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Abstract. We introduce a model for random groups in varieties of n-periodic

groups as n-periodic quotients of triangular random groups. We show that for

an explicit dcrit ∈ (1/3, 1/2), for densities d ∈ (1/3, dcrit) and for n large
enough, the model produces infinite n-periodic groups. As an application,

we obtain, for every fixed large enough n, for every p ∈ (1,∞) an infinite

n-periodic group with fixed points for all isometric actions on Lp-spaces. Our
main contribution is to show that certain random triangular groups are uni-

formly acylindrically hyperbolic.

1. Introduction

From the viewpoint of combinatorial group theory, random groups are a natu-
ral object to study: what are the typical properties of quotients of free groups by
normal subgroups generated by randomly chosen elements? The study of such ques-
tions took off in the late 1980s, beginning with pioneering work of Gromov [Gro87,
Gro93, Gro00, Gro03], and vastly developed since by Arzhantseva, Champetier,
Ol’shanskii, Ollivier and many others; for a survey see Ollivier [Oll05].

It is natural to consider different families of random groups by replacing the free
(non-abelian) groups by some other groups. Using a free abelian group leads to
random abelian groups, studied by Dunfield–Thurston [DT06] and others; using a
free nilpotent group leads to random nilpotent groups studied by Cordes–Duchin–
Duong–Ho–Sánchez [CDD+18].

In this paper we introduce a model for random Burnside groups, by taking
suitable quotients of free Burnside groups. Recall that the free Burnside group
B(m,n) of rank m and exponent n is given by B(m,n) ∼= Fm/F

n
m, where Fm is

the free group of rank m and, for a group G, we let Gn := 〈gn : g ∈ G〉 ≤ G,
i.e. the verbal subgroup corresponding to wn. Free Burnside groups themselves
are mysterious: finite for n = 2, 3, 4, 6 [Bur02, San40, Hal58] but, by major work
of Novikov, Adian, Ivanov, and Lysenok known to be infinite for large n [NA68a,
NA68b, NA68c, Iva94, Lys96].

We define a triangular model for quotients of free Burnside groups as an extension
of the usual triangular model for random groups, which are defined using a ‘density’
parameter d ∈ (0, 1) determining how many random relations of length 3 are chosen.
Our goal is to show that for a suitable range of d, typical random triangular Burnside
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groups are both infinite and not free Burnside groups. In order to do so, we show
the independently interesting result that random triangular groups are uniformly
acylindrically hyperbolic, as we discuss further below.

Formally, a generating set S of a group G is an epimorphism F (S)→ G, where
F (S) is the free group on S.

Definition 1.1. Let G := (Gm) be a sequence of groups with generating sets Sm
of size m. Let d ∈ (0, 1) be chosen, called the density. Let P be a property of a
group. For each m ∈ N, consider the probability distribution on the set of all tuples
R of elements of F (Sm) found by choosing b(2m− 1)3dc cyclically reduced words of
length 3 uniformly and independently at random. We say that a random triangular
quotient of G at density d has property P asymptotically almost surely (a.a.s.) if
the probability that the quotient of Gm by R has P goes to 1 as m→∞.

We call a random triangular quotient of the sequence of free groups of rank m
with canonical generating sets a random triangular group. Given n > 0, we call a
random triangular quotient of the sequence of free Burnside groups of rank m and
exponent n with canonical generating sets a random triangular n-periodic group.

Some references instead choose R as a random tuple of b(2m − 1)3dc distinct
words; this variation leads to equivalent models at densities d < 1

2 [Oll05, I.2.c].
Our main result is the following:

Theorem 1.2. For each d0 <
11
12 −

√
41
12 ≈ 0.38307 there exists n0 so that for each

n ≥ n0 and for each 0 < d ≤ d0, a random triangular n-periodic group G at density
d is infinite.

At densities d < 1
3 , random triangular groups are free (see [A LŚ15, Theorem

1] and discussion), thus random triangular n-periodic groups at such densities are
just free Burnside groups (of a lower rank), so Theorem 1.2 is only interesting at
densities ≥ 1

3 .

At densities > 1
3 , random triangular groups have interesting fixed point proper-

ties: they have Kazhdan’s property (T) a.a.s. [Żuk03, KK13], and indeed for each
p ∈ (1,∞) they have property FLp, that is any affine isometric action of the group
on an Lp-space has a global fixed point [DM19]; see these references for further
details. While these fixed-point properties are trivial for finite groups, they are
highly interesting for infinite groups. Clearly, whenever a random triangular group
at density d has P a.a.s. and P is inherited by quotients, then a random triangular
n-periodic group at density d also has P. We deduce, for example:

Corollary 1.3. At densities d with 1
3 < d < 11

12−
√
41
12 ≈ 0.38307, for n large enough,

a random triangular n-periodic group at density d is infinite and has Kazhdan’s
property (T) a.a.s., and for each fixed p0 ∈ (1,∞), a random triangular n-periodic
group at density d is infinite and has property FLp for all p ∈ (1, p0] a.a.s.

