
1 Cheeger differentiation

after J. Cheeger [1] and S. Keith [3]
A summary written by John Mackay

Abstract

We construct a measurable differentiable structure on any metric
measure space that is doubling and satisfies a Poincaré inequality.

1.1 Introduction

A key result of geometric function theory is Rademacher’s theorem: any real-
valued Lipschitz function on Rn is differentiable almost everywhere. In [1],
Cheeger found a deep generalization of this result in the context of doubling
metric measure spaces that satisfy a Poincaré inequality. We will outline the
construction of a measurable differentiable structure on such spaces, following
both his work and clarifications and extensions due to Keith [3]. We refer
to these papers for further discussion of the background and consequences of
this work.

Recall that a function f : (X, d) → (Y, ρ) between metric spaces is
(C-)Lipschitz if for all x, y ∈ X,

ρ(f(x), f(y)) ≤ Cd(x, y). (1)

The infimal value of C that satisfies this condition is denoted by LIPf . We
define LIP(X) to be the vector space of all real-valued Lipschitz functions
on X.

We will measure the infinitesimal behavior of a real-valued function near
a point in two different ways.

Definition 1. Let f : X → R be a function on a metric space X. For x ∈ X,
let

(lipf)(x) := lim inf
r→0

sup
y∈B(x,r)

|f(y)− f(x)|
r

(2)

and

(Lipf)(x) := lim sup
r→0

sup
y∈B(x,r)

|f(y)− f(x)|
r

. (3)
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A metric measure space (X, d, µ) consists of a set X with a metric d and
a Borel measure µ. When f is a Lipschitz function on (X, d, µ) both lipf
and Lipf are Borel [3, Lemma 4.1.2]. In fact, for each x ∈ X,

|f |x = (Lipf)(x) (4)

defines a semi-norm on LIP(X) [3, Definition 4.2.1].
The following definitions will give us a framework to talk about the in-

finitesimal behaviour of a collection of functions on a metric measure space.

Definition 2. A function f : X → R vanishes to first order at x ∈ X if
f(x) = 0 and |f |x = 0. (Equivalently, f(·) = o(d(x, ·)) near x.)

Definition 3. An N-tuple of functions f = (f1, . . . , fN), where fi : X → R
for 1 ≤ i ≤ N , is dependent to first order at x ∈ X if there exists λ ∈ Rn\{0}
so that λ · f(·)− λ · f(x) vanishes to first order.

Let S(f) be the set of all points in X where f is not dependent to first
order.

Definition 4. We say that the differentials have uniformly bounded di-
mension if there exists N ∈ N so that any N-tuple of Lipschitz functions
(f1, . . . , fN) is dependent to first order almost everywhere.

As we shall see in Propositions 11 and 12, if our metric measure space
is doubling, locally compact and satisfies a Poincaré inequality, then the
differentials have uniformly bounded dimension.

Rademacher’s theorem essentially states that the infinitesimal behaviour
of any Lipschitz function on Rn is well approximated at almost every point by
some linear function; that is, a linear combination of the coordinate functions.

Definition 5. Say that an N-tuple of real-valued functions on X, x =
(x1, . . . , xN), spans the differentials almost everywhere if for any Lipschitz
function f : X → R, for almost every x ∈ X there exists df(x) ∈ RN so that

|f(·)− df(x) · x(·)|x = 0. (5)

Then Rademacher’s theorem may be stated as

Theorem 6 (Rademacher). Denote the coordinate functions on Rn by xi :
Rn → R, for 1 ≤ i ≤ n, and let x = (x1, . . . , xn). Then x spans the
differentials almost everywhere for Rn.
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Cheeger constructed such ‘coordinates’ for certain metric measure spaces.
In this case, we may well require different tuples of coordinates (possibly of
different cardinalities) in different locations.

Definition 7 (Cheeger, Keith). A strong measurable differentiable struc-
ture on a metric measure space (X, d, µ) is a countable collection of pairs
{(Xα,xα)}, called coordinate patches, that satisfy the following conditions.

Firstly, each Xα is measurable with positive measure and the union of
every Xα equals X.

