Permutations groups - Solutions 2

These are sketch solutions and should not necessarily be regarded as full!

1. If a group is k-transitive, then pick $\alpha_{1}, \ldots, \alpha_{k}$ to be k distinct points and for the second set choose $\beta_{1}=\alpha_{1}$ and $k-1$ other distinct points β_{i}. Then, the g which maps α_{i} to β_{i} is clearly in $G_{\alpha_{1}}$. Since $\alpha_{2}, \ldots, \alpha_{k}$ and $\beta_{2}, \ldots, \beta_{k}$ were chosen arbitrarily, this shows that $G_{\alpha_{1}}$ is $(k-1)$ transitive. Clearly, if G is k-transitive then it is 1-transitive.
Conversely, let G_{α} be $(k-1)$-transitive and G be transitive. Pick $\alpha_{1}, \ldots, \alpha_{k}$ and $\beta_{1}, \ldots, \beta_{k}$ be two sets of distinct points. Since G is transitive, there exists $g \in G$ such that $\alpha_{1} g=\beta_{1}$. Note that, since the α_{i} are distinct, $\alpha_{i} g \neq \alpha_{1} g$ for all $i \neq 1$. Now, pick $h \in G_{\alpha_{1} g}=G_{\beta_{1}}$ which maps $\alpha_{2} g, \ldots, \alpha_{k} g$ to $\beta_{2}, \ldots, \beta_{k}$. Then, $g h$ is the required element.
2. (a) Let $\alpha_{1}, \ldots, \alpha_{n}$ be n distinct points of $\{1, \ldots, n\}$. Similarly, $\beta_{1}, \ldots, \beta_{n}$. Then the maps from one to the other is a bijection on $\{1, \ldots, n\}$, hence, by the definition of S_{n}, the map is contained in S_{n}.
(b) We use question 1 and induction. If $n \geq 3$, then A_{n} contains all 3cycles, so it is clearly transitive. Note that $A_{3} \cong C_{3}$ which is only 1-transitive - this is our base case. Assume that A_{k} is $(k-2)$ transitive. However, A_{k+1} is transitive on $k+1$ points and the stabiliser of a point in A_{k+1} is isomorphic to A_{k}, so this completes the inductive step.
3. Let G be 2-transitive. By Question 1, G_{α} is transitive on $\Omega-\{\alpha\}$. However, G_{α} must stabilise setwise the block which α is contained in. So, the only block structure can be into singletons and hence G is primitive.
4. (a) $0 \mapsto c / d$, so $c=0$ and $\infty \mapsto a / b$, so $b=0$. Then, $z \neq 0, \infty$ maps to $a z / d$, Hence $d=a$ and the kernel is indeed scalar matrices.
(b) You could try to argue directly that the group is 3 -transitive by picking two arbitrary triples, however this can be quite messy.