In view of the recent result that, if n is large enough and not a prime, then free
Burnside groups of exponent n and rank at least 2 do not have property (T) [Osa18],
this implies that for large enough composite n a random triangular n-periodic group
at these densities is not isomorphic to a free Burnside group a.a.s.

The key tool for proving Theorem 1.2 is the following result. It says that a group
acting non-elementarily, purely loxodromically, and acylindrically on a δ-hyperbolic
space admits an infinite n-periodic quotient, so long as n is large enough, where
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“large enough” only depends on δ and the acylindricity constants of the action. An
action is purely loxodromic if every non-trivial group element acts as a loxodromic.

Theorem 1.4 ([CG17, Proposition 4.1] and [Cou18, Theorem 5.7]). Suppose that
a group G acts purely loxodromically and acylindrically on a δ-hyperbolic space X
with constants L and N , i.e. for any x, y ∈ X with d(x, y) ≥ L we have for

Gx,y,800δ := {g ∈ G : d(gx, x) ≤ 800δ, d(gy, y) ≤ 800δ}

that |Gx,y,800δ| ≤ N . Then there exists n0 = n0(δ, L,N) so for any n ≥ n0 the
group G/Gn is infinite.

In the case that n has a large enough odd divisor, the above theorem is based on
[Cou16, Theorem 6.15], and our statement is a slight simplification of the statement
given in [CG17] that will be sufficient for our purposes. In the case n is divided
by a large enough power of 2, it follows from [Cou18, Theorem 5.7]. We state the
result for 800δ instead of 100δ as in [CG17], as [CG17] and [Cou18] use the 4-point
definition of hyperbolicity, while we use the slim-triangles definition, which incurs
a conversion factor of 8 [CDP90, Chapitre 1, Proposition 3.6]. The geometric ideas
behind behind Theorem 1.4 were introduced by Delzant and Gromov [DG08]; for
a fuller history we refer to the discussion in [Cou18].

In our proof, we shall use the action of a triangular random group G on its
Cayley graph X to show that a triangular random n-periodic group, which can be
realized as G/Gn, is infinite. For suitable densities d, X is δ-hyperbolic, where δ
only depends on d, i.e. is independent of the rank m. In order to apply Theorem 1.4,
it remains to also bound L and N independently of m. The key challenge in this
is to bound N independent of the volume of balls in G, because as m → ∞ this
will not be controlled. The main idea of the proof is to use strong isoperimetric
inequalities for random groups to show that, with at most uniformly boundedly
many exceptions, geodesics [x, y] and [gx, gy] = g[x, y] have to collide within a
uniformly bounded distance of x.

In the following we show that a triangular random group at density d0 <
11
12 −

√
41
12 ≈ 0.38307 acts acylindrically on its δ-hyperbolic Cayley graph, with

acylindricity constants only depending on d0.

Theorem 1.5. Let d0 <
11
12−

√
41
12 ≈ 0.38307. Then there exist δ = δ(d0), L = L(d0)

and N = N(d0) such that for any d ≤ d0, for a random triangular group G at
density d a.a.s. the Cayley graph X is δ-hyperbolic, and for every x, y ∈ X with
d(x, y) ≥ L we have |Gx,y,800δ| ≤ N .

The claim on δ-hyperbolicity of X is well-known, see Theorem 2.1, and stated
here to emphasise the dependence on d0. Furthermore, a.a.s. G is infinite, torsion-
free, and not isomorphic to Z by [Oll05, V.d.], whence the action on X is non-
elementary and purely loxodromic, and we can deduce Theorem 1.2 from Theo-
rem 1.5 using Theorem 1.4. In the remainder of the paper, we will prove Theo-
rem 1.5.

The bound d0 <
11
12 −

√
41
12 ≈ 0.38307 results from our current methods, which

use that for d not too much larger than 1
3 , van Kampen diagrams bounded by

two geodesics have particularly nice forms. There is no obvious reason why more
elaborate arguments could not work at higher densities, so we ask:
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Question 1.6. For each d0 <
1
2 , does there exist n0 so that for each n ≥ n0 and for

each 0 < d ≤ d0, a random triangular n-periodic group G at density d is infinite?

Remark 1.7. In the first version of this paper, we only considered odd exponents
n. This case is covered by [CG17, Proposition 4.1]. Since then, [Cou18, Theorem
5.7] appeared, which together with [CG17, Proposition 4.1] covers the case of even
exponents n. Therefore, Theorem 1.4 holds without restrictions on the parity of n,
whence so does Theorem 1.2.

Acknowledgements. We thank Rémi Coulon and an anonymous referee for help-
ful correspondence.

2. Isoperimetric inequalities

Ollivier established an isoperimetric inequality for random groups that is a key
tool in our argument, see Theorem 2.1 below. We are going to need a version of
this inequality which applies to not-necessarily-planar 2–complexes, which are not
necessarily reduced. (For a different generalisation to non-planar diagrams, see
Odrzygóźdź [Odr14, Theorem 1.5].)

