−1

n and βk · (ak, ak+1) · β−1
k+1 is the path

defined by the edge (ak, ak+1). If (ak, ak+1) is an edge of the tree, then we

may omit βk · (ak, ak+1) ·β−1
k+1 from the above decomposition of α. So we have

decomposed α as the product of cycles defines by the non-tree edges. �

We associate to every ordered non-tree edge (a, b) of Γ a group ele-

ment gab. Let G be the group generated by the gab with the relations

ga0a1ga1a2 . . . gana0 = 1, where γ := a0a1 . . . ana0 is a cycle in C. We also

understand that gabgba = 1, for every edge ab not in T . Note that if an edge

ab = aiai+1 from the cycle γ happens to be in T , then we understand gab = 1.

Proposition 6.1.2 Then, π1(Γ, x) = G.

Proof. We see, by lemma 6.1.1, that the elements gab generate π1(Γ, x), and

we naturally have gabgba = 1. We note that we only need to take relations
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for the cycles in C, because, by assumption, every geometric cycle in Γ de-

composes as a product of cycles from C. �

6.2 Algorithm

The algorithm has three main steps after the initial setup. The first is to

find any initial trivial generators, the second finds equivalences between the

remaining non-trivial generators and the third finds all the relations. The

input for the algorithm is the collinearity graph for the geometry Γ, together

with a collection C of objects given as sets of points. We define C to be

the set of cycles which are fully contained in an element of C. These are

then geometric. Moreover, we assume that any geometric cycle in Γ can

be decomposed as a product of cycles in C. Typically, if the diagram of

the geometry is a string, C would be the list of maximal elements of the

geometry.

In the initial setup, we find the list E of directed edges of the graph Γ,

which will be the set of potential generators for π1(Γ, x). At this point, we

also create a hash function and table, to implement hash sorting on E. This

speeds up the program considerably for larger geometries. When testing the

program on an affine dual polar space with approximately 1.8 million lines,

the hash sorting function to find the position of an edge in the list E was

used for approximately 15% of the program runtime.

We define a list F of labels indexed by the edges. A label is true if the

corresponding edge is a trivial generator for π1(Γ, x) and false otherwise. We

then proceed by finding a spanning tree T for Γ, setting the label of an edge

in T to be true as we go. Also, whilst we do this, we save a list D of the
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distance from the root to each point. This is then used to sort the subgraphs

of C according to their distance from the root.

The first main step is to find all the trivial generators. To do this, we

take a subgraph S in C, starting with those closest to the root. We form the

subgraph of S induced by the tree and examine the connected components.

Any edge ab which is not in the tree but is contained in one of these connected

components corresponds to a cycle α · (a, b), where α is a path from b to a in

the tree which is contained in S. So, since the edges in α correspond to trivial

generators and α · (a, b) is a geometric cycle (it lies in S), ab must correspond

to a trivial edge too. Hence, for an edge contained in a connected component,

we set its label in F to be true. If the induced subgraph is connected, then

we ensure we do not visit the graph in one of the later steps.

We continue this first main step until no further changes can be made to

F . If there are no edges labeled false, i.e. all edges correspond to the trivial

generator, then Γ is simply connected and the program ends.

In the second main step, we find equivalences between the remaining non-

trivial generators. This means that the presentation we will write for the

fundamental group has far fewer generators. We take a subgraph S, where

the subgraph induced by T on S is not connected. Take two connected

components S1 and S2 and consider two edges ab and cd from S1 to S2.

Since these two edges define a cycle which is contained in S and hence is

geometric, we see that gabg
−1
cd = 1. We therefore join the equivalence class of

ab with that of cd, taking care in the implementation over the direction of

the edges. We save the connected components and the edges between them

for the third step. After examining all such subgraphs S, we now have an
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equivalence relation between edges.

We form a free group X on the equivalence classes of generators. If

an edge ab is equivalent to ba, then the corresponding generator gab is an

involution.

