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Abstract. We give a lower and an upper bound for the conformal
dimension of the boundaries of certain small cancellation groups.

We apply these bounds to the few relator and density models for
random groups. This gives generic bounds of the following form,
where l is the relator length, going to infinity.

(a) 1 + 1/C < Cdim(∂∞G) < Cl/ log(l), for the few relator
model, and

(b) 1 + l/(C log(l)) < Cdim(∂∞G) < Cl, for the density model,
at densities d < 1/16.

In particular, for the density model at densities d < 1/16, as
the relator length l goes to infinity, the random groups will pass
through infinitely many different quasi-isometry classes.

1. Introduction

1.1. Overview. In the study of random groups, one considers typical
properties of finitely presented groups. There are several ways to make
this idea precise. We will work in two of the most common models for
a random group: the few relator model and the density model, both
due to Gromov. Our goal is to study the large scale geometry of such
groups.

In each of these models, a typical group is (Gromov) hyperbolic [10,
11]. To any hyperbolic group G we can associate a boundary at infinity
∂∞G, which is a metric space where the metric is canonically defined
up to a quasi-symmetric homeomorphism. For example, we can choose
any visual metric on the boundary. The boundary captures the quasi-
isometry type of the group: two finitely presented hyperbolic groups are
quasi-isometric if and only if their boundaries are quasi-symmetric [24].

In both models, the boundary of a random group is homeomor-
phic to the Menger curve (also called the Menger sponge), but this
is not enough to determine the quasi-symmetric type of the boundary,
and hence the large scale geometry of the group. Indeed, Bourdon
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found an infinite family of hyperbolic groups whose boundaries are all
homeomorphic to the Menger curve, but which are pairwise non-quasi-
isometric [4].

The invariant which Bourdon used, and which we will use in this
paper, is due to Pansu. The conformal dimension of a metric space X
is the infimal Hausdorff dimension of all metric spaces quasi-symmet-
rically equivalent to X, and is denoted by Cdim(X) [23, 18]. Recall
that a homeomorphism is quasi-symmetric if there is uniform control
on how it distorts annuli [27, (1.2)]. (See also [12, Chapter 10].)

Conformal dimension is clearly a quasi-symmetric invariant of a met-
ric space, and consequently the conformal dimension of ∂∞G is canoni-
cally defined and depends only on the quasi-isometry type of the group.
(For more discussion of this invariant, see [15, 18].) Bourdon’s family of
groups have boundaries with conformal dimension attaining values in
a dense subset of (1,∞) [4, Théorème 1.1], and so they lie in infinitely
many different quasi-isometry classes.

In this paper we give the first significant progress towards calculat-
ing the conformal dimension of the boundary of a random group. (A
question raised by Gromov and Pansu; see the following subsection.)
In particular, we show that in the density model with d < 1/16, as
the lengths of the relators tend to infinity, the conformal dimension
of the boundary also tends to infinity, passing through infinitely many
different quasi-isometry types.

1.2. Statement of results. The simplest model of a random group is
given by the few relator model. Throughout this paper we fix a finite
generating set S, |S| = m ≥ 2.

Definition 1.1 (Few relator model). Fix a finite number of relators
n ≥ 1. Consider all cyclically reduced words of length at most l in 〈S〉.
Consider all presentations 〈S | r1, . . . , rn〉 where r1, . . . , rn are chosen
from this set of words uniformly and independently at random.

A property P is generic in the few relator model (for fixed n), if the
proportion of all such presentations at length l which satisfy P goes to
1 as l → ∞. In this case, we say that a random (few relator) group
has property P.

This model was introduced by Gromov [10], who observed that a
random few relator group will satisfy the C ′(1/6) small cancellation
condition, and so be hyperbolic. The algebraic properties of these
groups, such as freeness of subgroups and isomorphism type, have been
studied by Arzhantseva, Ol’shanskii, Kapovich, Schupp, and others
[1, 13, 14]. For more discussion, see [19, I.3.c].
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The geometry of such groups was considered by Champetier [6]. He
used small cancellation techniques to show that generic few relator
groups have boundaries homeomorphic to the Menger curve (see The-
orem 1.8).

The few relator model can be viewed as the “density 0” case of a
more general model, where the number of relators grows as l→∞.

Definition 1.2 (Density model [11, Chapter 9]). Fix a parameter d ∈
(0, 1), called the density. Consider all cyclically reduced words of length
l in 〈S〉. Consider all presentations which choose as relators (2m−1)dl

of these words uniformly and independently at random.
A property P holds generically in the density model (at fixed density

d), if the proportion of all such presentations at length l which satisfy
P goes to 1 as l→∞.

Gromov showed that the density model has a phase transition: for
densities d < 1/2, a random group will be one ended and hyperbolic,
but for densities d > 1/2, a random group will be trivial or Z/2Z ([11,
Section 9.B], [19, Theorem 11]).

The boundary of a random group at density d < 1/2 is homeo-
morphic to the Menger curve. At densities d < 1/24, this follows
from Champetier’s Theorem 1.8. A proof that applies to all densities
0 < d < 1/2 is given in [8].

Since we know that random groups in both the few relator and den-
sity model are hyperbolic, it makes sense to ask for estimates of the
conformal dimension of their boundaries.

For any hyperbolic group with boundary homeomorphic to the Men-
ger curve, the conformal dimension of the boundary will be strictly
greater than one [17], and finite [7]. In this paper we give explicit
non-trivial bounds for the conformal dimension of a random group.

Theorem 1.3. There exists C > 1 so that, for fixed m ≥ 2, n ≥ 1, the
conformal dimension of a random few relator group satisfies

1 +
1

C
≤ Cdim(∂∞G) ≤ C log(2m− 1) · l

log(l)
.

Note that the lower bound is independent of l, and the upper bound
is sub-linear. The conclusion of this theorem involves n implicitly: let
P (m,n, l) be the proportion of all groups with m generators and n
cyclically reduced relators of word length at most l which satisfy the
above estimate. Then for fixed m,n we have P (m,n, l)→ 1 as l→∞,
however the rate of convergence depends on n.
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Theorem 1.4. There exists C > 1 so that, for fixed m ≥ 2, 0 < d <
1/16, the conformal dimension of a random group at density d satisfies

1 +
d log(2m)

C
· l

log(l)
≤ Cdim(∂∞G) ≤ C log(2m− 1)

| log(d)|
· l.

