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AssTrACT. In the theory of random groups, we consider presentations with any fixed num-
ber m of generators and many random relators of length ¢, sending { — oco. If d is a
“density” parameter measuring the rate of exponential growth of the number of relators
compared to the length of relators, then many group-theoretic properties become generi-
cally true or generically false at different values of d. The signature theorem for this density
model is a phase transition from triviality to hyperbolicity: for d < 1/2, random groups
are a.a.s. infinite hyperbolic, while for d > 1/2, random groups are a.a.s. order one or two.
We study random groups at the density threshold d = 1/2. Kozma had found that trivial
groups are generic for a range of growth rates at d = 1/2; we show that infinite hyperbolic
groups are generic in a different range. (We include an exposition of Kozma’s previously
unpublished argument, with slightly improved results, for completeness.)

1. INTRODUCTION

We will study random groups on m generators, given by choosing relators of length
¢ through a random process. For a function num : N — N, let G(m, {,num) be the
probability space of group presentations with m generators and with |R| = num(¢) relators
of length £ chosen independently and uniformly from the (2m)(2m — 1) ~ 2m — 1)¢
possible freely reduced words of length £. Then the usual density model of random groups
is the special case num(¢) = (2m — 1)%, and the parameter 0 < d < 1 is called the density.
We will generalize in a natural way by defining

1
D= 7 log,,,_; (num(¢£))

and saying that the (generalized) density is d = lim;_,o D.

The foundational theorem in the area of random groups is the result of Gromov and
Ollivier [6, Thm 11] that d = 1/2 is the threshold for a phase transition between hyperbol-
icity and triviality. To speak more precisely, the theorem is that for any num with d > 1/2,
a presentation chosen uniformly at random from G(m, €, num) will be isomorphic to 1 or
Z/2Z with probability tending to 1 as £ — oo; on the other hand, if d(num) < 1/2, a
presentation chosen in the same manner will be an infinite, torsion-free, word-hyperbolic
group with probability tending to 1 as £ — oco. (From now on, we will say that a property
of random groups is asymptotically almost sure (or a.a.s.) for a certain m and num if its
probability tends to 1 as £ — o0.)

Here, we study the sharpness of this phase transition. Letting D = 1/2 — f({) for
f(©) = o(1) lets us use these functions f to parametrize all cases with generalized density
1/2. For simplicity of notation, where m is understood to be fixed in advance, let us write
G ! H=G (m t, 2m— 1)[(%‘f ([))). Constant values of f(£) change the density, but in the
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f(€) — 0 case we show here that the properties of random groups in G 1 (f) will depend on
the rate of vanishing.

Theorem 1. Consider the density 1/2 model g%(f)for various f(€) = o(1).
G € G1(f) a.a.s. infinite hyperbolic, — f({) > 10°-log!3 () /€173,
GeGi(f)aas =10rZ/2Z, £(6) < log(£)/4 —loglog(£)/¢.

Here and in the rest of the paper logarithms are taken base 2m—1 and a group isomorphic
to 1 or Z/27Z is called “trivial.” Theorem 1 is illustrated in Figures 1 and 2.

G infinite hyperbolic G trivial
0~ 0 0 £ —0
slowly fast
ool /3 log ¢ 1
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Fiure 1. We study density 1/2 by taking num(¢) = (2m — 1)/G~/©

relators for various functions f(£) = o(1).
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FIGURE 2. A finer view, taking f(£) = fys(6) = 5@

To interpret Figure 2, note that logﬂ(f) < (forallB. If G € Q%( Jap) 1s a.a.s. trivial,
then G’ € g%( fop) is a.a.s. trivial as well whenever @’ > a or @’ = a, 8’ < §. Similarly if
Geg@g 1 (fop) 1s a.a.s. hyperbolic, then the same is true of G’ € G 1 (fop) Whenever @’ < a
ora’ =a,p >p.

This implies in particular that setting d = 1/2 in the classical Gromov model (which
corresponds to f = 0) gives a.a.s. trivial groups.

In unpublished notes from around 2010, Gady Kozma had given an argument for trivi-
ality at density 1/2. We give an expanded exposition here. By tracking through Kozma’s
argument as sharply as possible, we find triviality at f(€) = log({)/4¢ —loglog({)/¢, which
corresponds to any number of relators greater than

num(®) = 2m — IO = 2m — 1)L 1og(6)- 14 < @m — 1)2¢.¢7++

for any € > 0. (This is slightly sharper than Kozma’s conclusion, and he notes that such a
result—with a power of ¢ factor as we have here—would be interesting.)
On the other hand, our hyperbolicity result applies for any number of relators at most

num(e) = (2m — {GT1CTE 0 — 0y )3 (9 — 1)710°C 100,
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i.e., where 2m — 1)%[ is divided by a factor that is intermediate between polynomial and
exponential. In that case we obtain

Theorem 2. A random group in Q%(f)for £(6) = 10°-1og'3() /€3 is a.a.s. 5-hyperbolic

with 6 = c0°3, for a sufficiently large constant c.

