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A summary written by John Mackay

Abstract

We show that the Heisenberg group, with its Carnot-Caratheodory
metric, does not admit a bi-Lipschitz embedding into L1.

1.1 Introduction

Our goal is to understand the proof of the following result of Cheeger and
Kleiner [CK06, CK09]:

Theorem 1. The Heisenberg group H (with its usual Carnot group structure)
does not admit a bi-Lipschitz embedding into L1.

(For definitions, see the next section and the other presentations.)
This result is interesting for its own sake, but for us its importance is that

it, combined with work of Lee and Naor, gives a natural counterexample to
the Goemans-Linial conjecture. To be precise, the Heisenberg group carries
a metric d (comparable to the usual Carnot metric) so that (H,

√
d) admits

an isometric embedding into Hilbert space [LN06], but (H, d) does not admit
a bi-Lipschitz embedding into L1 [CK06, CK09].

We will actually prove a stronger statement: Lipschitz maps from H into
L1 collapse almost everywhere in the direction of the center. (Recall that
Center(H) = {exp(tZ) | t ∈ R}; see the next section for details.)

Theorem 2 (Theorem 6.1 of [CK09]). If f : H → L1 is a Lipschitz map,
then for a full measure set of points p ∈ H,

lim inf
t→0

d(f(p), f(p exp tZ))

d(p, p exp tZ)
= 0. (1)

Of course, if there existed a C-bi-Lipschitz map f : H → L1, then for
every p ∈ H the quantity in equation (1) would be bounded below by 1

C
, a

contradiction.
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We are going to follow the proof of this theorem given in [CK09]. The
earlier proof in [CK06] was more involved, and also used work of Franchi,
Serapioni and Serra-Cassano [FSSC01] on the structure of finite perimeter
sets in the Heisenberg group.

I thank Bruce Kleiner for helpful comments.

Outline: We collect some preliminary results in section 1.2, before indicating
the proof of Theorem 2 in section 1.3.

1.2 Preliminary results

The Heisenberg group:
As discussed elsewhere, the Heisenberg group is the (Lie) group

H =








1 a c
0 1 b
0 0 1




∣∣∣∣∣∣
a, b, c ∈ R



 ,

with Lie algebra generated by

X =




1 1 0
0 1 0
0 0 1


, Y =




1 0 0
0 1 1
0 0 1


, and Z =




1 0 1
0 1 0
0 0 1


 .

It is diffeomorphic to R3 = {(a, b, c) | a, b, c ∈ R}, and has a Carnot group
structure generated by the left invariant distribution of planes ∆, where the
plane at the identity is spanned by X and Y . Putting a left-invariant norm
on ∆ gives a Carnot-Caratheodory metric on H that we denote by dH.

The center of H (those elements that commute with all other elements)
is the subgroup

Center(H) = {exp(tZ)|t ∈ R}.
(Recall that exp(A) = I + A + 1

2!
A2 + · · · .)

Every Lie group projects onto its abelianization. In the case of H, the
map π : H→ H/[H,H] = R2 corresponds to the map π((a, b, c)) = (a, b).

A line in H is a horizontal path (i.e., one tangent to ∆) that projects to
a straight line in R2. Let L(H) be the collection of all lines in H. (L(H) has
a natural smooth structure.) The collection of all pairs of points that can be
joined by a line is denoted by hor(H) ⊂ H×H.

2



The collection of all lines through a point p ∈ H is a horizontal plane
(centered at p). A vertical plane is the set π−1(L), where L is a line in the
plane. A half-space is a connected component of H \ P , where P is a plane.

For each λ ∈ (0,∞), let sλ : H→ H be the automorphism that scales dH

by λ, i.e., for all g, h ∈ H, dH(sλ(g), sλ(h)) = λdH(g, h).
For each g ∈ H, let lg : H→ H be the automorphism that left translates

by g, i.e., for all h ∈ H, lg(h) = gh.

Differentiation of functions with metric space targets:
If X = (X, d) is a metric space with metric d, and λ > 0, we let λX

denote the metric space (X,λd).
If f : X → Y is C-Lipschitz (i.e. dY (f(x), f(y)) ≤ CdX(x, y) for all

x, y ∈ X), then the pullback of the distance function dY to X is the function
ρ : X ×X → [0,∞), where ρ(x, y) = f ∗dY (x, y) = dY (f(x), f(y)).