In particular, as l→∞, generic groups pass through infinitely many
different quasi-isometry classes.

Gromov [11, 9.B, p.276, (g)] and Pansu [19, IV.b., p.70], had asked
whether the conformal dimension of a random group in the density
model can be used to detect the particular density d. Theorem 1.4,
gives progress towards solving this problem.

Roughly speaking, the few relator model corresponds to taking d =
1/l. We see this reflected in factors of 1/ log(l) and 1/| log(d)| in the
upper bounds of Theorems 1.3 and 1.4.

There are several natural questions that remain. For example, does
the conformal dimension of a random few relator group go to infinity
as the relator length goes to infinity? What happens at densities d ≥
1/16? (See the discussion below.) Can one find a function f(d, l) so
that the conformal dimension of a random group at density d satisfies
f(d, l) . Cdim(∂∞G) . f(d, l)? (We write x . y if x ≤ Cy, for some
suitable constant C.)

For more background on random groups we refer the reader to [9]
and [19], and on conformal dimension to [18].

1.3. Outline of proof. The random groups that we consider are all
C ′(1/6) small cancellation groups. Recall that a group presentation
〈S|R〉 is C ′(λ) if every word u which appears in two distinct ways in
(cyclic conjugates of) relators r1, r2 ∈ R, or their inverses, satisfies
|u| < min{|r1|, |r2|}.

In the few relator model this is straightforward to prove; a more
refined estimate is found in Proposition 2.2, where we show that a
generic few relator group will be C ′(λ) with λ . log(l)/l. In the density
model, we have the following result.

Proposition 1.5 ([11, Section 9.B]). For d > 0, and λ > 2d, a random
group at density d has the C ′(λ) metric small cancellation condition.

For λ > 0 and 2d > λ, a random group at density d does not have
the C ′(λ) metric small cancellation condition.

In particular, at densities d < 1/12, a random group has a C ′(1/6)
small cancellation presentation.

Specifying a finite generating set S for G allows one to define the
Cayley graph Γ = Γ(G,S). The Cayley graph of a C ′(1/6) group is
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δ-hyperbolic, with δ equal to twice the maximum relator word length
(Lemma 3.11).

As a hyperbolic metric space, for any sufficiently small visual param-
eter ε > 0, ∂∞Γ carries a visual metric comparable to e−ε(·,·), where (·, ·)
denotes the Gromov product. A simple upper bound on the conformal
dimension of ∂∞G is given by the Hausdorff dimension of this metric
space, which equals h(G)/ε [7, Corollary 7.6]. Here h(G) is the volume
entropy of the group (with respect to S). In an m-generator group,
we always have h(G) ≤ log(2m − 1). (This is essentially sharp for a
random group [25, 20].) Thus,

(1.6) Cdim(∂∞G) ≤ 1

ε
h(G) ≤ 1

ε
log(2m− 1).

To give a good upper bound for the conformal dimension, then, we
would like to choose ε as large as possible. The standard estimate for an
admissible ε is ε ≤ log(2)/(4δ) [5, III.H.3.21]. In the few relator model,
or the density model with d < 1/12, we can take δ = 2l. Ollivier shows
that in the density model with d < 1/2 we can take δ ≤ 4l/(1 − 2d)
[21, Corollary 3].

Consequently, in the few relator model we have the generic estimate
Cdim(∂∞G) ≤ (8 log(2m − 1)/ log(2)) · l. The following result is also
immediate, and worth noting.

Proposition 1.7. A random group at density d < 1/2 will satisfy

Cdim(∂∞G) ≤ 16 log(2m− 1)

(log 2)(1− 2d)
· l.

(Theorem 1.4 gives a sharper upper bound for small d.)
For C ′(1/6) groups, we cannot find a significantly better estimate

for δ, since the relators of size l give bigons with sides separated by
a distance of order l. However, work of Bonk and Foertsch [2] lets us
find a better estimate for ε using the concept of “asymptotic upper
curvature” (Section 4).

Theorem 4.1. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1/6, and |r| ≤M for all r ∈ R, then

Cdim(∂∞(G)) ≤ M

2 logb 1
λ
− 4c

log(2m− 1).

Combining this theorem with Propositions 2.2 and 1.5, we obtain
the upper bounds in Theorems 1.3 and 1.4.

It is more difficult to obtain lower bounds for the conformal dimen-
sion. A key inspiration for our work is the following result of Cham-
petier.
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Theorem 1.8 ([6, Theorem 4.18]). Suppose G = 〈S|R〉 is a C ′(1/12)
presentation, with |S| ≥ 2 and |R| ≥ 1. Suppose further that every
reduced word u ∈ 〈S〉 of length 12 appears at least once in some cyclic
conjugate of some r±1, r ∈ R. Then ∂∞G is homeomorphic to the
Menger curve.

Random groups certainly contain every word of length 12 as a sub-
word of some relator. In fact, generic few relator presentations contain
every word of length C log(l) as a subword of some relator (Proposi-
tion 2.6), while generic presentations at density d contain every word
of length Cl, for C < d, as a subword of some relator (Proposition 2.7).

Champetier builds a cone in the Cayley complex of a C ′(1/12) group
that gives an arc in its boundary. We strengthen his techniques slightly
to C ′(1/8−δ) groups, and produce instead a sub-complex quasi-isometric
to one of Gromov’s “round trees” [11, 3] This gives a Cantor set of
curves in the boundary, to which we apply a lemma of Pansu and Bour-
don. We find the following lower bound for the conformal dimension
of a group in terms of simple algebraic properties of its presentation.

Theorem 5.1. Suppose G = 〈S|R〉 is a C ′(1/8− δ) presentation, with
|S| = m ≥ 2 and |R| ≥ 1, where δ ∈ (0, 1/8) and |r| ∈ [3/δ,M ] for
all r ∈ R. Suppose further that for some M∗ ≥ 12, every reduced word
u ∈ 〈S〉 of length M∗ appears at least once in some cyclic conjugate of
some relator r±1, r ∈ R. Then for some universal constant C > 0, we
have

Cdim(∂∞G) ≥ 1 + C log(2m) · M∗

log(M)
.

(If we have a C ′(1/11) presentation, the lower bound on the lengths of
relators holds automatically.)

This theorem combines with Proposition 2.6 and 2.7 to complete the
proof of Theorems 1.3 and 1.4.