By contrast, for d < 1/2, the best known hyperbolicity constant is 6 = c¢4¢, for a
coefficient depending on the density.

The proof for triviality given below follows Kozma in using two elementary probabilis-
tic ingredients: a “probabilistic pigeonhole principle” (Lemma 5) and a “decay of influence
estimate” (Lemma 4). These may be of independent interest, so they are formulated in §2
in more generality than we need here. The main idea is to find a single short word that
is trivial in G and use it to replace the relator set R with an equivalent relator set R with
higher effective density.

For hyperbolicity, we follow Ollivier [6, Chapter V] in proving a linear isoperimetric
inequality, using the local-to-global principle of Gromov as shown by Papasoglu to argue
that only a limited number of Van Kampen diagrams need to be checked, then quoting
some classic results of Tutte on enumeration of planar graphs to accomplish the necessary
estimates.

The sharpest phase transition that one could hope for is to have some precise subexpo-
nential function g(¢) and a pair of constants ¢; < ¢; so that num(¢f) = ¢;(2m — 1)%[g(é’)‘1
and num(?f) = c,(2m — l)%‘)g(f)‘1 yield the hyperbolic and trivial cases, respectively. We
hope that in future work we will be able to obtain further refined estimates to “close the
gap.”

After completing this project we learned of the 2014 preprint [1] which considers very
similar threshold sharpness questions for a different model of random groups, called the
triangular model, in which all relators have length three. They find a one-sided threshold
for hyperbolicity and show that triviality admits a very sharp phase transition in a sense
similar to our sense above. However, hyperbolicity is not known to have such a sharp
threshold in either model, and furthermore there is no guarantee that the hyperbolicity and
triviality thresholds would agree, as we conjecture that they do.

1.1. Conventions. We will write 1 for the group {1} and will sometimes use the term
trivial to mean isomorphic to either 1 or Z/2Z. Throughout the note, when we show that
groups are a.a.s. hyperbolic, we are proving the same strong isoperimetric inequality as
for the d < 1/2 case, so the groups in our hyperbolic range are infinite, and furthermore
torsion-free, one-ended, with Menger curve boundary.

Since we are concerned with exponential growth with base (2m — 1), log will mean
1Ome—l‘

We will use ¢, ¢, ¢” for constants whose values depend on context and K, k for functions
of £. As usual, denote f/g — oo by f > g. Write [n] for {1, ...,n}.

For a word r of length ¢ we denote by r[i] (1 < i < ¢{) the ith letter of r, and write
rli: j] (where 1 <i < j < ¢) for the subword r[i] r[i + 1] - - - r[j] of r (so that in particular
r = r[1 : €]). For words r, ¥ we write r = r’ if r, ¥’ are the same words after free reduction,
and r =¢ 1’ if r, ¥’ represent the same element of group G.

As mentioned above, we work with reduced words that need not be cyclically reduced.
For models of random groups with cyclically reduced words we expect that the same
threshold bounds hold.
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2. SOME BASIC PROBABILISTIC FACTS

2.1. Distribution of letters in freely reduced words. Because the relators in these mod-
els of random groups are chosen by the uniform distribution on freely reduced words of a
given length, it will sometimes be useful to know the conditional probability of seeing a
particular letter at a particular position in r, given an earlier letter.

Let m > 2 be an integer and let m = 1/(2m — 1).

For any positive integer 7 let s, be the partial sum of the alternating geometric series

l-m+m?>—...,

1

ie., s, = X{Z(-m), and 5o = 0. Then lim s, = L.

The following lemma measures the cil;)roease of influence of a letter on its successors.
Lemma 3 (Distribution of letters). Consider a random freely reduced infinite word w =
X0X1Xy ... in m generators. Then for n > 0,

Pr(x, = xo) = m-s,_1, neven,
Pr(x, =y) = m-s,, neven,y # Xxo;
Pr(x, = x;') = m-s,.1, nodd,

Pr(x, =y) =m-s,, nodd,y + x(;l.

The proof is an easy induction. Note that as n — oo the probability of each letter
appearing at the nth place tends to 7~ = 1/2m, recovering the uniform distribution, as
one would expect. We immediately deduce bounds on the conditional probability of a later

letter given an earlier letter.