Secondly, each xα is a N(α)-tuple of Lipschitz functions. There exists
some N so that N(α) ≤ N for all α. The smallest such N is called the
dimension of the differentiable structure.

Finally, for each α, xα spans the differentials almost everywhere for Xα.
Moreover, for each f ∈ LIP(X), equation (5) defines the measurable function
dfα : Xα → RN(α) uniquely up to sets of measure zero.

Remark 8. If N(α) = 0 for some α then the strong measurable differentiable
structure is degenerate. For such α interpret xα to be the empty function.
Equation (5) then means that for every Lipschitz function f and almost every
x ∈ Xα, |f |x = 0.

When X is quasi-convex (for example, it supports a Poincaré inequality),
distance functions d(z, ·) violate this condition, and so any strong measurable
differentiable structure will be non-degenerate.

A strong measurable differentiable structure leads to a finite dimensional
(L∞) cotangent bundle on X. (The uniqueness of dfα implies that any ‘tran-
sition functions’ between patches are suitable well behaved.)

1.2 Main theorem and structure of proof

As stated in the abstract, our main theorem is the following [3, Theorem
2.3.1], [1, Theorem 4.38].

Theorem 9. If (X, d, µ) is a metric measure space that is doubling and
supports a p-Poincaré inequality (with constant L ≥ 1) for some p ≥ 1,
then X admits a strong measurable differentiable structure with dimension
bounded above by a constant depending only on L and the doubling constant.

Recall that a measure µ on a metric space (X, d) is doubling if there
exists a constant C > 0 such that for every ball B = B(x, r) ⊂ X we have
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µ(2B) ≤ Cµ(B), where 2B denotes the ball B(x, 2r) with the same center
as B and twice the radius.

For a function f : X → R and set U ⊂ X with 0 < µ(U) < ∞, we define

fU := −
∫

U

fdµ :=
1

µ(U)

∫

U

fdµ. (6)

Definition 10. Fix p ≥ 1. A metric measure space (X, d, µ) admits a p-
Poincaré inequality (with constant L ≥ 1) if every ball in X has positive and
finite measure, and for every f ∈ LIP(X) and every ball B = B(x, r)

−
∫

B

|f − fB|dµ ≤ Lr

(
−
∫

LB

(lipf)(x)pdµ

)1/p

. (7)

This is a different, but equivalent, definition to the usual definition of
a Poincaré inequality [1, (4.3)]. (Note that lipf is an upper gradient for
f .) Essentially, a space satisfies a Poincaré inequality if there are “lots of
rectifiable curves” in every location and on every scale.

We will sketch a proof of Theorem 9 following Keith [3]. The three key
propositions are as follows. In each case, (X, d, µ) is a locally compact,
doubling, metric measure space.

Proposition 11 (Prop. 4.3.1, [3]). Suppose X admits a p-Poincaré inequality
(with constant L ≥ 1) for some p ≥ 1. Then there exists K > 0, depending
only on L and the doubling constant, so that:

∀f ∈ LIP(X), (Lipf)(x) ≤ K(lipf)(x) for µ−a.e. x ∈ X. (8)

Cheeger showed the much deeper result that K = 1, that is, lipf = Lipf
almost everywhere [1, Theorem 6.1].

Proposition 12 (Prop. 7.2.2, [3]). Fix K > 0. Suppose that the Lip-lip
bound (8) holds. Then for every N and every N-tuple f of Lipschitz func-
tions, the set S(f) is measurable. If µ(S(f)) is positive, then N ≤ N0, where
N0 depends only on K and the doubling constant.

In other words, the differentials have uniformly bounded dimension.

Proposition 13 (Proof of Prop. 7.3.1, [3]). If the differentials have uniformly
bounded dimension N0, and if S(f) is measurable for every tuple of Lipschitz
functions f , then X admits a strong measurable differentiable structure whose
dimension is at most N0.
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By breaking down the proof into these steps we lose some information. In
another paper [2], Keith gets a stronger result using the Poincaré inequality
throughout. He shows that there exists a strong measurable differential struc-
ture where every coordinate function xi

α is equal to some distance function
d(z, ·).