Random groups in the density model have better small cancellation
properties than their optimal C ′(λ) condition would lead you to expect
(see Ollivier [21] and Ollivier and Wise [22]). Using results from these
papers, the author has extended Theorems 1.4 and 5.1 to densities
d < 1/13. It is reasonable to expect that similar techniques to ours
may be used to find a good lower bound for the conformal dimension of
a random group at densities up to, say, d < 1/6, however entirely dif-
ferent techniques would be needed above d > 1/4, as at these densities
random groups have no good small cancellation properties at all.
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1.4. Outline of paper. In Section 2 we consider random groups in
both models and their small cancellation properties. Standard re-
sults about the geometry of C ′(1/6) groups, including hyperbolicity,
are given in Section 3.

Asymptotic upper curvature bounds are used in Section 4 to give
a generic upper bound for conformal dimension. A round tree sub-
complex is built in Section 5, and the proof of Theorem 5.1 is completed
in Section 6.

1.5. Acknowledgments. I would like to thank Ilya Kapovich for in-
troducing me to some of the questions considered in this paper. I also
thank Piotr Przytycki for interesting conversations, and the referee for
many helpful suggestions.

2. Random groups and small cancellation

Our goal in this section is to study subwords of random groups in
the few relator model and density model. We find out what lengths
subwords should be to be unique in the presentation, or, on the other
hand, so that every possible subword of that length appears. These cal-
culations are fairly routine, with some small technicalities from working
with cyclically reduced words as opposed to just reduced words.

We recall the definition of the metric small cancellation condition [16].

Definition 2.1. The presentation G = 〈S | R〉 satisfies the metric
small cancellation condition C ′(λ), for some 0 < λ < 1, if every piece
u which is a subword of some cyclic conjugate of r±1, r ∈ R, satisfies
|u| < λ|r|. A piece is a common initial segment of two distinct cyclic
conjugates of r1, r2 ∈ R ∪R−1, where r1 may equal r2.

2.1. Small cancellation in the few relator model. We have m ≥
2, n ≥ 1 fixed. Our goal in this subsection is to show that generic few
relator presentations satisfy strong small cancellation properties.

Proposition 2.2. There exists 0 < C0 < ∞, depending only on m,
so that generic few relator presentations are C ′(λ0(l)), where λ0(l) =
C0

log l
l

. In fact, we can take C0 = 11/ log(2m− 1).

This result is essentially sharp, as shown by Proposition 2.6.
We begin with some preliminary observations. In the following, the

notation A � B indicates that A . B . A.
Let Nl be the number of cyclically reduced words of length l in Fm.

It is easy to see that Nl � (2m − 1)l, with multiplicative error of 4
3
.

More precise estimates are in Subsection 2.2 below. Let N≤l be the
number of cyclically reduced words of length at most l in Fm. Again,
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N≤l � (2m− 1)l. The number of presentations where all relators have
length at most l is Nn

≤l = (N≤l)
n.

Let Nn
[0.99l,l] be the number of presentations where all n relators have

length at least 0.99l, but no more than l. This is generic, since

Nn
≤l −Nn

[0.99l,l]

Nn
≤l

≤
n ·N≤0.99l ·Nn−1

≤l

Nn
≤l

. (2m− 1)−0.01l,

which goes to zero as l→∞.
So to show that a property is generic, it suffices to show that it is

generic within the class of presentations where all relators have lengths
between 0.99l and l.

Proof of Proposition 2.2. Let N(li) be the number of presentations with
cyclically reduced relators of length |ri| = li, i = 1, . . . , n, and let
N c

(li),λ0
be the number of those which are not C ′(λ0). It suffices to find

an o(1) bound for N c
(li),λ0

/N(li), when the relators have lengths l1, . . . , ln
in [0.99l, l].

If we fail to be C ′(λ0), then there is a word u of length equal to
d0.99lλ0e which appears in two distinct places in the words r1, . . . , rn,
or their inverses.

Case 1: The word u appears in two different words.
There are

(
2n
2

)
≤ 4n2 choices for the words r±1

i and r±1
i′ . Given this

choice, the number of ways u can appear is bounded from above by
the product of the number of choices of (1) the location of u in these
words, (2) the word u, (3) the remainder of the words ri and ri′ , and
(4) the other words. Call these numbers A1, A2, A3 and A4 respectively.
Clearly,

A1 ≤ l2, A2 ≤
4

3
(2m− 1)|u|,

A3 ≤ (2m− 1)li−|u| · (2m− 1)li′−|u|, and A4 =
∏
j 6=i,i′

Nlj .

Since we have

A1A2A3A4∏
j=1,...,nNlj

.
l2(2m− 1)|u|(2m− 1)li−|u|(2m− 1)li′−|u|

Nli ·Nli′

. l2(2m− 1)−|u|,

Case 1 occurs with probability P1 at most P1 . n2l2(2m− 1)−|u|. Ob-
serve that −|u| ≤ −0.99C0 log(l), and l2 = (2m − 1)2 log(l)/ log(2m−1).
Therefore, provided 2− 0.99C0 log(2m− 1) < 0, the probability P1 will
go to zero as l goes to infinity.
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Case 2: The word u appears in the same word ri in two distinct ways.
Let P2 be the probability this occurs among presentations of lengths

(li).

Lemma 2.3. There is a subword v of u, of length at least 0.2C0 log(l),
which appears in ri in two non-intersecting locations as either v or v−1.

Proof. Consider ri as a labelling on the oriented circle. Let u1 and u2

be the two words on the boundary ri so that each is labelled by u or
u−1.

If the initial segment of u1 of length d0.2C0 log(l)e does not intersect
u2, then let v be that subword, and we are done.

Otherwise, up to relabelling u1 and u2, we can assume that the initial
letter of u1 is not in u2 but that the initial segment of u1 of length
d0.2C0 log(l)e does meet u2.

If the word u has opposite orientations in u1 and u2, we let v be the
initial segment of u1 of length d0.2C0 log(l)e. Then v−1 also appears in
the tail segment of u2, disjoint from v.