Corollary 4 (Decay of influence). For any letters x,y (not necessarily distinct) and for
anyn > 1, P,(x,y) = Pr(x, = x| xo =) is bounded between m-s,_; and m-s,, i.e.,

m—m?+-+m™—m" < Py(x,y) £ m—m?+---+m™! (n even)
m—m?+ - —m*t! < Pu(x,y) < m—mZ4-—m" L em”  (nodd).
In particular, (22’;”__12)2 <Pr(xy=x|xp=y) < 2/111_—1

2.2. A generalized ‘“probabilistic pigeonhole principle”. Consider z red balls and z blue
balls, and so on for a total of g colors. Each of these gz balls is thrown at random into one
of n boxes, giving [n]-valued random variables xi, ..., x,,. We bound the probability that
there is some box with balls of all colors.

Lemma 5 (Probabilistic pigeonhole principle on g colors). Let u be any probability mea-
sure on [n]. Fix arbitrary g,z € N such that z > 2n'V4. Then if x,,..., x,, are chosen
randomly and independently under ,

.. . . . . . _ 1-1/q
Pr(3iy, ip, ..., ig with (j— D)z <i; < jz, x; = X, = -+ =x,)=1-e cz/n

forany c < —}1 In(1 = 279), or in particular ¢ < 27972,

Note that as n — oo a g-color coincidence is asymptotically almost sure as long as
z > n'"4, and in particular a 2-color coincidence occurs if z > +/n. We further remark
that this is equivalent to another probabilistic pigeonhole principle (that for z > n'~1/4
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uncolored balls in n boxes, some box contains at least g balls a.a.s.), in the sense that each
implies the other.

Proof. We start by considering the case of a 3-color coincidence (¢ = 3). Let
I :=AG, b, B3) | (j-Dz<i; < jz}; X =#{(i1,ir,i3) €T | x;, = xi, = X3}
Since X > 0 we can bound Pr(X > 0) using the classical inequality Pr(X > 0) >

E?[X]/E[X?]. We compute expectation by finding the probability of coincidence for some
choice of distinct iy, i», i3 and multiplying by z*:

n
E[X] = 2 Pr(x;, = x, = %) =2 ) 1 (p).
p=1
We next write X = 3; 3, 2, Ox; =x,=x, and reindex as X = 35, 3% % Oy, =x, =x, > SO by
symmetry we get ‘

E[X?] = 2 Pr(x;, = x;, = x;,) +32°(z = D) Pr(x;, = x;, = x;, = x3,)
+322(z - 1)*Pr(x;, = x;, = X;y = Xi, = Xi5)
+ ZS(Z - 1)3 Pr(x;, = xi, = xiy, xi, = Xi5 = Xi)

with respect to any (iy, i, i3), (i, i5, ig) € Z with the six i; distinct.
Using 1 <r < s = [lal, > [|xlly, we get

" 3/3 " . 5/3 " 6/3
E[X’] <2’ {Z ,u3(p)] +32* (Z I (p)] +372° [Z ,u3(p)] +2° [Z ,u3(p)]
p=1 p=1 p=1 p=1
These expectation formulas easily generalize from 3 to any number g of colors:
XI=2'Y pwp);  BEIX <Z ( ) (2 ) ]
p=1

The probability of a coincidence is at least E2[X]/E[X?]. First let us consider a simple
case, where the number of balls of each color is chosen to get good cancellation: set

4/3

-1
20 = (Z;ﬁzllﬂ(p)) M 5o that 1 < 70 < n'714, where the upper bound follows from
Holder’s inequality:

- n n 1/q
I= Zﬂ(p) = ZM(P)' 1< [Z,u‘i(p)] .pl-la,
p=1 p=1 =1

Then we get Pr(X > 0| z > zo9) > 1/29.

The general case is z = yzo for some y > 2. Divide up each of the intervals ((j — 1)z, jz]
into subintervals of length [z ], with the last subinterval longer if necessary, and let p be the
number of subintervals (the hypothesis that z > 2n'~!/7 ensures that y/4 < p < y). Let X;
count the number of g-color coincidences which occur in the respective kth subintervals.
The above calculation tells us that Pr(X; > 0) > 1/29.

