
Permutations groups – Solutions 1

These solutions are only a sketch and should not be regarded as full!

1. βg−1 = (αg)g−1 = α(gg−1) = α1 = α

2. The left regular action is defined by µ(x, g) = g−1x. The inverse is
needed for the 1st condition for actions. Of course, if we had defined
an action to be µ : G × Ω → G rather than µ : Ω × G → G, then left
multiplication would work normally, but right would require an inverse.

3. This is a rehash of the proof of Lemma 2.5 that every group is iso-
morphic to a permutation group. Instead we consider a general action.
Each element g acts as a bijection on Ω; that is a permutation in
Sym(Ω). As before, by the axioms of an action, the map from G to
Sym(Ω) is a homomorphism. However, in general this time there is a
kernel. Given a group homomorphism ϕ : G→ Sn, define the action of
g on Ω by the action of ϕ(g) on {1, . . . , n}. Since ϕ is a homomorphism,
the conditions for an action are satisfied.

4. Now, µ(Hx, g) = Hxg. So g fixes Hx iff g ∈ x−1Hx = Hx. If g is in
the kernel, then it fixes all such Hx. So,

ker = coreG(H) =
⋂
x∈G

Hx

Suppose N E G and N ≤ H. Then, N = Nx ≤ Hx for all x ∈ G.
Hence, N ≤

⋂
x∈GH

x = coreG(H).

5. Consider the coset action of G on H. Since H has index n, the action
has degree n. By Question 3, this defines a group homomorphism into
Sn. Hence, the kernel of this action, coreG(H) E G has index at most
n! (it could be trivial though). Also, since the coset action is transitive
(check this!) the index of coreG(H) is at least n. If H has index 2,
then n! = n = 2. So, coreG(H) ≤ H must be equal to H and hence H
is normal.
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6. Let G be the group of symmetries of the cube.

1 2

3 4

5 6

7 8

(a) Pick, for example, (1243)(5687) and (1265)(3487). It is clear that
1 can be mapped any other vertex, hence there is one orbit and
the action is transitive. NB we only know that 〈(1243)(5687),
(1265)(3487)〉 ≤ G.

(b) By the Orbit-Stabiliser theorem, |G : G1| = 8.

(c) The orbits of G1 are {1}, {235}, {467} and {8}.
(d) By the Orbit-Stabiliser theorem applied toG1, we have |2.G1||G12| =
|G1| and hence, |G1 : G12| = |G1|/|G12| = 3.

(e) If 2 is fixed, then 7 is too. However, even if 1, 2, 7, and 8 are
all fixed, then there is still a reflection in the plane through them
whose action has orbits {3, 5} and {4, 6}. However, this is the
only non-trivial symmetry. So, |G12| = 2.

(f) By Lagrange’s theorem,

|G| = |G : G1||G1|
= |G : G1||G1 : G12||G12|
= 8.3.2 = 48

(g) One system of imprimitivity is blocks of size two with opposite
corners in the same block. This system of imprimitivity has blocks
of minimal size. One may form other systems of imprimitivity by
joining together the blocks of the previous one into two block of
size four.

7. The points of P1 are 〈(1, 0)〉, 〈(0, 1)〉, 〈(1, 1)〉 and 〈(1,−1)〉. Since
GL2(3) is transitive on vectors, it is transitive on the four points of
P1. Hence, we have a homomorphism ϕ : GL2(3)→ S4. The stabiliser
of 〈(1, 0)〉 is the group of all lower triangular matrices. These act tran-
sitively on the remaining three points. The stabiliser in this group

2



of 〈(0, 1)〉 is the group of diagonal matrices. The matrix diag(1,−1)
swaps the two remaining points. So, using the Orbit-Stabiliser theo-
rem, the order of the group acting is at least 4.3.2. Now, the kernel
of the action is group of all scalar matrices. Hence, the group act-
ing is GL2(3)/〈scalars〉 = PGL2(3). So, since 4.3.2 = |S4|, ϕ is an
isomorphism and PGL2(3) ∼= S4.