Finally, if u has the same orientation in both u1 and u2, let w be the
initial segment of u1 disjoint from u2, of length at most 0.2C0 log(l).
Since the words u1 and u2 are both copies of u, u is made up of repeated
copies of w followed by some tail w′. We write u = w2kw′, for some
integer k, and word w′ of length |w′| < 2d0.2C0 log(l)e, thus |wk| ≥
0.2C0 log(l), so v = wk is our required word. (In some of these estimates
we assumed that l was sufficiently large.) �

We can now find, analogous to Case 1, that P2, is bounded from
above by the product of the number of choices of i, the locations of v
in this word, the word v, the remainder of the word ri, all divided by
Nli . Therefore

P2 .
n · l2 · (2m− 1)|v| · (2m− 1)li−2|v|

Nli

. l2(2m− 1)−|v|.

Now −|v| ≤ −0.2C0 log(l), so provided 2− 0.2C0 log(2m− 1) < 0, the
probability P2 will go to zero as l goes to infinity.

Combining the cases:
We have shown that N c

(li),λ0
/N(li) ≤ P1 + P2 goes to zero as l →∞,

independent of the choice of li between 0.99l and l, provided that C0

is sufficiently large. It suffices to take C0 = 11/ log(2m− 1). �

2.2. Counting cyclically reduced words. In this subsection we give
some lemmas we will use in the remainder of this section. We will
need the following lemma which counts the number of ways to fill in a
cyclically reduced word.
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Lemma 2.4. We count all reduced words w of length n + 2 with first
and last letter fixed in the free group 〈s1, s2, . . . , sm〉.

There are essentially three different cases. Let pn, qn and rn count
the number of reduced words of length n+ 2 of the forms s1us1, s1us

−1
1

and s1us2, respectively. Then, for all n ≥ 1, we have:

max{pn, qn, rn}
min{pn, qn, rn}

≤ 1 +
2

(2m− 1)n
.

Proof. Note that p1 = 2m− 1, and q1 = r1 = 2m− 2. Clearly,

pn = pn−1 + (2m− 2)rn−1,

qn = qn−1 + (2m− 2)rn−1, and

rn = pn−1 + qn−1 + (2m− 3)rn−1.

One observes that, by induction, when n is odd, pn = qn + 1 and
rn = qn, while when n is even, pn = rn = qn + 1.

A simple recurrence relation calculation gives that

qn =

{
1

2m

(
(2m− 1)n+1 − 1

)
if n is odd,

1
2m

(
(2m− 1)n+1 − (2m− 1)

)
if n is even.

Therefore

qn ≥
2m− 1

2m

(
(2m− 1)n − 1

)
≥ 1

2
(2m− 1)n,

and
max{pn, qn, rn}
min{pn, qn, rn}

=
qn + 1

qn
= 1 +

1

qn
≤ 1 +

2

(2m− 1)n
. �

This proof implies that Nl = 2mpl−1 � (2m− 1)l.
The following lemma estimates the probability of omitting a specified

word.

Lemma 2.5. Fix a reduced word r0 of length g(l) < l/4, g(l) > 4. Let
Nr0 be the number of all cyclically reduced words of length l which omit
r0. Then the proportion Nr0/Nl is at most

Nr0

Nl

≤ exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)
.

Proof. Consider a cyclically reduced relator r1 of length l which omits
r0. Let A = b l

2(g(l)+1)
c. Let us split up r1 into an initial letter, then

words u1, u2, . . . , uA of length g(l) + 1, plus a tail of length t, where t
must be between (l/2)−1 and 3l/4. Each word ui consists of an initial
letter, plus a word of length g(l), which is not r0.

The initial letter of r1 has 2m possibilities. For each i = 1, . . . , A,
either the initial letter of ui matches the inverse of the initial letter
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of r0, or it does not. In the former case, the remaining g(l) letters
have (2m − 1)g(l) possibilities, while in the latter case there are only
(2m−1)g(l)−1 possibilities, since the word r0 is excluded. The number
of possibilities for the remaining t letters is bounded by max{pt, qt, rt}
(as defined in Lemma 2.4). Altogether, we have a bound

Nr0

Nl

≤
2m
(
(2m− 1)g(l) + (2m− 2)

[
(2m− 1)g(l) − 1

])A
max{pt, qt, rt}

2m(2m− 1)(g(l)+1)A min{pt, qt, rt}

≤

(
(2m− 1)g(l) + (2m− 2)

[
(2m− 1)g(l) − 1

]
(2m− 1)g(l)+1

)A(
1 +

2

(2m− 1)t

)

=

(
1− (2m− 2)

(2m− 1)g(l)+1

)A(
1 +

2

(2m− 1)t

)
≤ exp

(
2

(2m− 1)t
− A · (2m− 2)

(2m− 1)g(l)+1

)
, using 1 + x ≤ ex.

Observe that A ≥ l
6g(l)

, and 2m−2
2m−1

≥ 2
3
, thus:

Nr0

Nl

≤ exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)
. �

2.3. Short subwords of generic few relator presentations.

Proposition 2.6. There exists a constant C (depending on m) so that
a generic few relator presentation with relator lengths at most l contains
every reduced word of length dC log(l)e as a subword of some relator.

In fact, we can take any C < 1/ log(2m− 1).

We will actually show that every reduced word of length dC log(l)e
appears as a subword of every relator.

Proof. Let Ng(l) be the number of cyclically reduced words in 〈S〉 of
length l which contain every word of length at most g(l). To prove the
proposition, it suffices to show that (Nl − Ng(l))/Nl → 0 as l → ∞,
where g(l) = dC log(l)e.

By Lemma 2.5, the probability of an individual relator omitting a
fixed word r0 of length g(l) is at most

exp

(
1− l

9g(l)(2m− 1)g(l)

)
.
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There are at most 4
3
(2m − 1)g(l) choices for r0, so the probability of

missing some word of length g(l) satisfies

Nl −Ng(l)

Nl

≤ 4

3
(2m− 1)g(l) · exp

(
1− l

9g(l)(2m− 1)g(l)

)
≤ 4 exp

(
log(2m− 1)g(l)− l

9g(l)(2m− 1)g(l)

)
.

Note that since g(l) = dC log(l)e, (2m − 1)g(l) behaves like lC log(2m−1)

for large l. Thus, if C log(2m− 1) < 1, then
Nl−Ng(l)

Nl
will go to zero as

l→∞. �

2.4. Short subwords in the density model. The following propo-
sition is a version of [19, Prop. 9]. Ollivier sketches a proof for 0 <
C < d < 1; for completeness we provide a proof in the following special
case.

Proposition 2.7. For any 0 < C < d < 1/4, a generic presentation
at density d contains every reduced word of length dCle as a subword
of some relator.