The third step is to find all the remaining relations for π1(Γ, x). The

relations are those cycles contained in a subgraph of C, which go through

at least three connected components (as induced by T ). Given a subgraph

S, we form a new graph Σ with points being the connected components of

S and edges being those induced from S. Since all edges between connected

components are equivalent, relations for π1(Γ, x) correspond to cycles in Σ.

To find all such cycles, we form a tree TΣ of Σ with root t. Each edge

ab in Σ − TΣ corresponds to cycle at t through the edge ab. Similarly to

before, these cycles generate all cycles in Σ. So, for each edge in Σ − TΣ,

we write a relator in X. The order that the edges are listed in E gives a

natural ordering on the labels for the generators. We take the generator with

the minimal label in each equivalence class as a representative of that class.

We may then write a given relator with the minimal order representative

generator to a positive power first. Hence, we do not save multiple permuted

copies of the same relator.

The fundamental group π1(Γ, x) is then X/R, where R is the set of rela-

tors.

There are some possible improvements that can be made. One of these

is to reduce further the number of generators. If during the third main step,

finding relations, we find a relation in two generators of length two, then

this gives an extra equivalence between those generators (or possibly their
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inverses). We would then join these equivalence classes, form a new free group

X on one less generator and carry out the rest of the third step, changing

any relations we already have.

6.3 Small cases

Using an implementation of the algorithm described in this chapter, we find

the fundamental groups for all the remaining cases from Chapter 5. These

are the pair of rank three geometries with q = 2, or q = 3, and the pair of

rank four geometries with q = 2. We find the following results:

Lemma 6.3.1 Let Γ1 and Γ2 be the rank three biaffine polar spaces described

in Section 5.2. Then, Γ1 and Γ2 are simply connected when q ≥ 3. If q = 2,

then both Γ1 and Γ2 have fundamental group C2.

Lemma 6.3.2 Let Γ1 and Γ2 be the rank four biaffine polar spaces described

in Section 5.3. When q = 2, then both Γ1 and Γ2 have fundamental group

C2.

We have also written presentations for the universal completion of the

amalgam for Γ1 in the rank three and rank four examples.

In the symplectic case covered in [17], when q = 2 the universal comple-

tion is an infinite group. However, the rank three Γ1 the universal comple-

tion of the amalgam is 21+6 : SU3(2), where 21+6 is an extraspecial group.

For the rank four case, the universal completion for the amalgam for Γ1 is

G := 2.27 : G2(2), where Op(G) has shape 22+6.

We include some example calculations for the above results. Here we use

GAP version 4.4.7 [14] with GRAPE version 4.2 [28]. All calculations were
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carried out on a 2.2GHz AMD Athlon 64 3500+ PC with 2Gb RAM running

Windows.

gap> g:=SO(-1,8,2);

GO(-1,8,2)

gap> v:=[1,0,0,0,0,0,0,0]*One(GF(2));

[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ]

gap> o:=Orbit(g,v);;

gap> Length(o);

119

gap> g:=Action(g,o);;

gap> g:=DerivedSubgroup(g);;

gap> s:=SylowSubgroup(g,7);;

gap> n:=Normalizer(g,s);;

gap> s2:=SylowSubgroup(n,2);;

gap> n2:=Normalizer(g,s2);;

gap> for i in [1..1000] do

> z:=Random(n2);

> u:=Subgroup(g,[s.1,s2.1,z]);

> if Index(g,u) = 136*120 then

> break;

> fi;

> od;

gap> i;

78

gap> Index(u,DerivedSubgroup(u));

2

gap> IsSimple(DerivedSubgroup(u));

true

gap> Size(u);

12096

gap> # Since there is only one simple group of this order, u is G_2(2)

gap> oo:=Orbits(u,[1..119]);;

gap> List(oo,Length);