Rademacher’s theorem states that if you have a Lipschitz map f : Rm →
Rn, then it is differentiable almost everywhere (a.e.). One consequence is that
if ρ : Rm × Rm → [0,∞) is the pullback of the metric on Rn by f , then for
almost every x ∈ Rm, rescalings of ρ converge uniformly on compact subsets
of Rm×Rm to give a pseudo-metric induced by a Riemannian semi-norm on
Rm.

To be precise, there is some Riemannian semi-norm on Rm with induced
metric α : Rm → Rm so that for all compact sets K ⊂ Rm × Rm,

1

λ
ρ
(
x + λ(·), x + λ(·)) → α(·, ·)

uniformly on K as λ → 0. (Note that the function on the left here is
1
λ
(lx ◦ sλ)

∗ρ, where lx and sλ denote left translation by x and rescaling by λ
respectively.)

Pauls proved an analogous result for Lipschitz functions f : H → Y ,
where Y is some metric space. Let ρ = f ∗dY be the associated pullback
distance function.

Theorem 3 (Pauls, [Pau01], Thm. 4.7, Prop. 5.1; [CK09], Thm. 2.5). For
almost every g ∈ H, rescalings of ρ at g (i.e. 1

λ
(lg ◦ sλ)

∗ρ) converge uni-
formly on compact subsets of hor(H) ⊂ H × H to a left invariant Carnot
(pseudo)distance α : H×H→ [0,∞) induced by some Finsler semi-norm on
∆.

In the case of Rademacher’s theorem, we can zoom in on f at a point of
differentiability by rescaling the source and target simultaneously at x and
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f(x): ( 1
λ
Rm, x)

f→ ( 1
λ
Rn, f(x)). These functions are all C-Lipschitz, and as

λ → 0, we can take a limit to get a Lipschitz map fω : Rm → Rn: the
derivative of f at x. Moreover, α is the pullback metric induced by f ∗ω.

In an analogous way, using ultralimits, we can do the same thing for H:

Corollary 4 ([CK09], Cor. 2.7). Suppose g ∈ H satisfies the conclusion of
Theorem 3. Then α is the metric induced by some fω : H → L1, and is
geodesic on lines.

Maps to L1 and cuts:
Suppose (X, µ) is a locally compact metric measure space, where µ is a

Borel measure and is finite on compact subsets of X.
A cut in X is a measurable subset of X. We identify cuts E, E ′ ⊂ X

if µ(E \ E ′) = µ(E ′ \ E) = 0. The collection of cuts Cut(X) is can be
embedded in L1

loc by mapping E to its characteristic function χE, and it
inherits a topology from this embedding.

The elementary cut metric dE : X × X → [0,∞) associated to a cut
E ∈ Cut(X) is defined by dE(x1, x2) = |χE(x1)− χE(x2)|.

A cut measure on X is a Borel measure Σ on Cut(X) so that

∫

Cut(X)

µ(E ∩K)dΣ(E) < ∞

holds for every compact K ⊂ X.
The cut metric on X associated to a cut measure Σ is given by averaging

the elementary cut metrics according to Σ:

dΣ(x1, x2) =

∫

Cut(X)

dE(x1, x2)dΣ(E).

(For a.e. x1, x2 ∈ X this agrees with other variations on this definition.)
Now suppose that f : (X, µ) → L1(Y, ν) is an L1

loc map, where (Y, ν) is
a σ-finite measure space (i.e., it is a countable union of finite measure sets).
Let ρ = f ∗dL1 as before.

Theorem 5 ([CK09], Thm. 2.9; [CK06], Prop. 3.40). There is a cut measure
Σ and a full measure subset Z ⊂ X, so that the cut metric dΣ equals ρ on
Z × Z.
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Monotone cuts:
A cut E ⊂ R is monotone if it is equivalent to a measurable subset that

is connected with connected complement, i.e., ∅,R or a half-infinite ray.
We say that f : R → L1 is a geodesic map if there is a set Z ⊂ R of full

measure so that for all z1 ≤ z2 ≤ z3 in Z,

dL1(f(z1), f(z3)) = dL1(f(z1), f(z2)) + dL1(f(z2), f(z3)).