Proof. This follows a similar proof to Proposition 2.6. There are (2m−
1)dl reduced words chosen independently, so the probability that they
all omit a particular word r0 of length g(l) = dCle is, by Lemma 2.5,
at most [

exp

(
2

(2m− 1)(l/2)−1
− l

9g(l)(2m− 1)g(l)

)](2m−1)dl

= exp

(
2(2m− 1)dl

(2m− 1)(l/2)−1
− l(2m− 1)dl

9g(l)(2m− 1)g(l)

)
. exp

(
−1

10C
(2m− 1)(d−C)l−1

)
,

for sufficiently large l.
Again, there are at most 4

3
(2m−1)g(l) choices for r0, so the probability

P that some word of length g(l) = dCle is omitted satisfies

P .
4

3
(2m− 1)g(l) · exp

(
−1

10C
(2m− 1)(d−C)l−1

)
. exp

(
2 log(2m− 1)Cl − 1

10C
(2m− 1)(d−C)l−1

)
,

for large l, and this goes to zero as l→∞. �
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3. Cayley graphs of small cancellation groups

In C ′(1/6) small cancellation groups, geodesic bigons and triangles
are known to have certain special forms [26, 6]. In this section we recall
these standard facts, and give some extensions to the case of geodesic
n-gons which will be needed in Section 4.

Throughout this section, G = 〈S | R〉 is a finitely presented group,
where every r ∈ R is a cyclically reduced word in 〈S〉.
Definition 3.1. A diagram for a reduced word w ∈ G is a connected,
contractible, finite, pointed, planar 2-complex D which satisfies the fol-
lowing conditions:

(1) Each edge of D is oriented and labelled with an element of S,
(2) For each face B ⊂ D, reading the edge labels along its boundary

∂B gives a (cyclic conjugate of) a word r±1, r ∈ R.
(3) The base point lies on the boundary ∂D, and reading the edge

labels from this point around ∂D counter-clockwise gives w.

We say D is reduced if there are never two distinct faces B1, B2 which
intersect in at least one edge, so that the labellings on ∂B1 and ∂B2,
read from this edge clockwise and counter-clockwise respectively, agree.

Lemma 3.2 (Strebel [26]). Suppose D is a reduced diagram homeo-
morphic to a disc. For a vertex v, let d(v) denote its degree. For a face
B, let |∂B| denote its degree, let e(B) denote the number of exterior
edges of B, and let i(B) denote the number of interior edges. Then

(3.3) 6 = 2
∑
v

(3− d(v)) +
∑
B

(6− 2e(B)− i(B)).

Proof. Suppose D has V vertices, E edges and F faces. Then

1 + E = V + F =
∑
v

1 +
∑
B

1,(3.4)

2E =
∑
v

d(v), and(3.5)

2E =

(∑
B

|∂B|
)

+ |∂D| =
∑
B

(2e(B) + i(B)) .(3.6)

Consider 6 · (3.4)− 2 · (3.5)− (3.6). �

Definition 3.7. The Cayley graph Γ(G,S) = Γ1(G,S) of a group G
with finite generating set S is the graph with vertex set G, and an
unoriented edge between {g, gs} for all g ∈ G, s ∈ S ∪ S−1.

Suppose P is a geodesic n-gon in the Cayley graph Γ(G,S), where
G = 〈S | R〉 satisfies C ′(λ), for some λ ∈ (0, 1

6
]. We want to show that
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P is slim; that is, any side of P is contained in a suitable neighborhood
of the other sides.

As P is a closed loop, van Kampen’s lemma states that there is a
reduced diagram D for P . We may assume that the boundary word
is cyclically reduced, and that D is homeomorphic to a disc; this only
makes it harder to show that P is slim.

We remove all vertices of degree 2 from D and relabel edges with the
corresponding words in 〈S〉. So now all vertices have degree at least 3.

In this reduced diagram, there are two kinds of faces that have ex-
ternal edges, those where a endpoint of a side of P lies in the interior of
an external edge, and all others. We call the former kind distinguished;
there are at most n of them.

When e(B) = 1 and B is not distinguished, the external edge with
label u is a geodesic in Γ(G,S), and so |u| ≤ 1

2
|∂B|. Now each remain-

ing edge of B is internal, and so a piece of G, and so has length less
than λ|∂B|. Thus

1

2
|∂B| ≤

∑{
|t| : t internal edge of B

}
< i(B)λ|∂B|,

So i(B) > 1
2λ

, thus i(B) ≥ b 1
2λ

+ 1c =: dExt(λ) ≥ 4.
Note also that each edge of an interior face B (e(B) = 0) has length

strictly less than λ|∂B|, so

i(B) >
1

λ
⇒ i(B) ≥

⌊1

λ
+ 1
⌋

=: dInt(λ) ≥ 7.

Thus (3.3) splits into cases as follows.

6 = 2
∑
v

(3− d(v)) +
∑

B, e(B)=0

(6− i(B)) +
∑

B, e(B)=1
not dist.

(4− i(B))+

∑
B, e(B)=1

dist.

(4− i(B)) +
∑

B, e(B)=k≥2

(6− 2k − i(B))
(3.8)

≤ −(dInt(λ)− 6)FI + 3n,

where FI is the number of interior faces of D. We have shown the
following.

Lemma 3.9. In the above situation,

FI ≤
3n− 6

dInt(λ)− 6
.

We now consider other aspects of the geometry of C ′(1/6) groups
that will be needed in the remainder of the paper.
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Figure 1. A geodesic bigon in a C ′(1/6) group

Lemma 3.10. Suppose G = 〈S|R〉 is C ′(1/6), and that the diagram D
has no vertices of degree two. Then any two distinct faces B,B′ ⊂ D
are either disjoint, meet at a single point, or meet along a single edge.

Also, the boundary of any face B is a simple curve, i.e., the face does
not bump into itself.

Proof. If the boundary of a face B is not a simple curve, B encloses
a subdiagram D′ in the interior of D, all of whose vertices (except
perhaps one) have degree at least three, and all of whose faces have
degree at least seven. This contradicts (3.3).

Similarly, if two faces meet at more than a single edge, they enclose
a subdiagram D′ in the interior of D, and this has at most two vertices
of degree two. This again contradicts (3.3). �

Lemma 3.9 immediately implies that reduced diagrams for geodesic
bigons have no internal faces, and that reduced diagrams for geodesic
triangles have at most three internal faces. We can make more precise
statements in these cases. See [26, Theorem 35] and [6, Proposition
3.6] for proofs.