[ 63, 56 ]

gap> u:=Action(u,oo[2],OnPoints);;

gap> h:=Stabilizer(u,1);;

gap> oo:=Orbits(h,[1..56]);

[ [ 1 ], [ 2, 6, 44, 34, 47, 14, 51, 33, 31, 29, 46, 9, 11, 39, 53, 17,

48, 40, 26, 42, 52, 43, 35, 24, 8, 4, 20 ],

[ 3, 45, 27, 22, 16, 56, 25, 13, 50, 38, 19, 23, 12, 32, 54, 18, 36,

41, 5, 21, 49, 37, 30, 28, 15, 10, 55 ], [ 7 ] ]

gap> Index(h,Stabilizer(h,[1,2],OnSets));

27

gap> Index(h,Stabilizer(h,[1,3],OnSets));

27

gap> gl2:=Stabilizer(u,[1,2],OnSets);;

gap> Orbits(gl2,oo[2]);

152



[ [ 2, 1 ], [ 4, 52, 43, 20, 36, 51, 11, 21, 14, 16, 44, 30, 3, 15, 50,

49 ], [ 6, 31, 33, 24, 8, 40, 34, 17 ],

[ 9, 53, 35, 47, 22, 42, 46, 25, 39, 55, 26, 12, 18, 5, 56, 54 ],

[ 29, 48 ] ]

gap> gl3:=Stabilizer(u,[1,3],OnSets);;

gap> Orbits(gl3,oo[3]);

[ [ 3, 1 ], [ 5, 50, 10, 55, 21, 49, 30, 25, 36, 56, 13, 27, 41, 45, 28,

15 ],

[ 12, 37, 24, 16, 18, 42, 32, 38, 9, 29, 23, 22, 33, 44, 34, 39 ],

[ 19, 31 ], [ 54, 46 ] ]

gap> # There are 4 planes on a line, so the stabilizer of a line L acts

transitively on the points of these affine planes outside L. Looking

at the orbits, we see the only one of length 8=4*2 is

[ 6, 31, 33, 24, 8, 40, 34, 17 ] for [1,2]

gap> line:=[1,2];;

gap> ooo:=Orbits(gl2,oo[2]);;

gap> Orbits(Stabilizer(gl2,6),ooo[3]);

[ [ 6 ], [ 8, 33 ], [ 17 ], [ 24, 40 ], [ 31 ], [ 34 ] ]

gap> Size(Stabilizer(u,[1,2,6,17],OnSets));

2

gap> Size(Stabilizer(u,[1,2,6,31],OnSets));

24

gap> Size(Stabilizer(u,[1,2,6,34],OnSets));

2

gap> # So [1,2,6,31] must be a plane, since the plane stabilizer in u

acts transitively on the points of a plane

gap> planes:=Orbit(u,[1,2,6,31],OnSets);;

gap> Gm:=NullGraph(u);;

gap> AddEdgeOrbit(Gm,[1,2]);;

gap> IsConnectedGraph(Gm);

true

gap> IsSimpleGraph(Gm);

true

gap> Runtime();

5844

gap> G:=FundamentalGroup(Gm,planes);

Hash table formed

Spanning tree formed and flags set

Distances from subgraphs to the root found

Subgraphs sorted in distance order

Checking for trivial generators

Iteration 1

Iteration 2

Iteration 3

Finding equivalences between generators

Finding relations

<fp group on the generators [ f1 ]>

gap> Runtime();

7860
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gap> Size(G);

2

gap> # So G is C_2 and total runtime was about 2 seconds

gap> g:=SO(-1,8,3);;

gap> v:=[1,0,0,0,0,0,0,0]*One(GF(3));;

gap> o:=Orbit(g,v,OnPoints);;

gap> g:=DerivedSubgroup(g);;

gap> g:=Action(g,o,OnPoints);;

gap> s:=Stabilizer(g,1);;

gap> Length(o);

2132

gap> o:=Orbits(s,[1..2132]);;

gap> List(o,Length);

