
Permutations groups – Solutions 2

These are sketch solutions and should not necessarily be regarded as full!

1. If a group is k-transitive, then pick α1, . . . , αk to be k distinct points
and for the second set choose β1 = α1 and k − 1 other distinct points
βi. Then, the g which maps αi to βi is clearly in Gα1 . Since α2, . . . , αk
and β2, . . . , βk were chosen arbitrarily, this shows that Gα1 is (k − 1)-
transitive. Clearly, if G is k-transitive then it is 1-transitive.

Conversely, let Gα be (k − 1)-transitive and G be transitive. Pick
α1, . . . , αk and β1, . . . , βk be two sets of distinct points. Since G is
transitive, there exists g ∈ G such that α1g = β1. Note that, since the
αi are distinct, αig 6= α1g for all i 6= 1. Now, pick h ∈ Gα1g = Gβ1 which
maps α2g, . . . , αkg to β2, . . . , βk. Then, gh is the required element.

2. (a) Let α1, . . . , αn be n distinct points of {1, . . . , n}. Similarly, β1, . . . , βn.
Then the maps from one to the other is a bijection on {1, . . . , n},
hence, by the definition of Sn, the map is contained in Sn.

(b) We use question 1 and induction. If n ≥ 3, then An contains all 3-
cycles, so it is clearly transitive. Note that A3

∼= C3 which is only
1-transitive - this is our base case. Assume that Ak is (k − 2)-
transitive. However, Ak+1 is transitive on k + 1 points and the
stabiliser of a point in Ak+1 is isomorphic to Ak, so this completes
the inductive step.

3. Let G be 2-transitive. By Question 1, Gα is transitive on Ω − {α}.
However, Gα must stabilise setwise the block which α is contained in.
So, the only block structure can be into singletons and hence G is
primitive.

4. (a) 0 7→ c/d, so c = 0 and ∞ 7→ a/b, so b = 0. Then, z 6= 0,∞ maps
to az/d, Hence d = a and the kernel is indeed scalar matrices.

(b) You could try to argue directly that the group is 3-transitive by
picking two arbitrary triples, however this can be quite messy.
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Instead, we do the following. Either argue that the group is tran-
sitive directly, or use the orbit-stabiliser theorem as follows. The
stabiliser of∞ in GL2(q) has b = 0 and so is the group of all lower

triangular matrices

(
a 0
c d

)
. Since this has order q(q−1)2, it is in-

dex q+1 in GL2(q). By the Orbit-Stabiliser theorem, GL2(q) acts
transitively. Since scalar matrices are in the kernel of the action,
PGL2(q) acts transitively. To show that PGL2(q) is 2-transitive,
again either argue directly that the stabiliser is transitive on Fq,
or use the orbit-stabiliser theorem. The stabiliser of 0 in G∞ is
all diagonal matrices and these have index q in the lower triangu-
lar matrices. Hence, as before G∞ is transitive on Fq. However,
z 7→ az/d is transitive on F×q . So, PGL2(q) is 3-transitive. By the
Orbit-Stabiliser theorem, a sharply 3-transitive group has order
(q+ 1)q(q− 1) = |PGL2(q)|. So, PGL2(q) is sharply 3-transitive.

(c) A sharply 3-transitive group on q + 1 points is the smallest 3-
transitive group and has order (q + 1)q(q − 1). So, PSL2(q) ≤
PGL2(q) is 3-transitive if and only if PSL2(q) = PGL2(q). The
argument in part (b) holds for PSL2(q) up until the argument
with z 7→ az/d. Now d = a−1 and hence we get z 7→ a2z. Now,
the multiplicative group of the field is cyclic of order q−1. Hence,
if q = 2a is a power of 2, then every element can be written as a
square and so PSL2(2a) is transitive. However, if q is not a power
of 2, then the squares form a proper subgroup of the multiplicative
group of the field. So, in general PSL2(q) is only 2-transitive.

5. (a) Translations by a vector are clearly transitive on V . The stabiliser
of the 0 vector is a subgroup G0 isomorphic to GL(V ) which is
transitive on the remaining vectors. So, AGL(V ) is 2-transitive.

(b) If q = 2, then no two vectors are linear multiples of each other.
So, any two vectors generate a 2-dimensional subspace U of V
and since G0 = GL(V ) permutes the set of bases of V , G0 is 2-
transitive and AGLn(F ) is 3-transitive. NB it is not more than
this as the third vector in the subspace U is now fixed.

If w = αv for some α ∈ F − {0, 1}, then G(0,v) must also fix w, so
G cannot be 3-transitive unless q = 2.