By Holder’s inequality again, we have y > %1/{]' It follows that
n

P 1 z
PrX>0)> 1= [ [Prie=on=1-(1 -2 > 1-(1-2794"7 . o
k=1

We emphasize that this result does not depend on the choice of probability distribution g.
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3. THE TRIVIAL RANGE

The usual proof that a random group G is trivial at densities d > 1/2 uses the probabilis-
tic pigeonhole principle to show that there are pairs of relators r;, 7, which have different
initial letters r1[1] = x, r2[1] = y, but with the remainder of the words equal. Consequently
rry I'= xy~! is trivial. In this way one shows that a.a.s. all generators and their inverses
are equal in G.

To show triviality at density d = 1/2 is more involved. The overall plan here is to find
shorter trivial words than the ones from relator set R; treating these as an alternate relator
set will push up the “effective density” of G, then a similar argument as before will show
that the group is trivial.

Theorem 6 (Sufficient conditions for triviality). Given any f(£) = o(1), suppose there
exists a function k : N — N with k({) < € for all € and such that

(%) k—=2(f > o
and

-2
(s)

k+2)m—1*
as { — oo. Then a.a.s. G € Q%(f) is 1 or Z/27Z.

Corollary 7. The functions k() = 1log(€) — loglog(€) and f(£) = 252 — 180 gqyispy
(%), (#). Thus a random group in g% (% - W) isa.a.s. 1 or Z/27.

Outline of the proof of Theorem 6.

(Step 1) Using the pigeonhole principle (Lemma 5), we find a freely reduced word w of
length 2k such that w =g 1. The existence of such a w is guaranteed by (%), and
we will use it to reduce other relators.

(Step 2) In each relator » we set aside the first two letters for later use, and then chunk
the last € — 2 letters into b blocks of size (2k + 2)(2m — 1)*, with the last block
possibly smaller. The (#) condition says that b — co. We show that w appears in
one of these blocks surrounded by non-canceling letters with probability > i.

(Step 3) With these reductions, the probability that r reduces to length at most £’ = £ — "2—]‘
is more than 1/3.

(Step 4) Finally we show that for this choice of ¢’, conditions (x) and (#) ensure that
dt - % — oo. From this we deduce that for any pair of generators a;, a;, we
can almost surely find two reduced relators that start with g;, a;, respectively,
and match after that. Therefore a; = a; for all pairs of generators (including
aj= ai’l), which establishes the trivality result.

Proof of Theorem 6.

Step 1. Suppose k—2Lf — co. Then a.a.s. there exists a reduced word w of length 2k such
that w =g 1.

To ensure that the word w we find is independent of the later steps in the proof, we
divide the relator set R into to equal subsets R! and R?, and in this step consider only R'.

For each r € R the word r[k + 1 : ] is one of the 2m(2m — 1)**~! reduced words
of length ¢ — k. We will find two relators r, 7, € R! such that their tails match (i.e.,
rilk+1: €] = ry[k + 1 : £]) but they differ in the previous letter (r;[k] # r,[k]). We can
conclude that w = ryr; ! reduces to a word of length 2k.
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For any word w of length p, we define R, to be the subset of relators beginning with
that word:

R, :={reR|r[l:p]=w}l

To restrict to relators in R (or R?), we write R}, = R, N R' (or R2, = R, N R?).

For letters x,y, z, Ry; and R,, are disjoint as long as x and y are distinct and neither one
is equal to 7', Fix such letters x, y,z. There are 2m(2m — 1) possible two-letter reduced
words and since we choose R uniformly, the law of large numbers tells us that a.a.s.

(2m — 1){G=1O

R'|=— 2
4m2m—1) +2

R L
2m2m—1)+ 1
The same holds for R},
We will check that

2m — 1){G=1O \/—

o) s \m@m = e,

Am2m - 1) + 2 m(2m = 1)
Using 2m—1 > 3, we have 4m(2m—1)+2 < 42m—1)? and 2m(2m—1)"%"1 < 42m—-1)*,
which gives

I NICE()
@m - CTO > c(@m = GO = ¢(am - 1)40©

1
4mC2m—1D+2  \m@m - 1)i+1

where ¢ = 1/8(2m—1)? > 0. The right-hand side goes to infinity precisely when (%) holds.

The purpose of introducing the letter z is to ensure that the tails of words in R‘z and R)‘,Z
have the same distribution. Hence we can apply Lemma 5 (with ¢ = 2) to conclude that
a.a.s. there exist r; € R}Cz and rp € R;z such that ri[k + 1 : €] = rp[k + 1 : £]. Then setting
w=(r[l:k])7" [l : k], we have w =¢ 1.