[ 1, 1, 729, 729, 672 ]

gap> o[1];

[ 1 ]

gap> o[2];

[ 2 ]

gap> g:=Action(g,Orbit(g,[1,2],OnSets),OnSets);;

gap> # This is now the action of g on the singular points.

gap> Index(g,Stabilizer(g,1));

1066

gap> s:=SylowSubgroup(g,13);;

gap> n:=Normalizer(g,s);;

gap> Size(n)/13;

24

gap> s3:=SylowSubgroup(n,3);;

gap> n3:=Normalizer(g,s3);;

gap> for i in [1..1000] do

> z:=Random(n3);

> u:=Subgroup(g,[s.1,s3.1,z]);

> if Index(g,u) = 1107*2160 then

> break;

> fi;

> od;

gap> i;

126

gap> IsSimple(u);

true

gap> # Since there is only one simple group of this order, u is G_2(3)

gap> o:=Orbits(u,[1..1066]);;

gap> List(o,Length);

[ 702, 364 ]

gap> u:=Action(u,o[1]);;

gap> h:=Stabilizer(u,1);;

gap> o:=Orbits(h,[1..702]);;

gap> List(o,Length);

[ 1, 224, 252, 224, 1 ]
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gap> o[1];

[ 1 ]

gap> o[5];

[ 604 ]

gap> o[2][1];

2

gap> o[4][1];

5

gap> # each point has 112 lines through it, so either o[2] or o[4] are the

neighbours of the point 1

gap> gl2:=Stabilizer(u,[1,2],OnSets);;

gap> oo:=Orbits(gl2,[1..702]);;

gap> List(oo,Length);

[ 2, 54, 54, 54, 54, 54, 54, 54, 27, 54, 18, 54, 54, 27, 18, 54, 2, 2, 2,

2, 2, 2, 2, 2 ]

gap> # 1 and 2 do not belong to a line, since otherwise the third point on

the line would be stabilised by the stabiliser of [1,2]. However, there

are no orbits of length one.

gap> gl5:=Stabilizer(u,[1,5],OnSets);;

gap> oo:=Orbits(gl5,[1..702]);;

gap> List(oo,Length);

[ 2, 54, 54, 54, 54, 9, 54, 54, 54, 54, 54, 54, 9, 54, 54, 9, 2, 2, 9, 1,

2, 2, 2, 2, 2, 1 ]

gap> oo[20];

[ 204 ]

gap> oo[26];

[ 580 ]

gap> Orbit(Stabilizer(u,[1,5,204],OnSets),1);

[ 1, 204, 5 ]

gap> Orbit(Stabilizer(u,[1,5,580],OnSets),1);

[ 1, 5 ]

gap> # The line stabiliser is transitive on points on the line, therefore

[1,5,204] is a line

gap> line:=[1,5,204];;

gap> ng:=Set(o[4]);;

gap> x:=RepresentativeAction(u,1,5);;

gap> ng5:=OnSets(ng,x);;

gap> x:=RepresentativeAction(u,1,204);;

gap> ng204:=OnSets(ng,x);;

gap> pl:=Intersection(ng,ng5,ng204);;

gap> Length(pl);

60

gap> # This is all the points in the affine planes which are on line,

other than the points of line

gap> k:=Stabilizer(u,line,OnSets);;

gap> oo:=Orbits(k,pl);;

gap> List(oo,Length);

[ 54, 6 ]

gap> # oo[2] are the points in the H-bad plane on line
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gap> pl:=Set(oo[1]);;

gap> pl[1];

13

gap> l:=Orbit(u,line,OnSets);;

gap> Filtered(l,a->(1 in a) and (13 in a));

[ [ 1, 13, 87 ] ]

gap> Filtered(l,a->(5 in a) and (13 in a));

[ [ 5, 13, 39 ] ]

gap> Filtered(l,a->(39 in a) and (204 in a));