Let us recall the language of combinatorial complexes and van Kampen dia-
grams [BH99, I.8A], [MW02]. A map Y → K between CW-complexes is com-
binatorial if it maps each open cell of Y homeomorphically onto an open cell of
X; a CW-complex is combinatorial if for suitable subdivisions the attaching maps
of cells are all combinatorial. We shall use the expressions “1–cell” and “edge”
interchangeably.

Since our random model constructs presentations by independently sampling
random words, it will be convenient to think of tuples of relators, rather than
sets of relators. To that end, throughout the rest of the paper, consider a group
presentation as a pair 〈S | R〉 where R is a tuple of elements of F (S). As usual, this
defines the group F (S)/N , where N is the normal closure of the set of elements of
R.

Having fixed a group presentation 〈S | R〉 for G, we let K = K(G;S,R) be the
standard combinatorial 2–complex for this presentation, with one 0–cell, a 1–cell
for each generator, and a 2–cell for each relation. A van Kampen diagram D is a
non-empty, contractible, finite combinatorial 2–complex D embedded in the plane
together with a combinatorial map D → K. (The data of the map D → K is
equivalently given by a labelling of 1–cells by generators so that the attaching map
of each 2–cells is labelled by a relation and, in the case there are multiple 2–cells
with the same boundary cycles, choices among these 2–cells.) Let K be the complex
obtained from K by identifying 2–cells with the same boundary cycles. The van
Kampen diagram D is reduced if the composition D → K → K is an immersion
around open 1–cells.

Let Y be a combinatorial 2–complex, and denote by Y (i) the set of i–cells of Y .
Let |Y | = |Y (2)| be the number of 2–cells of Y . In a slight variation of [MP15], the
cancellation of Y is defined as

Cancel(Y ) =
∑
e∈Y (1)

(deg(e)− 1)+,

where deg(e) is the number of times e appears as the image of an edge of the
attaching map of a 2–cell of Y , and (·)+ = max{·, 0}. If D is a van Kampen



RANDOM TRIANGULAR BURNSIDE GROUPS 5

diagram, then Cancel(D) is the number of internal edges of D, and so Ollivier’s
isoperimetric inequality can be phrased as:

Theorem 2.1 ([Oll07, Theorem 2, Corollary 3], [MP15, Theorem 2.2]). For 0 <
d < 1

2 and any ε > 0 a.a.s. every reduced van Kampen diagram D in a random
triangular group G at density d satisfies

Cancel(D) ≤ (d+ ε)|D|3.
Equivalently, every such D has |∂D| ≥ 3(1− 2d− 2ε)|D|, where |∂D| is the number
of boundary edges.

Consequently, the Cayley graph of G is δ-hyperbolic with δ ≤ 12/(1− 2d).

Remark 2.2. Ollivier’s original statement was for the Gromov density model where
the lengths of relations grow, but the proof works essentially verbatim in the trian-
gular model too, compare also [A LŚ15, Lemma 7].

We now describe a generalisation of van Kampen diagrams suitable for our pur-
poses. For a random triangular presentation at densities d < 1/2 a.a.s. the relators
are all distinct even after taking cyclic conjugates or inverses, and there are no
proper powers; however, to avoid conditioning on this event later, the following
definition allows for such occurances.

Definition 2.3. Suppose G = 〈S | R〉 is a group presentation, where R is a
tuple of relators R = (ri)i∈I , and K = K(G S,R). A labelled 2–complex Y is a
combinatorial 2–complex Y with a combinatorial map Y → K.

This map Y → K encodes a lot of combinatorial data which we describe with
the following notation.

Notation 2.4. Suppose we are in the situation of Definition 2.3. Let π : K(2) → I
be the map identifying each f ∈ K(2) with the corresponding index i ∈ I such that
each f has a boundary path with label rπ(f) (i.e. each 2–cell remembers its position
in R).

For each 2-cell f ∈ Y (2), let ∂f be the choice of boundary path (expressed as a
tuple of oriented 1–cells) such that, if π(f) = i, then the path ∂f bears the word ri.
Here we also denote by π the map Y (2) → K(2) → I, and we consider edges of Y
with the orientations and labels by S inherited from K.

We also need a way to measure how (un)reduced a labelled 2–complex is.

Definition 2.5. Suppose Y is a labelled 2–complex. Suppose we have e ∈ Y (1)

and f ∈ Y (2) with boundary ∂f labelled e1, e2, . . . , en, and that f contains e, i.e.
some ek is an oriented version of e. We say the least position of e in f is the least
positive natural number k such that ek is an oriented version of e.

Given e ∈ Y (1) and f ∈ Y (2) we set ξ(e, f) = 1 if f contains e and, for any
2–cell f ′ with π(f ′) = π(f) that contains e, the least position of e in f is less than
or equal to the least position of e in f ′. Otherwise, set ξ(e, f) = 0. Let

Red(Y ) =
∑
e∈Y (1)

∑
i∈I

( ∑
f∈Y (2),π(f)=i

ξ(e, f)− 1
)
+
.

