Permutations groups — Solutions 2

These are sketch solutions and should not necessarily be regarded as full!

1. If a group is k-transitive, then pick a,...,a; to be k distinct points
and for the second set choose 1 = a; and k£ — 1 other distinct points
B;i. Then, the g which maps «; to f; is clearly in G,,. Since ag, ..., ax
and [, ..., B were chosen arbitrarily, this shows that G, is (k — 1)-
transitive. Clearly, if G is k-transitive then it is 1-transitive.

Conversely, let G, be (k — 1)-transitive and G be transitive. Pick
ai,...,a and By,..., 0, be two sets of distinct points. Since G is
transitive, there exists g € GG such that a;g = 1. Note that, since the
«a; are distinct, a;g # aqg for all ¢ # 1. Now, pick h € G, 4, = G, which
maps aag, . ..,arg to B, ..., Br. Then, gh is the required element.

2. (a) Letay,...,a, bendistinct points of {1,...,n}. Similarly, 1, ..., 5,.
Then the maps from one to the other is a bijection on {1,...,n},
hence, by the definition of S,,, the map is contained in S,,.

(b) We use question 1 and induction. If n > 3, then A, contains all 3-
cycles, so it is clearly transitive. Note that A3 = ('35 which is only
1-transitive - this is our base case. Assume that Ay is (k — 2)-
transitive. However, Ay, is transitive on k + 1 points and the
stabiliser of a point in Ay is isomorphic to Ay, so this completes
the inductive step.

3. Let G be 2-transitive. By Question 1, G, is transitive on Q — {a}.
However, (G, must stabilise setwise the block which « is contained in.
So, the only block structure can be into singletons and hence G is
primitive.

4. (a) 0= ¢/d, so ¢ =0 and oo — a/b, so b =0. Then, z # 0, c0 maps

to az/d, Hence d = a and the kernel is indeed scalar matrices.

(b) You could try to argue directly that the group is 3-transitive by
picking two arbitrary triples, however this can be quite messy.



Instead, we do the following. Either argue that the group is tran-
sitive directly, or use the orbit-stabiliser theorem as follows. The
stabiliser of co in GLs(gq) has b = 0 and so is the group of all lower
2) . Since this has order q(g—1)?, it is in-
dex g+11in GLs(q). By the Orbit-Stabiliser theorem, GLy(q) acts
transitively. Since scalar matrices are in the kernel of the action,
PG Lsy(q) acts transitively. To show that PG Ly(q) is 2-transitive,
again either argue directly that the stabiliser is transitive on [y,
or use the orbit-stabiliser theorem. The stabiliser of 0 in G, is
all diagonal matrices and these have index ¢ in the lower triangu-
lar matrices. Hence, as before G is transitive on F,. However,
z + az/d is transitive on F. So, PG Ly(q) is 3-transitive. By the
Orbit-Stabiliser theorem, a sharply 3-transitive group has order
(g+1)q(q—1) = |PGLy(q)|- So, PGLy(q) is sharply 3-transitive.

A sharply 3-transitive group on ¢ + 1 points is the smallest 3-
transitive group and has order (¢ + 1)g(¢ — 1). So, PSLy(q) <
PG Ly(q) is 3-transitive if and only if PSLy(q) = PGLs(q). The
argument in part (b) holds for PSLy(g) up until the argument
with z — az/d. Now d = a! and hence we get 2z — a*2. Now,
the multiplicative group of the field is cyclic of order ¢ — 1. Hence,
if ¢ = 2% is a power of 2, then every element can be written as a
square and so PSLs(2%) is transitive. However, if ¢ is not a power
of 2, then the squares form a proper subgroup of the multiplicative
group of the field. So, in general PSLy(q) is only 2-transitive.

triangular matrices

Translations by a vector are clearly transitive on V. The stabiliser
of the 0 vector is a subgroup Gy isomorphic to GL(V) which is
transitive on the remaining vectors. So, AGL(V) is 2-transitive.

If ¢ = 2, then no two vectors are linear multiples of each other.
So, any two vectors generate a 2-dimensional subspace U of V
and since Gy = GL(V') permutes the set of bases of V|, Gq is 2-
transitive and AGL, (F') is 3-transitive. NB it is not more than
this as the third vector in the subspace U is now fixed.

If w = av for some a € F —{0,1}, then G,y must also fix w, so
G cannot be 3-transitive unless g = 2.