[ [ 39, 204, 346 ] ]

gap> Filtered(l,a->(39 in a) and (87 in a));

[ [ 39, 87, 114 ] ]

gap> Filtered(l,a->(13 in a) and (346 in a));

[ [ 13, 44, 346 ] ]

gap> Filtered(l,a->(5 in a) and (44 in a));

[ [ 5, 44, 114 ] ]

gap> planes:=Orbit(u,[1,5,13,39,44,87,114,204,346],OnSets);;

gap> Length(planes);

19656

gap> Gm:=NullGraph(u);;

gap> AddEdgeOrbit(Gm,[1,5]);;

gap> IsConnectedGraph(Gm);

true

gap> IsSimpleGraph(Gm);

true

gap> Runtime();

16297

gap> G:=FundamentalGroup(Gm,planes);

Hash table formed

Spanning tree formed and flags set

Distances from subgraphs to the root found

Subgraphs sorted in distance order

Checking for trivial generators

Iteration 1

Iteration 2

Fundamental group is trivial

Group(())

gap> Runtime();

47609

gap> # So total runtime was about 30 seconds

gap> AllPrimitiveGroups(DegreeOperation,120);

[ Sym(7), Alt(9), PSL(2, 16), PSL(2, 16).2, PSigmaL(2, 16), PSL(3, 4),

PSL(3, 4).2, PSL(3, 4).2, PSL(3, 4).2, PSL(3, 4).2^2, Sym(8), PSp(4, 4),

PSp(4, 4).2, PSp(6, 2), PSp(8, 2), O+(8, 2), PSO+(8, 2), Alt(10),

Sym(10), Alt(16), Sym(16), A(120), S(120) ]

gap> g:=last[14];

PSp(6, 2)

gap> h:=Stabilizer(g,1);;
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gap> oo:=Orbits(h,[1..120]);;

gap> List(oo,Length);

[ 1, 63, 56 ]

gap> oo[2][1];

2

gap> Gm:=NullGraph(g);;

gap> AddEdgeOrbit(Gm,[1,2]);;

gap> qq:=Intersection(Adjacency(Gm,1),Adjacency(Gm,2));

[ 3, 4, 5, 6, 9, 10, 16, 17, 23, 27, 28, 35, 38, 42, 43, 49, 53, 64, 68,

81, 91, 94, 98, 102, 105, 107, 110, 115, 116, 118 ]

gap> k:=Stabilizer(g,[1,2],OnSets);;

gap> ww:=Orbits(k,qq);;

gap> List(ww,Length);

[ 6, 24 ]

gap> ww[1][1];

3

gap> ww[2][1];

4

gap> Orbits(Stabilizer(k,3),qq);

[ [ 3 ],

[ 4, 98, 6, 35, 38, 107, 10, 118, 43, 105, 91, 102, 53, 49, 23, 81 ],

[ 5 ], [ 9, 16, 27, 42 ], [ 17, 115, 116, 64, 28, 94, 68, 110 ] ]

gap> Orbits(Stabilizer(k,4),qq);

[ [ 3, 16, 5, 42 ], [ 4 ], [ 6 ], [ 9, 27 ],

[ 10, 105, 107, 28, 35, 17, 64, 110 ],

[ 23, 53, 91, 116, 98, 115, 94, 68 ], [ 38, 49, 81, 102 ], [ 43 ],

[ 118 ] ]

gap> Orbits(Stabilizer(g,[1,2,4,6],OnSets),[1,2,4,6]);

[ [ 1, 2 ], [ 4, 6 ] ]

gap> Orbits(Stabilizer(g,[1,2,4,43],OnSets),[1,2,4,43]);

[ [ 1, 2, 4, 43 ] ]

gap> Orbits(Stabilizer(g,[1,2,4,118],OnSets),[1,2,4,118]);

[ [ 1, 2, 4, 118 ] ]

gap> Orbits(Stabilizer(g,[1,2,3,5],OnSets),[1,2,3,5]);