For example, if an edge e has six 2–cells with label i ∈ I attached to it, and
in four of these 2–cells it is attached as the second edge and in two it is the third
edge, then e and i give a contribution of 4−1 = 3 to Red(Y ). This number Red(Y )
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is relevant in our probabilistic arguments later which require estimates on how a
relator interacts with itself in a diagram.

Note too that any van Kampen diagram D over 〈S | R〉 gives rise to a labelled
2–complex. In the case R contains proper powers and/or multiple copies of words
that are cyclically conjugate or cyclically conjugate up to inversion, this involves
choices. However, if D is reduced then, for any choice, we have Red(D) = 0, because
for each 1–cell e there exists at most two 2–cells containing e, and not both can
bear the same relator and have e at the same position.

As mentioned before, for a random triangular presentation at densities d < 1/2
a.a.s. R does not contain proper powers and all words in R are distinct even after
taking cyclic conjugates or inverses. In this case, a van Kampen diagram D is
reduced if and only if Red(D) = 0. The definition of Red(D) above allows us to
state and prove results avoiding conditioning on R satisfying this property.

We now generalise Ollivier’s Theorem 2.1.

Theorem 2.6. For any 0 < d < 1
2 , M ∈ N, ε > 0, a.a.s. in a random triangular

group G at density d every labelled 2–complex Y with at most M 2–cells satisfies

Cancel(Y )− Red(Y ) ≤ (d+ ε)|Y |3.

In order to prove this theorem, we adapt the language of [Oll05, Section V.b.].

Definition 2.7 (cf. [Oll05, Definition 57]). An abstract labelled 2–complex is a
combinatorial 2–complex Y together with

(1) a choice of n ∈ {1, . . . , |Y |} called the number of distinct relators in Y ,
(2) a surjective assignment π : Y (2) → {1, . . . , n}, and
(3) for each f ∈ Y (2) a choice of boundary path ∂f (i.e. an expression as a

tuple of oriented 1–cells).

Given e ∈ Y (1) and f ∈ Y (2), define ξ(e, f) = 1 as in Definition 2.3 and, subse-
quently, define Red(Y ) as in Definition 2.3.

Let Y be an abstract labelled 2–complex with n distinct relators as above. Let
k ≤ n and consider a k-tuple (w1, w2, . . . , wk) of words. For each j ∈ {1, 2, . . . , k}
assume that the lengths of the boundary paths of 2–cells f ∈ π−1(j) are all equal
to |wj |. For each j ∈ {1, 2, . . . , k}, f ∈ π−1(j) and i ∈ {1, 2, . . . , |wj |}, assign the
i–th letter of wj to the unique oriented edge e appearing as the i–th edge in ∂f .
This produces, for each oriented edge, a (possibly empty) set of assigned letters in
S∪S−1. We call this assignment the partial labelling of Y by (w1, w2, . . . , wk). We
say the partial labelling is consistent if, for every edge e, the set of assigned letters
has at most one element and if both e and its reversed edge e−1 have non-empty
sets of assigned letters {s} and {t}, respectively, then s = t−1.

We think of the above process as writing the words (w1, w2, . . . , wk) on the
boundaries of their corresponding 2–cells. If this can be done without ambiguity,
the process is consistent.

Definition 2.8. Fix a (random group) presentation 〈S | R〉. Let Y be an abstract
labelled 2–complex with n ≤ |Y | distinct relators. A k-tuple of words (w1, . . . , wk)
in R, k ≤ n (partially) fulfills Y if the partial labelling of Y by (w1, w2, . . . , wk) is
consistent.

Note that the words w1, . . . , wn need not be pairwise distinct.
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Let R = (ri)i∈I and K be as given in Definition 2.3. For n ∈ N, an injective
n–sub-tuple of R is an n-tuple (w1, . . . , wn) of elements of R together with an
injective indexing map ι : {1, . . . , n} → I such that wk = rι(k) for each k. Suppose
that Y is fulfilled by an injective n–sub-tuple (w1, . . . , wn) of R. After possibly
choosing arbitrary images for edges not contained in any 2–cells, this data gives us
a combinatorial map Y → K as in Definition 2.3. Observe from the definitions that,
as ι is injective, we get the same value for Red(Y ) on considering Y as an abstract
labelled 2–complex or as the labelled 2–complex resulting from this fulfillment.

Proof of Theorem 2.6. We follow the proof in [Oll05, Section V.b.], with minor
changes. The key step is the following:

Lemma 2.9. Assume Y is an abstract labelled 2–complex such that Cancel(Y ) −
Red(Y ) > (d+ ε)|Y |3 and |Y | ≤M . Then the probability that for an b(2m−1)3dc–
tuple of random triangular relators there exists an injective n–sub-tuple of relators
fulfilling Y (where n ≤ |Y | is the number of distinct relators in Y ) goes to 0 as
m→∞.