Step 2. Let w be as above and r € R2. Sets = Qk+2)2m - D* and b = I_%J. From
the third letter on, divide r into b blocks of length s (with possibly one shorter block at
the end). For each such block B, let A(B) be the last letter of r preceding B. Then the
conditional probability that w appears in B given any particular value of A(B) is uniformly
bounded away from 0 as follows:

Vg, Pr(wappearsin B| A(B)=g)>1—-e 3.

Observe that r € R? is independent of w, which was found by considering only R'.

Write w = wy --- wy, let B be a block of size (2k + 2)(2m — 1), and divide it into
(2m — 1)* subblocks By, ..., By—1y of size 2k + 2. Let E; be the event that the word w
appears as B;[2 : 2k + 1]. See Figure 3.

B,;l Bi Bi+l

wi w2 T Wok

Ficure 3. A part of block B.
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Let us compute the probability of E; given that none of E|, - -- E;_; happens and given
any last letter gy before B;. For 1 <i < (2m — 1)%*, we have

P; =Pr(E; | -Ey,...,~Ei_;, A(B;)) = &)

2%-1
1)
= Pr(Bi[2] = wy | mEy,...,~Ei_, A(B;) = go) -

2m—1

(i) 2m—2 1
T C2m-1)2 \2m-1
Equality (1) follows from the fact that only B;[2] could be affected by previous letters in

r. Inequality (2) is an application of the decay of influence estimate (Corollary 4), which
guarantees that Pr(x; = x| xo = y) > (2m — 2)/(2m — 1)? for any x, y. We deduce that

)(Zm —1)%*

2k—1
) > %(Zm— 1),

(2m—1)2k (2m_1)2k

2
[] Pr-Eil-Eo,....~Ei,aB) =g = [] (1—Pi>s(1—§(2m—1>‘2"
i=1 i=1

<2,

and so finally for any g,
1
1

2
3

Pr(w appearsin B| A(B) = go) > 1—-¢73 >

Step 2.5. If there exists a subword w' of B of the form
w = sdwd 't
for any word d and letters s,t with s # t~', then we say that B has a w-reduction. (In this

case w =g 1 = w' =g st. To perform a w-reduction we replace w’ by st in r and note
that the word remains freely reduced.) For k sufficiently large we bound

1
Pr(B has a w-reduction | A(B) = go) > T

We want to bound from above the conditional probability that w appears in B in the
wrong form for a w-reduction. This only happens if B starts or ends with dwd~' for some
word d = d; - - -d,. Let us compute the probability that B starts this way. First we bound
the probability that w appears in the right place, then conditioning on that we bound the

other needed coincidences. We have Pr(B[n + 1] = wy) < ﬁ, and
1

Qm — 1)1

Next we consider whether B[n + 1 — j] = B[n + 2k + j"! foreach j=1,...,n. For j =1,
we have

Pr(Bln+1:n+2kl=w|Bn+1]=w)) =

1 2m—2
Pr(B[n] = Bln + 2k + 117" = ,
r(Bln] = Bln 22071 ™ Gmoiy
depending on whether w; = wy; or not, but in either case this is < 1/(2m — 1). For

Jj =2,...,n— 1, the conditional probability is exactly 1/(2m — 1). For j = n, we have the
same two possibilities as before, depending on whether A(B) = d,. So all together we find

2k+n
Pr(B starts with dwd™"' | A(B) = go) < .
2m—1

The same inequality holds for finding dwd~! at the end of B, so

© 1 2k+n
Pr(w appears in B with no w-reduction) < 2 Z (2 1 ) ,
n—
n=0
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and the right-hand side goes to 0 as long as k — oco. So finally for sufficiently large £ (and
therefore k),
1
Pr(B has a w-reduction | A(B) = gg) > T
Step 3. For each relator r € R* denote by 7 the word obtained by performing the first

appearing w-reduction in each block (as described in the previous step). By comparing to
an appropriate Bernoulli trial, for k sufficiently large we show that

>

W | —

Pr (#{reductions of win B} > g | r[1:2] = g]gz) >

and conclude that

1
Pr(len(?) < €= 2 | r[1: 2] = g182) > 3

Let X;, fori =1,...,b, bei.i.d. random variables such that X; = 1 with probability 1/4
and X; = 0 with probability 3/4. Then by the central limit theorem,

Jim Pr(2X; > §) = %

Let X; be the indicator random variable for a w-reduction in the ith block B” of r. The
variables X1, X, ... are not independent, but each X; depends only on A(BD). By Step 2.5
we know that for any g,

Pr(X;

. 1
luw%=mwz=mm=n,

SO

IS
N —

Pr(S0, X; > 2| r[l:2]=g1g) 2 Pr(ZL, Xi > ) -

Thus for sufficiently large ¢,
= 1
b b .97 =
Pr(S, X > 21 rl:2] = g180) > 3
and since each reduction shortens the word by at least 2k letters we have

1
Pr(len(?) < €= % | r1: 2] = g182) > 3
Step 4. Let R?> = {7 | r € R?} be the set of reduced words as above. For each pair of
distinct elements x,y chosen from the generators and their inverses, a.a.s. there exists a
pair v, 1, € R? such that 71[1] = x, P»[1] = y, and

7112 : len(7))] = 7»[2 : len(7)].
Consequently, x =g y. Triviality follows.