[ [ 1, 3, 2, 5 ] ]

gap> # Since the plane stabilizer must act transitively on the points in

it, [1,2,4,6] is not a plane.

gap> Star:=function(Gm,x)

> return Union([x],Adjacency(Gm,x));

> end;

function( Gm, x ) ... end

gap> qq:=Intersection(Star(Gm,1),Star(Gm,2));

[ 1, 2, 3, 4, 5, 6, 9, 10, 16, 17, 23, 27, 28, 35, 38, 42, 43, 49, 53, 64,

68, 81, 91, 94, 98, 102, 105, 107, 110, 115, 116, 118 ]

gap> IsSubset(Star(Gm,5),Intersection(qq,Star(Gm,3)));

true

gap> IsSubset(Star(Gm,43),Intersection(qq,Star(Gm,4)));

false

gap> # Every point collinear with 3 points in the affine plane should be
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collinear with the fourth, so [1,2,4,43] is not a plane.

gap> IsSubset(Star(Gm,118),Intersection(qq,Star(Gm,4)));

true

gap> r:=Stabilizer(g,[1,2,3,5],OnSets);;

gap> aa:=Intersection(qq,Star(Gm,3));

[ 1, 2, 3, 5, 9, 16, 17, 27, 28, 42, 64, 68, 94, 110, 115, 116 ]

gap>

gap> Orbits(r,aa);

[ [ 1, 3, 2, 5 ], [ 9, 42, 16, 64, 28, 27, 110, 116, 94, 17, 68, 115 ] ]

gap> Intersection(aa,Star(Gm,9));

[ 1, 2, 3, 5, 9, 16, 27, 42 ]

gap> Intersection(aa,Star(Gm,64));

[ 1, 2, 3, 5, 64, 68, 94, 110 ]

gap> Intersection(aa,Star(Gm,28));

[ 1, 2, 3, 5, 17, 28, 115, 116 ]

gap> Orbit(r, Intersection(aa,Star(Gm,9)),OnSets);

[ [ 1, 2, 3, 5, 9, 16, 27, 42 ], [ 1, 2, 3, 5, 64, 68, 94, 110 ],

[ 1, 2, 3, 5, 17, 28, 115, 116 ] ]

gap> # So the stabiliser of our candidate for a plane acts transitively on

the 3-spaces containing it. However, dually, one point on every dual

line is in the hyperplane and so should be fixed. Therefore,

[ 1, 2, 3, 5] is not a plane.

gap> r:=Stabilizer(g,[1,2,4,118],OnSets);;

gap> aa:=Intersection(qq,Star(Gm,4));

[ 1, 2, 4, 6, 9, 10, 17, 27, 28, 35, 43, 64, 105, 107, 110, 118 ]

gap> Orbits(r,aa);

[ [ 1, 2, 4, 118 ], [ 6, 9, 43, 27 ],

[ 10, 105, 64, 107, 110, 28, 35, 17 ] ]

gap> # The stabiliser of [ 1, 2, 4, 118 ] fixes the unique H-bad plane

[ 1, 2, 4, 118, 6, 9, 43, 27 ] on it and acts transitively on the

other two.

gap> Intersection(aa,Star(Gm,10));

[ 1, 2, 4, 10, 64, 105, 110, 118 ]

gap> planes:=Orbit(g,last,OnSets);;

gap> Runtime();

5078

gap> f:=FundamentalGroup(Gm,planes);

Hash table formed

Spanning tree formed and flags set

Distances from subgraphs to the root found

Subgraphs sorted in distance order

Checking for trivial generators

Iteration 1

Iteration 2

Finding equivalences between generators

Finding relations

<fp group on the generators [ f1 ]>

gap> Size(f);

2
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gap> Runtime();

16719

gap> # So the fundamental group is C_2 and the total runtime was about

12 seconds
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