An induction argument shows that it is sufficient to consider the case every cell
of Y is contained in a 2–cell. Due to the restriction that |Y | ≤ M , there are only
finitely many such abstract complexes to consider, whence the above shows that
the probability that at least one of these complexes admits an n–tuple of relators
fulfilling it goes to 0.

The theorem then follows. Indeed, let K be the complex associated to a random
triangular presentation 〈S | R〉 as in Definition 2.3. If Y → K is a labelled 2–
complex with n different 2–cells in the image of Y , then Y is also the fulfilment
of an abstract labelled 2–complex by an injective n–sub-tuple (w1, . . . , wn) of R.
Hence, as the probability of there existing a labelled 2–complex Y with Cancel(Y )−
Red(Y ) > (d + ε)|Y |3 and |Y | ≤ m is bounded above by the probability of there
existing an abstract labelled 2–complex as in the claim above, and that probability
goes to 0 as m→∞, the theorem follows. �

It remains to prove Lemma 2.9.

Proof of Lemma 2.9. In the abstract labelled 2–complex Y , let m1, . . . ,mn be the
number of 2–cells labelled by each of 1, . . . , n; without loss of generality, we may
assume thatm1 ≥ m2 ≥ · · · ≥ mn ≥ 1, since Red(Y ) is invariant under permutation
of labels. Given an edge e and a 2–cell f , we set χ(e, f) = 1 if f contains e and the
label of f is minimal among all those 2–cells containing e, and χ(e, f) = 0 otherwise.
Given an edge e, denote by ie the minimum of all labels of 2–cells containing e;
recall that all edges are contained in a 2–cell.

Given a 2–cell f , let

δ(f) = |f | −
∑
e∈Y (1)

χ(e, f)ξ(e, f),

where |f | is the edge-length of the boundary path of f 1. If we follow the process
of choosing our random relators letter-by-letter starting from the first relator in
such a way that the labelling of Y is consistent, then δ(f) is the number of edges
(counted with multiplicity) in the boundary path of f whose labels are forced by

1While this edge-length is always 3 in this paper, we use this notation to clarify the role of
this quantity in the proof.
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earlier labellings in the process. Observe here that an edge e that is visited more
than once by the boundary path of f can only be in minimal position once in that
boundary path, i.e. we do not need to worry about its multiplicity in the sum. We
have (noting that a sum with empty index set is 0):

Red(Y ) +
∑

f∈Y (2)

δ(f)

=
∑

f∈Y (2)

|f |+
∑
e∈Y (1)

( n∑
i=1

( ∑
f∈Y (2),π(f)=i

ξ(e, f)− 1
)
+
−
∑

f∈Y (2)

χ(e, f)ξ(e, f)
)

=
∑
e∈Y (1)

deg(e) +
∑
e∈Y (1)

( n∑
i=1

( ∑
f∈Y (2),π(f)=i

ξ(e, f)− 1
)
+
−

∑
f∈Y (2),π(f)=ie

ξ(e, f)
)

≥
∑
e∈Y (1)

(
deg(e) +

( ∑
f∈Y (2),π(f)=ie

ξ(e, f)− 1
)
+
−

∑
f∈Y (2),π(f)=ie

ξ(e, f)
)

≥
∑
e∈Y (1)

(deg(e)− 1)+ = Cancel(Y ).

Thus if δi is the maximal value of δ(f) among all 2–cells f labelled by i,

3|Y |+ 2(Red(Y )− Cancel(Y )) ≥ 3|Y | − 2
∑

f∈Y (2)

δ(f) ≥ 3|Y | − 2
∑

1≤i≤n

miδi

(compare [Oll05, V.b.(2)]).
For 1 ≤ i ≤ n, let pi be the probability that random cyclically reduced words

(w1, . . . , wi) partially fulfil Y (and p0 = 1). Then

Lemma 2.10 (cf. [Oll05, Lemma 59]). We have pi/pi−1 ≤ (2m− 1)−δi .

Proof. (This is a slight variation on Ollivier, as for clarity we keep track of error
estimates caused by counting cyclically reduced words.)

Cyclically reduced words of length three either start with a repeated symbol or
not, and so the total number of these is 2m · 1 · (2m− 1) + 2m(2m− 2)(2m− 2) =
(2m− 1)3 + 1.