First, (#) says that b — oo, so we have b > 2 for ¢ sufficiently large, which gives
bk k
— —{f > - - {f,
2

and the right-hand side goes to infinity by (x).
Next, let x,y, z be chosen among the generators and their inverses such that z7! # x,y
and x # y. Recall that R? denotes relators in R? beginning with subword w. We examine

relators r € Riz UR%Z such thatlen(r) < ¢’ = €— %. Note that |R§z| is close to —2

Tn2m=1) a.a.s.,
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and we expect 1/3 of these to have enough reductions so their length is no more than ¢’.
So we get

2m — 1)!G=D
3m)m-1)+ 1’
and the same holds for sz. To apply Lemma 5 to get matching tails, we must compare
the number of shortened words to the square root of the number of possible tails. (The
two colors are initial 2-letter words and the boxes are final (¢’ — 2)-letter words; both RZ,
and R%Z have the same probability distribution from the third letter onwards so the lemma
applies.) In order to see that

@m -G s \Jem-1)0-2,

#lre Ry, |len(’) < ') >

note that
@m - 1)/G=N

We may conclude that a.a.s. there exists a pair of words r| € Riz and rp € Rf such that

7113 : len(7#)] = r2[3 : len(R)],

bk
>2m-1)%"Y 5 .

and since 7| =g 1 =¢ 72, we get xz =g yz, so finally x =¢ y. This means that a.a.s. all
generators and their inverses are equal in G. O

Proof of Corollary 7. For (%) we compute k — 2€f = loglog{, which goes to infinity.
Condition (#) is equivalent to b — oo, and we calculate

-2
logh =1 =log(¢ —2) — log(2k + 2) — 2k
0g og((2k+2)(2m_1)2k 0g(£ = 2) - log( )
> log ¢ —loglog{ —logf{ +2loglogt{—-C
=loglogt{—-C
for a suitable constant C. O

4. THE HYPERBOLIC RANGE

To prove hyperbolicity, we establish an isoperimetric inequality on reduced van Kampen
diagrams (RVKDs) for a random group, as in Ollivier [6, Chapter 5]. The main difference
to our argument is that, rather than aiming to show a linear isoperimetric inequality di-
rectly, we show that the random group satisfies a quadratic isoperimetric inequality with a
small constant. This in turn implies that the group is hyperbolic by a well-known result of
Gromoyv (see Papasoglu [5] and Bowditch [2]).

Following Ollivier, we write D for a (reduced) van Kampen diagram; |D| for its number
of faces, and |@D| for the length of its boundary. (Note |0D| > # boundary edges because of
possible “filaments.”) A path of contiguous edges so that all interior vertices have valence
two is called a contour.

The key fact which allows us to check the isoperimetric inequality only on diagrams of
certain sizes is the following theorem of Ollivier, which is a variation on Papasoglu’s result
in [5].

Lemma 8 (Local-global principle [7, Prop 9]). For fixed € and K > 10'°, if
K < |D| < 480K> = 10D = 2- 10*%|D],

————
0} 0}
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then
ID| > K* = |0D| >

D|.
1O4K| |

That is, if RVKDs in a certain size range satisfy a good enough quadratic isoperimetric
inequality, then all RVKDs satisfy a linear isoperimetric inequality. Later, we will let
K = K({) to vary the window of diagrams considered.

We will use Ollivier’s definitions concerning abstract diagrams, which are a device for
precise bookkeeping in van Kampen diagrams to control dependencies in probabilities.
Roughly speaking, an abstract diagram is a van Kampen diagram where we forget the
labelling of edges by generators and the labelling of faces by relators. We do keep track of
the orientation and starting point of the boundary of each face, and we also label faces so
we know which faces bear the same relator. (Since our relators are reduced but need not
be cyclically reduced, each face in an abstract diagram is allowed to have a single “inward
spur”, see [6, Page 83, footnote 4].)