Lemma 3.11. Reduced diagrams for geodesic bigons in a C ′(1/6) group
have a specific form, as illustrated by Figure 1.

Reduced diagrams for geodesic triangles in a C ′(1/6) group have no
interior faces. In particular, the Cayley graph is 2M-hyperbolic, where
M = maxr∈R |R|. After removing spurs, the reduced diagram for a
geodesic triangles has no more than six connected faces. (Figure 2
gives an example, with the dual diagram of these six faces indicated.)

Recall that if a geodesic triangle has sides γ12, γ13 and γ23 joining
vertices P1, P2 and P3, and D is a reduced diagram for the triangle,
then the spur of D containing P1 is the maximal subdiagram of D
bounded by γ12, γ13 and a vertex or a single internal edge.

In Sections 5 and 6, we will use the following slight generalization of
the geodesic bigon description above.
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Figure 2. A geodesic triangle in a C ′(1/6) group

Lemma 3.12. Suppose D is a reduced diagram in a C ′(1/6) group
whose boundary is labelled by, in order, a geodesic [p, u], part of a face
B ⊂ D, and a geodesic [v, p]. Then D has the same form as a diagram
for a bigon as illustrated by Figure 1 above.

Proof. As in the calculation of (3.8), we remove all degree two vertices
from D. We can assume that [p, u] ∩ [p, v] = {p} in D, otherwise a
geodesic bigon is formed and we can remove it and continue. Thus we
have a diagram homeomorphic to a disc. Every internal face has at
least seven edges. Every face with an external edge, with the possible
exceptions of B and the face containing p in its boundary, will have at
least four internal edges.

Therefore by (3.8), there are no internal faces. Moreover, the in-
equalities in (3.8) are equalities, and so B and the face containing p
have exactly one internal edge, and all vertices have degree three. Also,
all faces with at least two external edges have exactly two external and
two internal edges. Thus the faces adjacent to B and the face contain-
ing p have exactly two external and two internal edges. We continue,
and deduce that the diagram has the form of a chain of faces from p
to B meeting along single internal edges. �

4. Asymptotic curvature bounds and an upper bound for
conformal dimension

4.1. Outline. If G is hyperbolic, geodesic triangles in Γ(G,S) are uni-
formly slim. Consequently, geodesic n-gons will be (C log(n))-slim, for
some C independent of n. Bonk and Foertsch [2] investigated this fur-
ther and linked the behavior of geodesic n-gons to the optimal visual



CONFORMAL DIMENSION AND RANDOM GROUPS 17

parameter ε for visual metrics on the boundary of G. In this section
we will use these ideas to prove the following theorem.

Theorem 4.1. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1/6, and |r| ≤M for all r ∈ R, then

Cdim(∂∞(G)) ≤ M

2 logb 1
λ
− 4c

log(2|S| − 1).

We recall one of the equivalent definitions of asymptotic upper cur-
vature, and the result which we will need.

Definition 4.2 (Bonk and Foertsch). A geodesic metric space X has
an asymptotic upper curvature bound κ, written ACu(κ), for κ ∈
[−∞, 0), if there exists some C so that for every n ∈ N, n ≥ 2, every

geodesic (n+ 1)-gon in X is
(

1√
−κ log(n) + C

)
-slim.

(Recall that a geodesic (n + 1)-gon is ∆-slim if every side is in the
union of the ∆-neighborhoods of the other n sides.)

Theorem 4.3 ([2, Theorem 1.5]). If a geodesic metric space X is
ACu(κ), for some κ ∈ [−∞, 0), then for every 0 < ε <

√
−κ there is a

visual metric on ∂∞X with parameter ε.

This result, and the bound in (1.6), reduce the proof of Theorem 4.1
to the following statement, which we prove in the following subsection.

Theorem 4.4. If G = 〈S|R〉 is a C ′(λ) presentation of a group, with
λ ≤ 1

6
, and |r| ≤ M for all r ∈ R, then the Cayley graph Γ(G,S) is

ACu(κ) with κ = − 4
M2 log2

⌊
1
λ
− 4
⌋
.

Note that every δ-hyperbolic space is ACu(κ) for some κ ≈ − 1
δ2

,
see [2, Equation (3)]. The groups considered in Theorem 4.4 all have
δ = 2M , but we can use the C ′(λ) condition when λ is small to find an
improved κ bound.

4.2. Slim n-gons. To prove Theorem 4.4, we show that while a re-
duced diagram for a geodesic n-gon may have interior faces, they cannot
be too far from the boundary of the diagram.

Proposition 4.5. Let P be a geodesic n-gon in the Cayley graph of a
C ′(λ) group G = 〈S|R〉, λ ≤ 1/6, and let D be a reduced diagram for
P.

Then there exists some constant C = C(λ) so that, for any x ∈ ∂D =
P, there is a chain of at most k + 1 faces joining x to another side of
P, with

0 ≤ k ≤ log(n)

logb 1
λ
− 4c

+ C.
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Figure 3. Star neighborhoods of B0

This means that there are faces B0, B1, . . . , Bk so that x ∈ ∂B0, Bj ∩
Bj+1 6= ∅ for 0 ≤ j < k, and Bk meets another side of P.

Proof. We begin with the following lemma.

Lemma 4.6. Let G be a C ′(1/6) group. If D is a reduced diagram
containing a face B and a geodesic segment γ, then γ∩B is connected.

Proof. Suppose not. Then γ and B enclose a subdiagram D′ of D. As
in Section 3, we assume that we have removed all degree two vertices
from D′. Every internal face of D′ has at least seven internal faces.
Since γ is a geodesic segment, every face with an external edge, except
possibly B, will have at least four internal edges.

Therefore (3.3) gives us the following contradiction:

6 ≤ (6− 2e(B)− i(B)) ≤ 3. �

We now continue the proof of the proposition.
The point x lies in the boundary of some face B0 ⊂ P . Let γ ⊂ P

be the geodesic side of P containing x. We may assume that B0 does
not meet P \ γ, else the single chain B0 suffices.

Lemma 4.6 shows that B0 has a single exterior edge that is a geodesic
segment in γ. By Lemma 3.10, B0 is homeomorphic to a closed disc,
with i(B0) ≥ b 1

2λ
+ 1c ≥ 4.