If δi > 0, then the total number of choices of wi allowed is ≤ (2m− 1)3−δi , thus
the probability of success is ≤ (2m− 1)3−δi/((2m− 1)3 + 1) ≤ (2m− 1)−δi . �

Following Ollivier, we find that the probability that a b(2m − 1)3dc–tuple R of
random triangular relations contains an injective n–sub-tuple that fulfils Y satisfies

≤ exp

(
log(2m− 1) · 1

2

(
3|Y |+ 2(Red(Y )− Cancel(Y ))

|Y |
− 3(1− 2d)

))
,

which by our assumption on Y is < exp (log(2m− 1) · −3ε), which goes to 0 as
m→∞, whence the result follows. �

3. Colliding geodesics

We show that geodesics tend to collide in a random triangular group at reason-
ably low densities. Our key proposition is the following.
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a

b b b

a

a a

Figure 1. Parallel geodesics

Proposition 3.1. Let d0 ∈ (0, 1112 −
√
41
12 ≈ 0.38307). Then there exist δ, L, k

depending on d0 so that for d ≤ d0, a random triangular group presentation G
at density d with Cayley graph X has a.a.s. that X is δ-hyperbolic, and for every
x, y ∈ X with d(x, y) ≥ L, for every geodesic γ from x to y, there exist at most
k elements g1, . . . , gl of Gx,y,800δ such that for every 1 ≤ i < j ≤ l we have giγ ∩
gjγ ∩B(x, L+ 800δ) = ∅.

Remark 3.2. Note that we allow gi = 1G. The proposition implies that while k
parallel geodesics may be possible, any additional geodesic would have to collide into
one of the first k. Indeed, at densities d > 1

3 we likely have a relation of the form

ab2, and so γ = (ai), b−1γ are parallel, i.e. k ≥ 2, see Figure 1.

Proof of Theorem 1.5. Fix d0, d ≤ d0, δ = δ(d0), k = k(d0), and L = L(d0) from
Proposition 3.1. Suppose x, y ∈ X are given with d(x, y) ≥ L. Let γ : [0, d(x, y)]→
X be any geodesic from x to y, and let {g1, g2, . . . , gl} be a maximal subset of
Gx,y,800δ such that for every 1 ≤ i < j ≤ l we have giγ ∩ gjγ ∩B(x, L+ 800δ) = ∅.
Then, by Proposition 3.1, we have l ≤ k. Given any h ∈ Gx,y,800δ, by maximality
of {g1, g2, . . . , gl} we have for some 1 ≤ i ≤ l that giγ ∩ hγ ∩ B(x, L + 800δ) is
non-empty. Thus there exists t, t′ ≤ L + 2 · 800δ so that giγ(t) = hγ(t′), hence by
the freeness of G acting on X we must have h = giγ(t)γ(t′)−1. Thus there are at
most N = k(L+ 2 · 800δ)2 possibilities for h. �

Proof of Proposition 3.1. Let d0 <
11
12 −

√
41
12 , d ≤ d0, and d′ := (d0 + 11

12 −
√
41
12 )/2.

Notice that d′ = d + ε for some ε > 0, and d′ < 11
12 −

√
41
12 . Set δ := 12/(1 − 2d0).

Let k, L,M be (large) integers to be determined that will depend only on d0, with
k ≥ 1 and L ≥ 4 · 800δ + 4δ + 2.

Since the conclusions of Theorem 2.1 and Theorem 2.6 (for our fixed values of
d, ε, and M) hold a.a.s. in a triangular random group, we from now on assume we
have a group G given by a triangular presentation for which these conclusions hold.
The claim on δ-hyperbolicity is immediate from Theorem 2.1.

Suppose we are given x, y ∈ X with d(x, y) ≥ L. Fix γ a geodesic joining x to
y. Recall that Gx,y,800δ = {g ∈ G : d(x, gx) ≤ 800δ, d(y, gy) ≤ 800δ}.
Notation for and dependencies of constants. In the following, for i ∈ N each
Ci denotes an appropriate constant Ci = Ci(λ1, . . . ) ∈ R depending only on λ1, . . .
and chosen appropriately to make the inequalities work. Observe here that δ and d′

are functions of d0, whence in the following we will be able to write Ci(d0) instead
of Ci(δ), respectively Ci(d

′).
At the end of the proof, we will be able to express k as a function of d0 and L as

a function of d0 and k, thus making all constants we produce from d0, k, L depend
only on d0.
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A diagram D from two non-colliding geodesics. Suppose g1, g2 ∈ Gx,y,800δ
are such that g1γ ∩ g2γ ∩ B(x, L + 800δ) = ∅. Consider a geodesic joining g1x
to g2x, and take a subpath α1 meeting g1γ and g2γ exactly once each. The first
vertex in g1γ at distance at least L − 2 · 800δ − 2δ − 1 from g1x is at distance at
most 2δ from some vertex in g2γ by hyperbolicity and the choice of L; consider
a geodesic between these two vertices and choose a subpath α2 meeting each g1γ
and g2γ in exactly one point. Together, α1, α2 and the appropriate subpaths of
g1γ, g2γ make an embedded loop in X contained in B(x, L + 800δ). The α1, α2

sides have lengths totalling ≤ 2 · 800δ + 2δ and the sides in g1γ, g2γ have lengths
∈ [L− 4 · 800δ − 4δ − 1, L], moreover, they contain identically labelled subpaths of
length ≥ L− 4 · 800δ − 4δ − 1.

Let D be a minimal area van Kampen diagram for this loop, necessarily home-
omorphic to a disc.