To show that a group is hyperbolic, it suffices to have one RVKD for each trivial word
that satisfies the linear isoperimetric inequality. Since we get this inequality for all RVKDs,
following Ollivier’s argument on spherical diagrams will give that our group is in addition
infinite and torsion-free. We establish that a.a.s. all diagrams satisfy the hypothesis by
showing that the probability of a diagram existing that has (@ but not @ tends to 0. To
calculate this, we must first get a bound on how many abstract diagrams have (@, and the
probability that such an abstract diagram is fufillable from our relator set.

4.1. Probability of fulfillability. Still following Ollivier, we estimate the probability that
some relators exist to fulfill D.

Lemma 9 ([6, Lem 59]). Let R be a random set of relators with |R| = num({) at length €.
Let D be a reduced abstract diagram. Then we have

1 (10D 1 (10D
Pr(D is fulfitlable) < (2m — 1y (01 ~C+2lognum) _ o 3 (5 = €1 - 20))

In our case, our choice of hum(¢) gives D = % — f(0). If a diagram satisfies @ and not
@, we get
|0D| - V2-10%¢ D] - 5-103¢K B 2-10%¢
D] K2/4 K24~ K

All together, we get
40
Pr(D is fulfillable) < 2m — 1)10 & = €F (),

4.2. Counting abstract diagrams. There is a forgetful map from abstract diagrams I' to
embedded planar graphs I that strips away the data (i.e., subdivision of contours into
edges, face labelings, and start points and orientations for reading around each face). Fig-
ure 4 shows an example. To see that the planar embedding matters, consider the two
different ways of embedding a figure-eight—clearly different as van Kampen diagrams.
(m Versus @ ) Adding data to a graph to recover an abstract diagram will be called
filling in.

In order to find an upper bound on the number of van Kampen diagrams up to a certain
size, we will count possible abstract diagrams by enumerating planar graphs and ways of
filling in.

Proposition 10 (Diagram count). Let Np(€) be the number of abstract diagrams with at
most F faces, each of boundary length {. Then log Ng({) is asymptotically bounded above
by 6Flog¢ +2F logF.
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r I’

Ficure 4. Abstract diagram and corresponding embedded planar graph.

Proof. Consider abstract diagrams with no more than F faces. Since there are £ edges on
the boundary of each face, two orientations, and at most F' faces, there are no more than
(20)F choices of oriented start points. Faces can have at most F distinct labels, so there are
at most F¥ possible labelings.

In order to estimate the number of ways we can subdivide the contours into edges, we
first count edges of I'". If " has no inward spurs, then every vertex has valence at least
three. Since the Euler characteristicis V — E + F = 1, we have 2E > 3V, which simplifies
to E < 3F -3 < 3F. Each face of [’ can have at most one inward spur, which increases the
number of edges by < 2 for each face, so the total number of edges in I"” satisfies £ < 5F.

The number of ways to put £ edges around each face can be overcounted by the number
of ways to subdivide each contour into exactly £ edges, which is ££ and so is bounded
above by £°F.

Tutte shows in [8, p. 254] that the number of embedded planar graphs with exactly n
edges is iﬁ(zﬂg), Using E < 5F, and (n/e)" < n! < n" (with lower bound from Stirling’s
formula), we get

SF

L 2(2m)! 3" 2(10F)! 35°
#(I" with < SF edges) < Z:; N T Y

< (10F)!135F . (10F)10F35F
T (SFH\(5F)! ~ (5F/e)oF

— (26)10F35F < 325F.

Combining the above information, we get
Ne() < QOFFFeF35F,
and so
log Np < Flog(2¢) + Flog F + 5F log ¢ + 25F log 3.

Gathering terms of highest order, we have an upper bound by 6F log ¢ + 2F log F, as
claimed. =

Corollary 11. Let N'(£) be the number of reduced van Kampen diagrams with property
@ at relator length €. Thenlog N'(¢) is asymptotically bounded above by 3000K> log(K?).

Proof. Considering all diagrams with |D| < 480K? will be an overcount, so we use F =
480K? in the above estimate, i.e., N'(£) < Nygox2(£). ]
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4.3. Hyperbolicity threshold.

Theorem 12 (Sufficient condition for hyperbolicity). Given any f(£) = o(1), suppose there
exists a function K : N — N such that

(*) 3000K> log(K¢) + 10* £ — £- f(£) > —c.
Then G € G1(f) is a.a.s. (infinite torsion-free) hyperbolic.

Remark 13. In view of Corollary 11, one intuitive way of choosing a K, f pair is to take
K?log ¢ and Lf(£) to be of the same order. It turns out that we can do slightly better than
that by instead choosing to equalize the orders of % and €f(€), which gives the pair below.

