Permutations groups – Solutions 2

These are sketch solutions and should not necessarily be regarded as full!

1. If a group is k-transitive, then pick $\alpha_1, \ldots, \alpha_k$ to be k distinct points and for the second set choose $\beta_1 = \alpha_1$ and k - 1 other distinct points β_i . Then, the g which maps α_i to β_i is clearly in G_{α_1} . Since $\alpha_2, \ldots, \alpha_k$ and β_2, \ldots, β_k were chosen arbitrarily, this shows that G_{α_1} is (k - 1)transitive. Clearly, if G is k-transitive then it is 1-transitive.

Conversely, let G_{α} be (k-1)-transitive and G be transitive. Pick $\alpha_1, \ldots, \alpha_k$ and β_1, \ldots, β_k be two sets of distinct points. Since G is transitive, there exists $g \in G$ such that $\alpha_1 g = \beta_1$. Note that, since the α_i are distinct, $\alpha_i g \neq \alpha_1 g$ for all $i \neq 1$. Now, pick $h \in G_{\alpha_1 g} = G_{\beta_1}$ which maps $\alpha_2 g, \ldots, \alpha_k g$ to β_2, \ldots, β_k . Then, gh is the required element.

- 2. (a) Let $\alpha_1, \ldots, \alpha_n$ be *n* distinct points of $\{1, \ldots, n\}$. Similarly, β_1, \ldots, β_n . Then the maps from one to the other is a bijection on $\{1, \ldots, n\}$, hence, by the definition of S_n , the map is contained in S_n .
 - (b) We use question 1 and induction. If $n \ge 3$, then A_n contains all 3cycles, so it is clearly transitive. Note that $A_3 \cong C_3$ which is only 1-transitive - this is our base case. Assume that A_k is (k-2)transitive. However, A_{k+1} is transitive on k+1 points and the stabiliser of a point in A_{k+1} is isomorphic to A_k , so this completes the inductive step.
- 3. Let G be 2-transitive. By Question 1, G_{α} is transitive on $\Omega \{\alpha\}$. However, G_{α} must stabilise setwise the block which α is contained in. So, the only block structure can be into singletons and hence G is primitive.
- 4. (a) $0 \mapsto c/d$, so c = 0 and $\infty \mapsto a/b$, so b = 0. Then, $z \neq 0, \infty$ maps to az/d, Hence d = a and the kernel is indeed scalar matrices.
 - (b) You could try to argue directly that the group is 3-transitive by picking two arbitrary triples, however this can be quite messy.

Instead, we do the following. Either argue that the group is transitive directly, or use the orbit-stabiliser theorem as follows. The stabiliser of ∞ in $GL_2(q)$ has b = 0 and so is the group of all lower triangular matrices $\begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$. Since this has order $q(q-1)^2$, it is index q+1 in $GL_2(q)$. By the Orbit-Stabiliser theorem, $GL_2(q)$ acts transitively. Since scalar matrices are in the kernel of the action, $PGL_2(q)$ acts transitively. To show that $PGL_2(q)$ is 2-transitive, again either argue directly that the stabiliser is transitive on \mathbb{F}_q , or use the orbit-stabiliser theorem. The stabiliser of 0 in G_∞ is all diagonal matrices and these have index q in the lower triangular matrices. Hence, as before G_∞ is transitive on \mathbb{F}_q . However, $z \mapsto az/d$ is transitive on \mathbb{F}_q^{\times} . So, $PGL_2(q)$ is 3-transitive. By the Orbit-Stabiliser theorem, a sharply 3-transitive group has order $(q+1)q(q-1) = |PGL_2(q)|$. So, $PGL_2(q)$ is sharply 3-transitive.

- (c) A sharply 3-transitive group on q + 1 points is the smallest 3transitive group and has order (q + 1)q(q - 1). So, $PSL_2(q) \leq PGL_2(q)$ is 3-transitive if and only if $PSL_2(q) = PGL_2(q)$. The argument in part (b) holds for $PSL_2(q)$ up until the argument with $z \mapsto az/d$. Now $d = a^{-1}$ and hence we get $z \mapsto a^2 z$. Now, the multiplicative group of the field is cyclic of order q-1. Hence, if $q = 2^a$ is a power of 2, then every element can be written as a square and so $PSL_2(2^a)$ is transitive. However, if q is not a power of 2, then the squares form a proper subgroup of the multiplicative group of the field. So, in general $PSL_2(q)$ is only 2-transitive.
- 5. (a) Translations by a vector are clearly transitive on V. The stabiliser of the 0 vector is a subgroup G_0 isomorphic to GL(V) which is transitive on the remaining vectors. So, AGL(V) is 2-transitive.
 - (b) If q = 2, then no two vectors are linear multiples of each other. So, any two vectors generate a 2-dimensional subspace U of Vand since $G_0 = GL(V)$ permutes the set of bases of V, G_0 is 2transitive and $AGL_n(F)$ is 3-transitive. NB it is not more than this as the third vector in the subspace U is now fixed. If $w = \alpha v$ for some $\alpha \in F - \{0, 1\}$, then $G_{(0,v)}$ must also fix w, so

G cannot be 3-transitive unless q = 2. (c) If $AGL_n(q)$ is 4-transitive then q = 2. Pick $0, v, w \in V$. The

(c) If $AGL_n(q)$ is 4-transitive then q = 2. Pick $0, v, w \in V$. The $G_{(0,v,w)}$ must fix v + w, so G can only be 4-transitive if this is the only other vector in V. Hence n = 2. So $AGL_2(2)$ is sharply 4-transitive on 4 vectors. Hence, it is isomorphic to S_4 .