Three types of edges in ∂D. Since g1γ, g2γ are disjoint geodesics and the
presentation is triangular, we can partition the edges in ∂D into three categories:

0. it comes from α1 or α2;
1. it comes from g1γ or g2γ, and the remaining vertex in the 2–cell containing

it is not in g1γ ∪ g2γ;
2. it comes from g1γ or g2γ, and the remaining vertex in the 2–cell containing

it is in g1γ ∪ g2γ.

Notice that in case 2, if the edge e is in g1γ, then the remaining vertex must be
in g2γ because γ is geodesic, and vice versa if e is in g2γ. Let us write ∂D =
E0(D)tE1(D)tE2(D) for this partition; if D is clear, we write E0 = E0(D), and
so on. Thus |∂D| = |E0|+ |E1|+ |E2|. Note that |E0| ≤ 2 · 800δ + 2δ.

Lemma 3.3. There exists a constant A1(d0) depending only on d0 such that

|E1| ≤
4(3d′ − 1)

3(1− 2d′)
· 2L+A1(d0).

In other words, when d is only a little more than 1/3 and L ≥ (|E1|+ |E2|)/2 +
C1(d0) is large, the fraction |E1|/(|E1| + |E2|) is small. So most edges are in E2,
and the corresponding triangles meet the other side of D.

Proof. Let V be the number of vertices in D. Since γ is a geodesic, for each edge
in g1γ ∩ E1, the remaining vertex in the 2–cell containing it can correspond to at
most two such edges in g1γ ∩E1. Taking into account g2γ as well and the fact that
V − |E1| − |E2| is an upper bound for the number of vertices not in g1γ ∪ g2γ, we
obtain |E1| ≤ 4(V − |E1| − |E2|).

The total number of edges in D is 1
2 (3|D| + |∂D|), so by Euler’s formula V −

E + F = 1, we have V = 1 + 1
2 (3|D|+ |∂D|)− |D| = 1 + 1

2 (|D|+ |∂D|).
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This, along with Theorem 2.1, gives

|E1| ≤ 4 (V − (|E1|+ |E2|)) = 4

(
1 +

1

2
(|D|+ |E0| − (|E1|+ |E2|))

)
≤ 2|D| − 2(|E1|+ |E2|) + C2(d0)

≤ 2
|E1|+ |E2|
3(1− 2d′)

− 2(|E1|+ |E2|) + C3(d0) =
4(3d′ − 1)

3(1− 2d′)
(|E1|+ |E2|) + C3(d0)

≤ 4(3d′ − 1)

3(1− 2d′)
· 2L+ C4(d0)

We set A1(d0) := C4(d0). �

A complex Y from k+ 1 non-colliding geodesics. Now, in order to produce a
contradiction in the end, suppose we have k+1 elements {g1, . . . , gk+1} ⊂ Gx,y,800δ
so that the geodesics giγ are pairwise disjoint in B(x, L + 800δ). For each pair
(giγ, gjγ), i < j, we can do the construction above to find a reduced van Kampen
diagram Di,j . For each i there is a common subpath of the geodesic giγ of length
≥ L − 4 · 800δ − 4δ − 1 which appears in the boundary of each diagram Di,j for
j > i and Dj,i for j < i. We construct a labelled 2-complex Y → K from these(
k+1
2

)
diagrams by identifying, for each i, the paths corresponding to giγ in the

k diagrams containing such a path. (For the purpose of illustration, observe that
Y is homeomorphic to the product of a complete graph on k + 1 vertices with a
compact interval.) There exists an upper bound depending only on d0, k, L for the
number of 2–cells Y , and we choose M to be that bound. Therefore, we can apply
Theorem 2.6 to Y .

Lemma 3.4 (Lower bound for Red(Y )). There exists A2(d0, k) depending only on
d0 and k such that

Red(Y ) ≥ 3

2
(1− 2d′)

(
k + 1

2

)
2L+

(k + 1)(k − 2)

2
L+A2(d0, k),

Proof. To estimate Red(Y ) from below, by Theorem 2.6 is suffices to estimate
Cancel(Y ) from below. In each van Kampen diagram Di,j , 3|Di,j | = |∂Di,j | +
2 Cancel(Di,j) ≤ 2L + C5(d0) + 2 Cancel(Di,j). So the contribution to the sum in
Cancel(Y ) =

∑
e∈Y (1)(deg(e) − 1)+ coming from those e which are interior edges

of some Di,j ⊂ Y for some i < j is at least∑
i<j

(
3

2
|Di,j | − L−

C5(d0)

2

)
≥ 3

2
|Y | −

(
k + 1

2

)
L+ C6(d0, k).