Given any metric α on R, for a ≤ b ≤ c in R we let excess(α){a, b, c} =
α(a, b)+α(b, c)−α(a, c) ≥ 0. If dE is an elementary cut metric, then excess(α)
equals zero for almost every {a, b, c} if and only if E is monotone. Averaging
this result over a cut measure, we get:

Lemma 6. If f : R → L1 is an L1
loc mapping, and Σ its associated cut

measure, then the following are equivalent:

• f is a geodesic map, and

• Σ-a.e. cut E is monotone.

We now extend this discussion to H. Recall that L(H) is the space of
lines in H. Let P(H) be the space of unit-speed parametrized lines in H. We
relate P(H) to L(H) using the natural fibration P(H) → L(H) that maps
a parametrized line to the line it represents. We also have the map Γ :
R× P(H) → H, where Γ(t, p) = p(t).

We say that a cut (i.e., a measurable subset) E ∈ Cut(H) is monotone if
E ∩ L is a monotone subset of L ' R for almost every L ∈ L(H).

With this definition, Lemma 6 can be used to show the following:

Proposition 7 ([CK09], Prop. 3.5). Let f : H → L1 be locally integrable,
with associated cut measure Σ. Then the following are equivalent:

• For almost every p ∈ P(H), the map R→ L1 given by t 7→ f(p(t)) is a
geodesic map, and

• Σ-a.e. cut E is monotone.

In particular, if f : H→ L1 is a geodesic map for almost every L ∈ L(H),
then Σ-a.e. cut in Cut(H) is monotone.

Why have we bothered to work with monotone sets? Monotone sets in H
have a very special form:

Theorem 8 ([CK09], Theorem 5.1). If E ⊂ H is a monotone set, then E
equals ∅, H or a half-space, up to a set of measure zero.

Jeehyeon Seo will prove this in her presentation.
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1.3 Outline of proof of Theorem 2

Assume that f : H → L1 is a C-Lipschitz map, and that the theorem fails.
Therefore there is a positive measure set of points V ⊂ H so that for all
p ∈ V ,

lim inf
t→0

d(f(p), f(p exp tZ))

d(p, p exp tZ)
> 0.

By countable additivity, there is a measurable set W ⊂ H of positive measure,
r > 0, λ > 0, so that

d(f(p), f(p exp tZ)) ≥ λd(p, p exp tZ) (2)

holds for all p ∈ W and |t| < r.
Since Theorem 3 holds almost everywhere, and W has positive density,

we can find a density point p ∈ W where the conclusion of Theorem 3 is
true. (A density point is a point p where as r > 0 tends to zero, the ratio of
the measure of W ∩B(p, r) relative to the measure of B(p, r) tends to one.)

As in Theorem 3, we take a sequence λk → 0 and we blow up the pullback
distance ρ = f ∗dL1 at p:

ρk =
1

λk

(lg ◦ sλ)
∗ρ =

1

λk

(f ◦ lg ◦ sλ)
∗dL1 .

Since f is C-Lipschitz, ρk ≤ Cd, so the functions ρk are uniformly contin-
uous and bounded on compact sets, so by Arzela-Ascoli (after we take a
subsequence) they will converge uniformly on compact subsets to a pseudo-
distance ρ∞ : H×H→ [0,∞).

Since p was a density point of Y , when we blow up (2) gives us

ρ∞(x, x exp tZ) ≥ λd(x, x exp tZ) (3)

for every x ∈ H and t ∈ R.
By Corollary 4, ρ∞ = f ∗ωdL1 for some Lipschitz map fω : H → L1, and

ρ∞ is geodesic on lines. Therefore, Proposition 7 implies that Σ-a.e. cut
E ∈ Cut(H) is monotone, and Theorem 8 gives that Σ-a.e. cut E ∈ Cut(H)
is a half-space.

This is good because we are interested in the behavior of ρ∞ in the Z
direction, i.e., along fibers π−1(z), for z ∈ R2. For almost every z ∈ R2,
the cut measure will restrict to a well-defined cut measure on π−1(z) that is
supported on monotone cuts, as the intersection of a half-space with π−1(z)
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is monotone. Therefore, ρ∞(x1, x3) = ρ∞(x1, x2)+ ρ∞(x2, x3) if x1, x2, x3 are
points in order in π−1(z).

So, putting it all together,

ρ∞(x, x exp nZ) = nρ∞(x, x exp Z) ≥ nλd(x, x exp Z) ' n,

using (3), but

ρ∞(x, x exp nZ) ≤ Cd(x, x exp nZ) ' √
n,

a contradiction as n →∞.
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