1.3 Outline of proofs

We now outline the main steps in the proof of each proposition.

Proof of Proposition 13. We have N0 fixed by the hypotheses.
It suffices to show that given any measurable A ⊂ X with positive mea-

sure, we can find a measurable V ⊂ A with positive measure so that for each
f ∈ LIP(X), equation (5) defines the measurable function df : V → RN

uniquely up to sets of measure zero, for some N ≤ N0. This is because
(X, d, µ) is a σ-finite measure space, and so a short argument using Zorn’s
lemma gives the required countable decomposition.

Now consider the maximal N so that there exists some positive measure
set V ⊂ A, and some N -tuple of Lipschitz functions f , so that V ⊂ S(f). By
Proposition 12 we have 0 ≤ N ≤ N0.

Take any Lipschitz function g ∈ LIP(X), and consider the (N + 1)-tuple
of functions (f , g). By the maximality of N this is dependent to first order
almost everywhere in V , and by the assumption on f we can find some
function dg : V → RN so that |g(·)− dg(x) · f(·)|x = 0 for µ-almost every x
in V .

It is not difficult to show that dg will be measurable and unique up to
sets of measure zero.

The most difficult of the three steps is to show that the differentials have
uniformly bounded dimension; for reasons of space we will be somewhat
sketchy.

Proof of Proposition 12. The variation of a function f : X → R on a ball
B(x, r) is defined to be

var(x,r)f := sup

{ |f(y)− f(x)|
r

: y ∈ B(x, r)

}
. (9)

A function f ∈ LIP(X) is K-quasi-linear if the variation on every ball is at
least 1

K
LIPf .
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The first step in the proof is to show that a vector space of K-quasi-linear
functions on a doubling metric measure space has dimension bounded from
above by a constant dependent only on the data [3, Theorem 6.1.2].

Secondly, it is shown that for every f ∈ LIP(X), for almost every x ∈ X
there exists some tangent space (X∞, d∞, x∞) so that every tangent function
f∞ satisfies

lipf(x) ≤ varf∞ ≤ LIPf∞ ≤ Lipf(x). (10)

(The variation is over any ball in the tangent space.) Combined with the
(K−)Lip-lip bound, we see that tangent functions are K-quasi-linear [3,
Proposition 6.2.1].

Thirdly, for an N -tuple of Lipschitz functions f we immediately obtain,
almost everywhere, the K-quasi-linearity of tangent functions (λ · f)∞, where
λ lies in a countable dense subset of RN .

Fourthly, we show that, by choosing appropriate a priori bounds, on a
set of positive measure the set of tangent functions (λ · f)∞, λ ∈ RN , is a
N -dimensional vector space of K-quasi-linear functions.

The proof follows.

Finally, we show the existence of a Lip-lip bound on spaces satisfying a
Poincaré inequality. (I thank Bruce Kleiner for explaining this proof of this
proposition to me, as well as the terminology of Definitions 2–4.)

Proof of Proposition 11. A doubling and complete metric space (X, d, µ) is
proper: closed balls are compact. Semmes [1, Appendix] showed that if X
satisfies a Poincaré inequality then it is quasi-convex, that is, any two points
can be joined by a rectifiable path of comparable length.

Since lipf is Borel it is approximately continuous almost everywhere. Let
x be a point of approximate continuity and fix λ ∈ (0, 1).

There exists a constant C depending only on the doubling constant so that
if r > 0 is sufficiently small, for any two intersecting λr-balls B1, B2 ⊂ B(x, r)
we have ∣∣∣∣−

∫

B1

f −−
∫

B2

f

∣∣∣∣ ≤ Cλr(lipf)(x). (11)

This follows from the Poincaré inequality (7), doubling, the approximate
continuity of f at x and the fact that (lipf)(z) ≤ LIPf for every z ∈ X.

Chaining together λr-balls from x to y ∈ B(x, r), we get the desired
conclusion up to an additive error term comparable to λ(LIPf). Since λ ∈
(0, 1) was arbitrary, we are done.
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