8. (a) Let G be a group of order pa 6= 1 acting on itself by conjugation.
By the Orbit-Stabiliser theorem, all orbits must divide the order
of G which is a prime power pa. However, clearly 1g = 1 for
all g ∈ G. Hence, 1G = {1} is an orbit of size one. Therefore,
there must be other orbits of size one and moreover these must
be the orbit of non-trivial elements of G. Say, hG = {h}, for
h 6= 1. Then, hg = h for all g ∈ G. That is, h ∈ Z(G) and hence
Z(G) 6= 1. (Hint: use conjugation action and argue by counting.)

(b) We act on the cosets of H in G, but only using the group H. Then,
as above, H is in an orbit of length one. The length of each orbit
is a prime power and there are |G : H| cosets which is also a prime
power. So, there is some non-trivial coset, Hg say, which has an
orbit of size one. So, Hgh = Hg for all h ∈ H. By rearranging
we get hg

−1 ∈ H for all h ∈ H and hence, g−1 ∈ NG(H). Clearly,
H ≤ NG(H), but since Hg is a non-trivial coset, g 6∈ H, therefore
H � NG(H).

9. (Frattini argument) Let P ∈ Sylp(N), g ∈ G. Then, P g ≤ N g = N
since N is normal. Hence, P g ∈ Sylp(N) and G acts on Sylp(N).
Since N acts transitively on Sylp(N), there exists n ∈ N such that
P g = P n. Then, gn−1 stabilises P , that is, gn−1 ∈ NG(P ). So, for all
g ∈ G, we have g ∈ NNG(P ). That is, G ⊆ NNG(P ). Since the other
containment is clear, we get G = NNG(P ).

10. Let Ω be the set of all n×n matrices over a field F and G = GLn(F )×
GLn(F ).

(a) µ(µ(α, (x, y)), (u, v)) = µ(xtαy, (u, v)) = utxtαyv = (xu)tαyv =
µ(α, (xu, yv)). Since the second condition is clear, this defines an
action.

(b) Multiplication on the left corresponds to row operations and on the
right to column operations. Since the elementary row and column
operations are all invertible, they are given by elements ofGLn(F ).
There are exactly n+ 1 orbits under the action of the elementary
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row and column operations where the orbits correspond to matri-
ces of a given rank from 0 to n. In fact, since GLn(F ) is generated
by elementary matrices (those given by adding a row/column to
another row/column) and all diagonal matrices (these are gener-
ated by the multiplying a row/column by a scalar), we see that
the group generated by all matrices corresponding to row/column
operations is the whole of GLn(F ). So, the orbits are as described.

(c) Pick α to be the rank k matrix diag(1, . . . , 1, 0, . . . , 0) with exactly
k 1s on the diagonal. Writing the matrices in block diagonal form
we have:

(
A B
C D

)t(
I 0
0 0

)(
X Y
Z W

)
=

(
At Ct

Bt Dt

)(
I 0
0 0

)(
X Y
Z W

)
=

(
AtX AtY
BtX BtY

)
So, X = (At)−1, and B = Y = 0, D,W ∈ GLn−k(F ) (since the
matrices must have full rank) and C,Z ∈Matn−k,k(F ).

11. If B is a block system, then define α ∼ β if α and β are in the same
block. Clearly, if α and β are in the same block B, then αg and βg are
both in the same block Bg, so∼ is a G-congruence relation. Conversely,
given a G-congruence relation, let the blocks B of B be the equivalence
classes of ∼. These clearly partition Ω and since, ∼ is a G-congruence,
the action of g ∈ G preserves the equivalence classes, and hence just
permutes the blocks. So, B is a system of imprimitivity.

12. The size of any blocks in system of imprimitivity must divide |Ω|. How-
ever, this is prime, so the block size is either 1, or |Ω|.

13. From Exercise 4.8: The product (n, h)(m, g) = (nmh−1
, hg) ∈ G. The

identity element is (1, 1) and the inverse of (n, h) is ((n−1)h, h−1). One
can check associativity. Clearly, the first definition satisfies the second
by choosing N ′ E G and H ′ ≤ G. In the second definition, N E G, so
elements of G and in particular, elements of H act as automorphisms
of N . Also, as G = NH, so every element of G can be written as nh
for some n ∈ N , h ∈ H. Let nh and mg be two such elements. Then,
consider nhmg. Now, hm = mh−1

h and since N E G, mh−1 ∈ N , so
nhmg = nmh−1

hg ∈ NH.
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