- 6. (a) Since S is generate by a p-cycle it fixes the 2 points outside of that p-cycle. Conversely, since G is sharply 4-transitive, the stabiliser of two points has order p(p 1) and hence contains a unique subgroup of order p which must be generated by a p-cycle. So, such subgroups S are in bijection with subsets of two points in Ω. The number of ways of picking 2 points unordered from p+2 points is (p+2)(p+1)/2. So the number of such S is (p+2)(p+1)/2. Since G is sharply 4-transitive, the order of G is (p+2)(p+1)p(p-1). So, using the Orbit-Stabiliser theorem and that G is transitive on such S, we see that the stabiliser of S has order 2p(p 1). The stabiliser under conjugation action is N_G(S).
 - (b) Wlog assume that S fixes p + 1 and p + 2. Then, $G_{(p+1,p+2)}$ is a subgroup of order p(p-1) which contains S as a normal subgroup. Hence, this two point stabiliser is in $N_G(S)$.
 - (c) The subgroup S is generated by some p-cycle s. It is a cyclic group of order p; pick a generator $s \in S$. Now, $N_G(S)$ acts on S by conjugation, so it maps s to some power s^n . There are exactly p 1 choices for n. However, when written as a cycle, $s^n = (1 a_2 \ldots a_p)$. The power of s is completely determined by the p 1 choices for where 1 is mapped. That is, n is in bijection with the set $\{2, \ldots, p\}$. But, $G_{(1,p+1,p+2)} \leq G_{(p+1,p+2)}$ is transitive on $\{2, \ldots, p\}$ and hence on the non-identity elements of S. So, $C_G(S)$, which is the kernel of the conjugation action of $N_G(S)$ on non-trivial elements of S, has order 2p. Hence, it contains an element g of order 2. Since it is in the kernel, g must fix all of $\{1, \ldots, p\}$. So it can only be the transposition (12).
 - (d) By the theorem in class, G is primitive and contains a transposition, hence it $G \cong S_n$. But, S_n is only sharply 4-transitive if n = 4, or 5. Therefore, there are no sharply 4-transitive groups of degree 7, or 9.
- 7. Note that $G_{(\Sigma)}^g = G_{(\Sigma g)}$. So, 1 is equivalent to 2. An element $1 \neq g \in G_{(\Sigma)}$ if and only if g fixes pointwise all of Σ . That is, its support is disjoint from Σ . Hence, Σ is not a base if and only if we have the converse of 4. That gives 1 iff 4. Assume 3, then if $g \in G_{(\Sigma)}$, then $\alpha g = \alpha = \alpha 1$, for all $g \in G$. Hence, by 3, g = 1 and Σ is a base. Finally, suppose that Σ is a base, then if $\alpha g = \alpha h$ for all $\alpha \in \Sigma$, then $gh^{-1} \in G_{(\Sigma)}$. Hence, g = h and we have property 3.
- 8. Clearly one requires at least n vectors since one needs n vectors to define a basis for V. Pick n linearly independent vectors e_1, \ldots, e_n . Let t be

the translation by $e_1 + \cdots + e_n$. It takes e_1, \ldots, e_n to another basis f_1, \ldots, f_n , where $f_i = e_i + e_1 + \cdots + e_n$. So, there exists $g \in GL(V)$ which takes f_1, \ldots, f_n to e_1, \ldots, e_n . Now, tg is an element in $G_{(\Sigma)}$. However, tg maps $-(e_1 + \cdots + e_n)$ to 0, hence it is non-trivial. If we add 0 to e_1, \ldots, e_n then this suffices and is of size n + 1.

9. Pick $\alpha \in \text{supp}(g)$. Since G is primitive, G_{α} is maximal in G. Now, $g \notin G_{\alpha}$, hence $G = \langle g, G_{\alpha} \rangle$. (Since all the point stabilisers are conjugate, then all have the same number of orbits on Ω , so we may choose one.)

Now, g has exactly s orbits of length more than one and all other orbits are singletons. But, $G = \langle g, G_{\alpha} \rangle$ is transitive, hence the orbits of G_{α} must overlap with those of g in such a way that one can get from any point to any other. We argue by assigning the orbits of G_{α} .

Those points in a singleton orbit of g must be in an orbit of G_{α} which intersects with one of the s non-trivial orbits, otherwise G is not transitive. Let S be the set of points in the non-trivial orbits of g. Hence, the every orbit of G_{α} must intersect S. Now, G is transitive on S, hence there must be enough non-trivial orbits of G_{α} to join up the s orbits of g. The minimal number of points required to do this is s, one for each orbit. That leaves at most m - s points which we may assume are all in their own orbit (or connected with some singleton). However, that is at most m - s + 1 orbits.

Consider $C_2 \wr C_2$ which acts transitively but imprimitively on 4 points. Then, g = (12)(34) has support of size m = 4 with s = 2. However, the stabiliser of a point has 4 orbits but 4 - 2 + 1 = 3.