(c) If AGLn(q) is 4-transitive then q = 2. Pick 0, v, w ∈ V . The
G(0,v,w) must fix v + w, so G can only be 4-transitive if this is
the only other vector in V . Hence n = 2. So AGL2(2) is sharply
4-transitive on 4 vectors. Hence, it is isomorphic to S4.
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6. (a) Since S is generate by a p-cycle it fixes the 2 points outside of that
p-cycle. Conversely, since G is sharply 4-transitive, the stabiliser
of two points has order p(p − 1) and hence contains a unique
subgroup of order p which must be generated by a p-cycle. So,
such subgroups S are in bijection with subsets of two points in Ω.
The number of ways of picking 2 points unordered from p+2 points
is (p+2)(p+1)/2. So the number of such S is (p+2)(p+1)/2. Since
G is sharply 4-transitive, the order of G is (p+ 2)(p+ 1)p(p− 1).
So, using the Orbit-Stabiliser theorem and that G is transitive on
such S, we see that the stabiliser of S has order 2p(p − 1). The
stabiliser under conjugation action is NG(S).

(b) Wlog assume that S fixes p + 1 and p + 2. Then, G(p+1,p+2) is a
subgroup of order p(p−1) which contains S as a normal subgroup.
Hence, this two point stabiliser is in NG(S).

(c) The subgroup S is generated by some p-cycle s. It is a cyclic
group of order p; pick a generator s ∈ S. Now, NG(S) acts on
S by conjugation, so it maps s to some power sn. There are
exactly p − 1 choices for n. However, when written as a cycle,
sn = (1 a2 . . . ap). The power of s is completely determined by the
p − 1 choices for where 1 is mapped. That is, n is in bijection
with the set {2, . . . , p}. But, G(1,p+1,p+2) ≤ G(p+1,p+2) is transitive
on {2, . . . , p} and hence on the non-identity elements of S. So,
CG(S), which is the kernel of the conjugation action of NG(S)
on non-trivial elements of S, has order 2p. Hence, it contains an
element g of order 2. Since it is in the kernel, g must fix all of
{1, . . . , p}. So it can only be the transposition (12).

(d) By the theorem in class, G is primitive and contains a transpo-
sition, hence it G ∼= Sn. But, Sn is only sharply 4-transitive if
n = 4, or 5. Therefore, there are no sharply 4-transitive groups of
degree 7, or 9.

7. Note that Gg
(Σ) = G(Σg). So, 1 is equivalent to 2. An element 1 6=

g ∈ G(Σ) if and only if g fixes pointwise all of Σ. That is, its support
is disjoint from Σ. Hence, Σ is not a base if and only if we have the
converse of 4. That gives 1 iff 4. Assume 3, then if g ∈ G(Σ), then
αg = α = α1, for all g ∈ G. Hence, by 3, g = 1 and Σ is a base.
Finally, suppose that Σ is a base, then if αg = αh for all α ∈ Σ, then
gh−1 ∈ G(Σ). Hence, g = h and we have property 3.

8. Clearly one requires at least n vectors since one needs n vectors to define
a basis for V . Pick n linearly independent vectors e1, . . . , en. Let t be
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the translation by e1 + · · · + en. It takes e1, . . . , en to another basis
f1, . . . , fn, where fi = ei + e1 + · · · + en. So, there exists g ∈ GL(V )
which takes f1, . . . , fn to e1, . . . , en. Now, tg is an element in G(Σ).
However, tg maps −(e1 + · · · + en) to 0, hence it is non-trivial. If we
add 0 to e1, . . . , en then this suffices and is of size n+ 1.

9. Pick α ∈ supp(g). Since G is primitive, Gα is maximal in G. Now, g 6∈
Gα, hence G = 〈g,Gα〉. (Since all the point stabilisers are conjugate,
then all have the same number of orbits on Ω, so we may choose one.)

Now, g has exactly s orbits of length more than one and all other orbits
are singletons. But, G = 〈g,Gα〉 is transitive, hence the orbits of Gα

must overlap with those of g in such a way that one can get from any
point to any other. We argue by assigning the orbits of Gα.

Those points in a singleton orbit of g must be in an orbit of Gα which
intersects with one of the s non-trivial orbits, otherwise G is not transi-
tive. Let S be the set of points in the non-trivial orbits of g. Hence, the
every orbit of Gα must intersect S. Now, G is transitive on S, hence
there must be enough non-trivial orbits of Gα to join up the s orbits of
g. The minimal number of points required to do this is s, one for each
orbit. That leaves at most m− s points which we may assume are all
in their own orbit (or connected with some singleton). However, that
is at most m− s+ 1 orbits.

Consider C2 oC2 which acts transitively but imprimitively on 4 points.
Then, g = (12)(34) has support of size m = 4 with s = 2. However,
the stabiliser of a point has 4 orbits but 4− 2 + 1 = 3.
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