Instead, we do the following. Either argue that the group is transitive directly, or use the orbit-stabiliser theorem as follows. The stabiliser of ∞ in $G L_{2}(q)$ has $b=0$ and so is the group of all lower triangular matrices $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$. Since this has order $q(q-1)^{2}$, it is index $q+1$ in $G L_{2}(q)$. By the Orbit-Stabiliser theorem, $G L_{2}(q)$ acts transitively. Since scalar matrices are in the kernel of the action, $P G L_{2}(q)$ acts transitively. To show that $P G L_{2}(q)$ is 2-transitive, again either argue directly that the stabiliser is transitive on \mathbb{F}_{q}, or use the orbit-stabiliser theorem. The stabiliser of 0 in G_{∞} is all diagonal matrices and these have index q in the lower triangular matrices. Hence, as before G_{∞} is transitive on \mathbb{F}_{q}. However, $z \mapsto a z / d$ is transitive on \mathbb{F}_{q}^{\times}. So, $P G L_{2}(q)$ is 3-transitive. By the Orbit-Stabiliser theorem, a sharply 3 -transitive group has order $(q+1) q(q-1)=\left|P G L_{2}(q)\right|$. So, $P G L_{2}(q)$ is sharply 3-transitive.
(c) A sharply 3-transitive group on $q+1$ points is the smallest 3transitive group and has order $(q+1) q(q-1)$. So, $P S L_{2}(q) \leq$ $P G L_{2}(q)$ is 3 -transitive if and only if $P S L_{2}(q)=P G L_{2}(q)$. The argument in part (b) holds for $P S L_{2}(q)$ up until the argument with $z \mapsto a z / d$. Now $d=a^{-1}$ and hence we get $z \mapsto a^{2} z$. Now, the multiplicative group of the field is cyclic of order $q-1$. Hence, if $q=2^{a}$ is a power of 2 , then every element can be written as a square and so $P S L_{2}\left(2^{a}\right)$ is transitive. However, if q is not a power of 2 , then the squares form a proper subgroup of the multiplicative group of the field. So, in general $P S L_{2}(q)$ is only 2-transitive.
5. (a) Translations by a vector are clearly transitive on V. The stabiliser of the 0 vector is a subgroup G_{0} isomorphic to $G L(V)$ which is transitive on the remaining vectors. So, $A G L(V)$ is 2-transitive.
(b) If $q=2$, then no two vectors are linear multiples of each other. So, any two vectors generate a 2-dimensional subspace U of V and since $G_{0}=G L(V)$ permutes the set of bases of V, G_{0} is 2transitive and $A G L_{n}(F)$ is 3 -transitive. NB it is not more than this as the third vector in the subspace U is now fixed.
If $w=\alpha v$ for some $\alpha \in F-\{0,1\}$, then $G_{(0, v)}$ must also fix w, so G cannot be 3 -transitive unless $q=2$.
(c) If $A G L_{n}(q)$ is 4-transitive then $q=2$. Pick $0, v, w \in V$. The $G_{(0, v, w)}$ must fix $v+w$, so G can only be 4 -transitive if this is the only other vector in V. Hence $n=2$. So $A G L_{2}(2)$ is sharply 4 -transitive on 4 vectors. Hence, it is isomorphic to S_{4}.
6. (a) Since S is generate by a p-cycle it fixes the 2 points outside of that p-cycle. Conversely, since G is sharply 4 -transitive, the stabiliser of two points has order $p(p-1)$ and hence contains a unique subgroup of order p which must be generated by a p-cycle. So, such subgroups S are in bijection with subsets of two points in Ω. The number of ways of picking 2 points unordered from $p+2$ points is $(p+2)(p+1) / 2$. So the number of such S is $(p+2)(p+1) / 2$. Since G is sharply 4 -transitive, the order of G is $(p+2)(p+1) p(p-1)$. So, using the Orbit-Stabiliser theorem and that G is transitive on such S, we see that the stabiliser of S has order $2 p(p-1)$. The stabiliser under conjugation action is $N_{G}(S)$.
(b) Wlog assume that S fixes $p+1$ and $p+2$. Then, $G_{(p+1, p+2)}$ is a subgroup of order $p(p-1)$ which contains S as a normal subgroup. Hence, this two point stabiliser is in $N_{G}(S)$.
(c) The subgroup S is generated by some p-cycle s. It is a cyclic group of order p; pick a generator $s \in S$. Now, $N_{G}(S)$ acts on S by conjugation, so it maps s to some power s^{n}. There are exactly $p-1$ choices for n. However, when written as a cycle, $s^{n}=\left(1 a_{2} \ldots a_{p}\right)$. The power of s is completely determined by the $p-1$ choices for where 1 is mapped. That is, n is in bijection with the set $\{2, \ldots, p\}$. But, $G_{(1, p+1, p+2)} \leq G_{(p+1, p+2)}$ is transitive on $\{2, \ldots, p\}$ and hence on the non-identity elements of S. So, $C_{G}(S)$, which is the kernel of the conjugation action of $N_{G}(S)$ on non-trivial elements of S, has order $2 p$. Hence, it contains an element g of order 2 . Since it is in the kernel, g must fix all of $\{1, \ldots, p\}$. So it can only be the transposition (12).
(d) By the theorem in class, G is primitive and contains a transposition, hence it $G \cong S_{n}$. But, S_{n} is only sharply 4 -transitive if $n=4$, or 5 . Therefore, there are no sharply 4 -transitive groups of degree 7 , or 9 .
7. Note that $G_{(\Sigma)}^{g}=G_{(\Sigma g)}$. So, 1 is equivalent to 2 . An element $1 \neq$ $g \in G_{(\Sigma)}$ if and only if g fixes pointwise all of Σ. That is, its support is disjoint from Σ. Hence, Σ is not a base if and only if we have the converse of 4. That gives 1 iff 4 . Assume 3, then if $g \in G_{(\Sigma)}$, then $\alpha g=\alpha=\alpha 1$, for all $g \in G$. Hence, by $3, g=1$ and Σ is a base. Finally, suppose that Σ is a base, then if $\alpha g=\alpha h$ for all $\alpha \in \Sigma$, then $g h^{-1} \in G_{(\Sigma)}$. Hence, $g=h$ and we have property 3 .
8. Clearly one requires at least n vectors since one needs n vectors to define a basis for V. Pick n linearly independent vectors e_{1}, \ldots, e_{n}. Let t be
the translation by $e_{1}+\cdots+e_{n}$. It takes e_{1}, \ldots, e_{n} to another basis f_{1}, \ldots, f_{n}, where $f_{i}=e_{i}+e_{1}+\cdots+e_{n}$. So, there exists $g \in G L(V)$ which takes f_{1}, \ldots, f_{n} to e_{1}, \ldots, e_{n}. Now, $t g$ is an element in $G_{(\Sigma)}$. However, $t g$ maps $-\left(e_{1}+\cdots+e_{n}\right)$ to 0 , hence it is non-trivial. If we add 0 to e_{1}, \ldots, e_{n} then this suffices and is of size $n+1$.
9. Pick $\alpha \in \operatorname{supp}(g)$. Since G is primitive, G_{α} is maximal in G. Now, $g \notin$ G_{α}, hence $G=\left\langle g, G_{\alpha}\right\rangle$. (Since all the point stabilisers are conjugate, then all have the same number of orbits on Ω, so we may choose one.)

Now, g has exactly s orbits of length more than one and all other orbits are singletons. But, $G=\left\langle g, G_{\alpha}\right\rangle$ is transitive, hence the orbits of G_{α} must overlap with those of g in such a way that one can get from any point to any other. We argue by assigning the orbits of G_{α}.
Those points in a singleton orbit of g must be in an orbit of G_{α} which intersects with one of the s non-trivial orbits, otherwise G is not transitive. Let S be the set of points in the non-trivial orbits of g. Hence, the every orbit of G_{α} must intersect S. Now, G is transitive on S, hence there must be enough non-trivial orbits of G_{α} to join up the s orbits of g. The minimal number of points required to do this is s, one for each orbit. That leaves at most $m-s$ points which we may assume are all in their own orbit (or connected with some singleton). However, that is at most $m-s+1$ orbits.

Consider C_{2} 乙 C_{2} which acts transitively but imprimitively on 4 points. Then, $g=(12)(34)$ has support of size $m=4$ with $s=2$. However, the stabiliser of a point has 4 orbits but $4-2+1=3$.