Recall that the star neighborhood of a subcomplex D′ ⊂ D is the
union of all closed cells in D meeting D′, and is denoted by St(D′).

Let D0 be the subdiagram consisting of the single face B0. For i ≥ 0,
let Di+1 = St(Di).

We will show that the number of faces in Di grows exponentially
in i until another side of P is found. An example of this is shown in
Figure 3.
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Suppose that Di is homeomorphic to a disc, which meets P in a
geodesic segment of γ, and that Di+1 does not meet another side of

P . We can extend the geodesic segment to edges on faces B
(i+1)
− and

B
(i+1)
+ adjacent to Di.
Taking a small neighborhood U ofDi in St(Di), there is a natural way

to order the faces in St(Di)\Di from B
(i+1)
− = B

(i+1)
1 to B

(i+1)
li+1

= B
(i+1)
+ ,

so that B
(i+1)
p meets B

(i+1)
q along an edge in U \ Di if and only if

|p− q| = 1.
We will control the geometry of the diagrams Di using the following

assumption. Let

A(i): First, Di is homeomorphic to a closed disc which meets P in a

geodesic segment of γ. Second, B
(i)
j has at least dExt(λ)−2 ≥ 2

edges in ∂Di that are internal in D, for j = 1 and j = li, and

B
(i)
j has at least dInt(λ) − 4 ≥ 3 internal (in D) edges in ∂Di,

for 1 < j < li. Finally, there are at least four internal (in D)
edges in ∂Di.

We let l0 = 1 and B
(0)
1 = B0, and note that A(0) holds.

The following lemma will provide the key induction step in our proof.

Lemma 4.7. Suppose that A(i) holds. Then either Di+1 meets another
side of P, or A(i+ 1) holds, with

li+1 ≥ (li − 2)
⌊

1
λ
− 4
⌋
.

Proof. We assume that Di+1 does not meet another side of P . Define

li+1 and B
(i+1)
1 , B

(i+1)
2 , . . . , B

(i+1)
l as above.

Let D/Di be the diagram formed from D by combining Di into a
single face BDi ⊂ D/Di, and removing all vertices of degree two. Even
though this diagram has a face not labelled by a relator, it and its
subdiagrams will be helpful in the rest of the proof.

Claim 1: If p 6= q then B
(i+1)
p 6= B

(i+1)
q .

Suppose we have B
(i+1)
p = B

(i+1)
q , p 6= q. We can assume that q ≥

p+ 2, since Lemma 3.10 states that faces don’t bump into themselves,
and that q − p is minimal. Let D′ ⊂ D/Di be the subdiagram which

includes BDi and B
(i+1)
p = B

(i+1)
q and all they enclose, and remove all

degree two vertices from it.
This may reduce the number of edges of an interior face of D′ below

seven by removing a vertex at the junction of some B
(i)
j and B

(i)
j+1 in

∂Di. By assumption A(i), these junctions are seperated by several
edges in ∂Di. So by the minimality of q − p, and construction of the
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diagrams Di, no interior face of D′ can meet two of these junctions,
and thus every interior face of D′ has at least six edges.

Both BDi and B
(i+1)
p have at least one external edge in D′, and an

internal edge from encompassing B
(i+1)
p+1 . Combining these results, by

(3.3) applied to D′, we have

6 ≤ 2
∑
v

(3− d(v)) + (4− i(BDi)) + (4− i(B(i+1)
p )) ≤ 6.

This implies that B
(i+1)
p and BDi do not meet along an (internal) edge,

and that every vertex has degree three, which is impossible.

Claim 2: If p < q and B
(i+1)
p ∩B(i+1)

q 6= ∅, then B
(i+1)
p and B

(i+1)
q meet

at a single vertex in ∂Di, or they meet along a single edge adjacent to
Di. (In the latter case, necessarily q = p+ 1.)

Suppose not. Then by Lemma 3.10, we find a subdiagramD′ ⊂ D/Di
including BDi , B

(i+1)
p and B

(i+1)
q and all they encompass (which includes

at least one face). By Claim 1 and assumption A(i), every internal face
of D′ has degree at least six. Again, (3.3) applies to show that

6 ≤ 2
∑
v

(3− d(v)) + (4− i(BDi)) + (4− i(B(i+1)
p )) + (4− i(B(i+1)

q )),

which is at most 9. However, each of the three intersections between

BDi , B
(i+1)
p and B

(i+1)
q contributes an additional −2 to the equation

above, either through an internal edge or a vertex of degree four. This
gives a contradiction.

Claim 3: The geodesic edge γ of P which meets Di only meets B
(i+1)
1 ∪

· · · ∪B(i+1)
li+1

along a single edge of B
(i+1)
1 and a single edge of B

(i+1)
li+1

.

By Lemma 4.6 we know that γ meets B
(i+1)
1 and B

(i+1)
li+1

along a single

edge. Suppose it also meets B
(i+1)
p , for some 1 < p < li+1. It suffices

to consider the case when BDi , B
(i+1)
1 , B

(i+1)
p and a geodesic segment

of γ enclose a subdiagram D′ ⊂ D/Di. Again we remove all vertices of
degree two.

As above, every internal face of D′ has at least six internal edges,
and since γ is a geodesic, every external face has at least four internal

edges, with the possible exceptions of BDi , B
(i+1)
1 , and B

(i+1)
p . Using

similar arguments to the two claims above, we derive a contradiction
from (3.3).

Claim 4: A(i+ 1) holds.
The first assertion of A(i + 1) follows from Claims 1 and 3 above.

The second and third assertions follow from Claim 2: The faces B
(i+1)
1
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and B
(i+1)
li+1

have one external and at least dExt(λ) − 2 internal edges

which lie in ∂Di+1. Likewise, the faces B
(i+1)
2 , . . . , B

(i+1)
li+1−1 have at least

dInt(λ)− 4 internal edges in ∂Di+1.

Finally, we can use A(i) to bound li+1. Every internal edge of ∂Di
contributes a different face to li+1, with up to li − 1 exceptions. Thus

li+1 ≥ 2(dExt(λ)− 2) + (li − 2)(dInt(λ)− 4)− (li − 1)

≥ (li − 2)(dInt(λ)− 5) = (li − 2)
⌊

1
λ
− 4
⌋
,(4.8)

completing the proof of the lemma. �

Since l2 ≥ 9, by induction (4.8) implies that li ≥ 9 for all i, and in
fact that

(4.9) li &
⌊

1
λ
− 4
⌋i
.