Corollary 14. For any constants ¢, ¢’ with 0 < 4000c’> + 1%4

log'?®) _ 7173 .
c=5— and K() = c’m satisfy (*).

< ¢, the functions f(€) =

. . ]/3 . . . .
In particular, for ¢ > 10°, a random group in Q% (clogﬂ#) is a.a.s. (infinite torsion-free)

hyperbolic.

Proof of Theorem. Observe that

P := Pr (v Kampen dugram D) < Z Pr(D is fulfillable)

that satisfies (@ but not @
abstract diagrams D
with @ but not @

< N'(O)- @m - 1) 07O,

where N/(¢) is as in Corollary 11 and (2m — 1)1~ is the fulfillability bound from
Lemma 9. (Note that the last inequality vastly overcounts by replacing [ @ and not @]
with simply @.)

We will show that the local-global principle (Lemma 8) holds a.a.s. for all diagrams,
by showing that for a K, f pair as in the hypothesis, the above quantities go to zero. In
particular, we will show that log P — —co.

We have logP < logN' + 104% — {- f(£). By applying Corollary 11, we have this
asymptotically bounded above by

2 4 £
3000K2 log(K¢) + 10*£ — £ £(0).

Requiring that this goes to —oo is exactly (x). O

Proof of Corollary. We calculate each of the four terms of (x) using K = ¢/¢'3log™/* ¢
and f = ¢t~ log!’® £. We have

3000K> log(K¢) < 4000c”(* 1og' " ¢ ;
4

104L = 1823108 ¢ ;

Lf = ct?Plog' ¢.

Provided 4000c”? + 101,4 < ¢, the expression goes to —oo and (x) is verified. For example,
we can choose ¢ = 1 and ¢ = 10°. o

This completes the proof of Theorem 1.
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4.4. Hyperbolicity constant. In this section we use the constants in the isoperimetric
inequality to estimate the hyperbolicity constant for the density one-half random groups in
our hyperbolic range, namely g% (105 10g1/3(€)/€1/3>.

We will use a variation on a result in Bridson—Haefliger [3, III.H.2.9], which differs in
two main ways. First, they consider a notion of area for general geodesic metric spaces;
however, we are only concerned with simply connected 2-complexes X such as the Cayley
complex of a group, so for us the area of an edge loop y in X is the minimal number of
faces in a diagram which fills y. Second, the statement in Bridson—Haefliger requires a
linear isoperimetric inequality for all edge loops, while ours only requires the inequality
for loops of sufficiently large area. In both cases, their proof works for our statement.

Theorem 15 (Effective hyperbolicity constant). Suppose X is a 2—complex that is geo-
metrically finite, i.e., there is some N such that every face has at most N edges. Suppose
there is k > 1/N so that X has a linear isoperimetric inequality for large-area loops: if an
edge loop 7y in X has area > 18«k*N?, then y can be filled with at most kly| cells. Then the
one-skeleton of X has 5—thin triangles for § = 120&>N>.

Proof. We closely follow the proof in [3, p419] from III.H Theorem 2.9 (replacing K by «
to avoid notation clash). If there is a triangle which is not 6k = 18«N%—thin, one builds a
hexagon H (or quadrilateral) whose minimal-area filling has area > «x(a — 2k) > k(6k) =
18«*N?. So this hexagon satisfies our (large-area-only) linear isoperimetric hypothesis,
and thus has area |H| < «|0H|. The remainder of the proof shows that the hexagon is
o—thin provided

0 -3k
v 12k © 8> 3k + 36kNk = 9kN? + 108k>N>.
Since 9xN? + 108k2N3 < 117«2N3, it suffices to take 6 = 120k2N3. O

As a corollary, we obtain Theorem 2: a random group in our hyperbolic range, namely
in G1(f) for f() = 10° 1og!'3(6)/€', is a.a.s. 5-hyperbolic with 6 = ¢£5/3, for a suffi-
ciently large constant c.

By contrast, as noted above, the best known hyperbolicity constant for d < 1/2 is
proportional to £.

Proof of Theorem 2. The output of the local-to-global principle was the linear isoperimet-

ric inequality |0D] > LKIDI and to get the needed case we used K({) = 10;”]% This

10°
gives [D| < €2 log ?3()-10D| < "€ 231AD), so we take k = ¢’¢23 and N = £.
This linear isoperimetric inequality holds for all diagrams D of size |D| > K?; observe that
18> N? = 18(c”¢72/3)2¢> > K? for large K. Therefore, Theorem 15 gives that all triangles
are §—thin for a value of § proportional to £3/3. O
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