If AGL,(q) is 4-transitive then ¢ = 2. Pick 0,v,w € V. The
G0,v,w) must fix v + w, so G' can only be 4-transitive if this is
the only other vector in V. Hence n = 2. So AGLy(2) is sharply
4-transitive on 4 vectors. Hence, it is isomorphic to Sy.



6.

(a)

Since S is generate by a p-cycle it fixes the 2 points outside of that
p-cycle. Conversely, since GG is sharply 4-transitive, the stabiliser
of two points has order p(p — 1) and hence contains a unique
subgroup of order p which must be generated by a p-cycle. So,
such subgroups S are in bijection with subsets of two points in (2.
The number of ways of picking 2 points unordered from p+2 points
is (p+2)(p+1)/2. So the number of such S'is (p+2)(p+1)/2. Since
G is sharply 4-transitive, the order of G is (p +2)(p+ 1)p(p — 1).
So, using the Orbit-Stabiliser theorem and that G is transitive on
such S, we see that the stabiliser of S has order 2p(p — 1). The
stabiliser under conjugation action is Ng(95).

Wilog assume that S fixes p + 1 and p + 2. Then, G(p41p42) is a
subgroup of order p(p—1) which contains S as a normal subgroup.
Hence, this two point stabiliser is in Ng(S).

The subgroup S is generated by some p-cycle s. It is a cyclic
group of order p; pick a generator s € S. Now, Ng(S) acts on
S by conjugation, so it maps s to some power s”. There are
exactly p — 1 choices for n. However, when written as a cycle,
s" = (lay...ap). The power of s is completely determined by the
p — 1 choices for where 1 is mapped. That is, n is in bijection
with the set {2,...,p}. But, G pr1pr2) < Gpi1pro) is transitive
on {2,...,p} and hence on the non-identity elements of S. So,
Cq(5), which is the kernel of the conjugation action of Ng(S)
on non-trivial elements of S, has order 2p. Hence, it contains an
element g of order 2. Since it is in the kernel, g must fix all of
{1,...,p}. So it can only be the transposition (12).

By the theorem in class, GG is primitive and contains a transpo-
sition, hence it G = §,. But, S, is only sharply 4-transitive if
n =4, or 5. Therefore, there are no sharply 4-transitive groups of
degree 7, or 9.

7. Note that Gf) = G(sg). So, 1 is equivalent to 2. An element 1 #

g € G(x) if and only if g fixes pointwise all of 3. That is, its support
is disjoint from >. Hence, ¥ is not a base if and only if we have the
converse of 4. That gives 1 iff 4. Assume 3, then if g € G(x), then
ag = a = al, for all g € G. Hence, by 3, g = 1 and ¥ is a base.
Finally, suppose that Y is a base, then if ag = ah for all a € ¥, then
gh™* € G(x). Hence, g = h and we have property 3.

Clearly one requires at least n vectors since one needs n vectors to define
a basis for V. Pick n linearly independent vectors eq,...,e,. Let t be
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the translation by e; + --- + e,. It takes ey,...,e, to another basis
fiy-.y fn, where f; = e; + €1 + -+ + e,. So, there exists g € GL(V)

which takes fi,...,f, to e,...,e,. Now, tg is an element in G(x).
However, tg maps —(e; + -+ + €,) to 0, hence it is non-trivial. If we
add 0 to eq,...,e, then this suffices and is of size n + 1.

. Pick a € supp(g). Since G is primitive, G, is maximal in G. Now, g ¢
G, hence G = (g,G,). (Since all the point stabilisers are conjugate,
then all have the same number of orbits on €2, so we may choose one.)

Now, g has exactly s orbits of length more than one and all other orbits
are singletons. But, G = (g, G,) is transitive, hence the orbits of G,
must overlap with those of ¢ in such a way that one can get from any
point to any other. We argue by assigning the orbits of G,,.

Those points in a singleton orbit of g must be in an orbit of G, which
intersects with one of the s non-trivial orbits, otherwise GG is not transi-
tive. Let S be the set of points in the non-trivial orbits of g. Hence, the
every orbit of G, must intersect S. Now, G is transitive on S, hence
there must be enough non-trivial orbits of GG, to join up the s orbits of
g. The minimal number of points required to do this is s, one for each
orbit. That leaves at most m — s points which we may assume are all
in their own orbit (or connected with some singleton). However, that
is at most m — s + 1 orbits.

Consider C5 ! C'y which acts transitively but imprimitively on 4 points.
Then, g = (12)(34) has support of size m = 4 with s = 2. However,
the stabiliser of a point has 4 orbits but 4 — 2 + 1 = 3.