Meanwhile, for each of the at least (k + 1)L + C7(d0, k) edges glued together to
make Y there is a contribution of k − 1 to the sum in Cancel(Y ). So in total,

Cancel(Y ) ≥ 3

2
|Y | −

(
k + 1

2

)
L+ (k + 1)(k − 1)L+ C8(d0, k)

=
3

2
|Y |+ (k + 1)(k − 2)

2
L+ C8(d0, k).

So by Theorem 2.6 we have

3

2
|Y |+ (k + 1)(k − 2)

2
L+ C8(d0, k) ≤ d′|Y |3 + Red(Y ),
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i.e.

Red(Y ) ≥ 3

2
(1− 2d′)|Y |+ (k + 1)(k − 2)

2
L+ C8(d0, k)

≥ 3

2
(1− 2d′)

(
k + 1

2

)
2L+

(k + 1)(k − 2)

2
L+ C9(d0, k),

where the second inequality follows from |Di,j | ≥ 2L + C10(d0) since each 2–cell
can meet at most one edge in the disjoint bounding geodesics. We set A2(d0, k) :=
C9(d0, k). �

Lemma 3.5 (Upper bound for Red(Y )). Let A1(d0) be as in Lemma 3.3. Then

Red(Y ) ≤
(
k + 1

2

)
4(3d′ − 1)

3(1− 2d′)
· 2L+

(
k + 1

2

)
A1(d0).

Proof. Recall Red(Y ) =
∑
e∈Y (1)

∑
i∈I

(∑
f∈Y (2),π(f)=i ξ(e, f)− 1

)
+

. Since each

Di,j ⊂ Y is a reduced van Kampen diagram, the summand corresponding to any
interior edge e of Di,j contributes 0 to Red(Y ). Thus all contributions to Red(Y )
come from edges in the k + 1 glued geodesics.

If for some e ∈ Y (1) and i ∈ I we have a summand 1 ≤ t = (
∑
f∈Y (2),π(f)=i ξ(e, f)−

1)+ in Red(Y ), then at least t of the ≥ t+1 2–cells with π(f) = i in which e occurs
in the same (minimal) position must have e belonging to E1 in their diagrams.
Otherwise, consider two of these 2–cells f2 and f3 which have e in E2 for their
diagrams, say for example f2 is in D1,2 and f3 is in D1,3, and e ∈ E2(D1,2),
e ∈ E2(D1,3), and ξ(e, f2) = ξ(e, f3) = 1. The 1-skeleton of the van Kampen
diagram D1,2 ∪g1γ D1,3 admits a well-defined map f to X, and has a possible re-
duction across e. If, for i = 2, 3, we denote by vi the vertices of fi not in e, then
f(v2) = f(v3), i.e. g2γ ∩ g3γ ∩ B(x, L + 800δ) 6= ∅, contradicting our assumption.
Thus, using Lemma 3.3, we have

Red(Y ) ≤
∑
i<j

|E1(Di,j)| ≤
(
k + 1

2

)
4(3d′ − 1)

3(1− 2d′)
· 2L+

(
k + 1

2

)
A1(d0). �

Conclusion. Let A3(d0, k) :=
(
k+1
2

)
A1(d0)−A2(d0, k). We show that whenever k

is large enough, depending on d0 and, subsequently, L is large enough, depending
on d0 and k, we have(

k + 1

2

)
· 4(3d′ − 1)

3(1− 2d′)
· 2 +

A3(d0, k)

L
<

3

2
(1− 2d′)

(
k + 1

2

)
2 +

(k + 1)(k − 2)

2
,

which, using Lemmas 3.4 and 3.5 implies the contradiction Red(Y ) < Red(Y ). The
above is equivalent, via dividing through by (k + 1)k, to

4(3d′ − 1)

3(1− 2d′)
+
A3(d0, k)

L(k + 1)k
<

3

2
(1− 2d′) +

(k + 1)(k − 2)

2(k + 1)k
= (2− 3d′)− 1

k
.

The condition
4(3d′ − 1)

3(1− 2d′)
< 2− 3d′
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is equivalent to d′ < 11
12 −

√
41
12 , which we assumed. Thus, we may choose k only

depending on d′, which in turn only depends on d0, such that

4(3d′ − 1)

3(1− 2d′)
< 2− 3d′ − 1

k
.

Subsequently we choose L such that Red(Y ) < Red(Y ), contradicting our assump-
tions. �
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[DM19] C. Druţu and J. M. Mackay, Random groups, random graphs and eigenvalues of p-

Laplacians, Adv. Math. 341 (2019), 188–254.

[DT06] N. M. Dunfield and W. P. Thurston, Finite covers of random 3-manifolds, Invent.
Math. 166 (2006), no. 3, 457–521.

[Gro87] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, New York, 1987, pp. 75–263.

[Gro93] , Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2

(Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ.
Press, Cambridge, 1993, pp. 1–295.

[Gro00] , Spaces and questions, no. Special Volume, Part I, 2000, GAFA 2000 (Tel Aviv,
1999), pp. 118–161.

[Gro03] , Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146.

[Hal58] M. Hall, Jr., Solution of the Burnside problem for exponent six, Illinois J. Math. 2
(1958), 764–786.

[Iva94] S. V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J.

Algebra Comput. 4 (1994), no. 1-2, ii+308.

[KK13] M. Kotowski and M. Kotowski, Random groups and property (T ): Żuk’s theorem
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