We now return to bounding the number of faces in a chain joining B0

to one of the other sides of P . If there is no (k+ 1)-chain of faces, then
every face in Dk \ Dk−1, with the exception of two, is an interior face
of D. Therefore by (4.9),

FI ≥ lk &
⌊

1
λ
− 4
⌋k
.

On the other hand, by Lemma 3.9,

FI ≤
3n− 6

dInt(λ)− 1
≤ n,

thus for some C = C(λ), we have

k logb 1
λ
− 4c ≤ log(n) + C. �

Proof of Theorem 4.4. Proposition 4.5 shows that any geodesic n-gon
P is ∆-slim, with

∆ =
M

2 logb 1
λ
− 4c

· log(n) + C ′,

where M/2 is the maximum diameter of a face, for M = max{|r| | r ∈
R}, and C ′ = 2MC, with C as above. So the Cayley graph Γ(G,S) is
ACu(κ) with

κ = − 4

M2
log2b 1

λ
− 4c. �
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5. Building a round tree in the Cayley complex

Our final goal is to prove the following result.

Theorem 5.1. Suppose G = 〈S|R〉 is a C ′(1/8− δ) presentation, with
|S| = m ≥ 2 and |R| ≥ 1, where δ ∈ (0, 1/8) and |r| ∈ [3/δ,M ] for
all r ∈ R. Suppose further that for some M∗ ≥ 12, every reduced word
u ∈ 〈S〉 of length M∗ appears at least once in some cyclic conjugate of
some relator r±1, r ∈ R. Then for some universal constant C > 0, we
have

Cdim(∂∞G) ≥ 1 + C log(2m) · M∗

log(M)
.

Note that all relators will have size at least 8(M∗− 1) ≥ 88. In fact,
if we assume that we have a C ′(1/11) presentation (δ = 3/88), then
the assumption |r| ≥ 3/δ is redundant: all relators have size at least
11(12− 1) = 121 ≥ 88 = 3/δ.

We split the proof of the theorem into two parts. In this section,
we build a round tree in the Cayley complex Γ2 = Γ2(G,S,R), whose
branching is controlled by the size of M∗ relative to M . In Section 6
we use a lemma of Bourdon to give the lower bound for the conformal
dimension of the boundary.

We recall the following standard definition.

Definition 5.2. The Cayley complex Γ2(G,S,R) of a finitely presented
group G = 〈S|R〉 is the universal cover of the complex X, where X has
a bouquet of |S| oriented circles as a 1-skeleton, each labelled with a
generator from S, and there are |R| discs glued in with boundary labels
from the corresponding relators in R.

Note that the 1-skeleton of Γ2(G,S,R) is the Cayley graph Γ1(G,S).

5.1. Preliminary lemmas. We need the following two lemmas of
Champetier. We translate his proofs here for the reader’s convenience.

Lemma 5.3 (Champetier [6, Lemma 4.19]). Consider a C ′(1/6) pre-
sentation of a group G = 〈S|R〉 with Cayley graph Γ(G,S), and all
relators of length at least seven.

For every point a ∈ Γ, there are at most two distinct s ∈ S∪S−1 that
satisfy d(1, as) ≤ d(1, a). In other words, any geodesic from 1 to a can
be extended to any of the neighbors of a, with at most two exceptions.

Of course, for a ∈ G, a 6= 1, there exists s ∈ S∪S−1 so that d(1, as) =
d(1, a)− 1. We denote a geodesic between p and q by [p, q].
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Proof. Let γ1 = [a, 1], and let b ∈ γ1 satisfy d(a, b) = 1. Suppose there
is some c ∈ Γ, c 6= b, so that d(a, c) = 1 and d(1, c) ≤ d(1, a). Let
γ2 = [c, 1]. Note that a, b do not lie in γ2.

Let D be a reduced diagram for the geodesic triangle γ1, [a, c], γ2.
By Lemma 3.12, this diagram has a face labelled by some r ∈ R with
at most one interior edge, containing a, b, c in its boundary. Let wi =
γi ∩ ∂r, for i = 1, 2. Since wi are geodesics, and the interior edge
has length at most |r|/6, we have |wi| ≥ |r|/2 − |r|/6 − 1 > |r|/6, for
i = 1, 2.

Suppose now that there is another point c′ satisfying the same con-
ditions as c. Then, as before one builds a geodesic triangle from a, b, c′,
and finds a relator r′ so that the initial segment of γ1 which overlaps
r′ has length at least |r′|/6. Thus, by the C ′(1/6) condition, r and r′

are the same relator, and so c = c′. �

Lemma 5.4 (Variation of Champetier [6, Lemma 4.20]). Consider a
C ′(1/8) presentation of a group G = 〈S|R〉 with Cayley graph Γ =
Γ(G,S).

For every u′ ∈ Γ, there is at most one u ∈ Γ so that d(1, u) =
d(1, u′)+d(u′, u) = d(1, u′)+3, and so that a geodesic γu = [u, 1] starts
with a subword of some relator r ∈ R of length greater than |r|/4 + 3.

Proof. Suppose u ∈ Γ is such a point, and γu is such a geodesic.

Case 1: u′ /∈ γu.
Then the two geodesics γu and γu′ = [u, u′] ∪ [u′, 1] form a geodesic

bigon that splits at a vertex of [u, u′], and so by Lemma 3.11 there is a
relator r′ ∈ R whose boundary meets both γu and γu′ from the point
they split in a segment of length at least |r′|/4. Thus r and r′ are the
same relators, and so the only possibility is that γu and γu′ split at u
and each begin with |r|/4 + 3 of r and its inverse respectively.

Case 2: u′ ∈ γu.
Suppose we have two such points u, v with corresponding geodesics

γu, γv, and relators r, r′. By Case 1, we can assume that these geodesics
both pass through u′, and so ∂r and ∂r′ will meet along a subword w
of γu ∩ γv that includes u′, before γu, γv split at some point p around a
relator r′′. As γu, γv are both geodesics, after p they have to include at
least 3|r′′|/8 of the relator r′′.

If |w| < |r|/8 and |w| < |r′|/8, then r and r′ will both meet r′′

along at least one eighth of their length, and so r, r′, r′′ are all the same
relator, and thus d(u, 1) < d(u′, 1), a contradiction. Thus |w| ≥ |r|/8
or |w| ≥ |r′|/8, and so r and r′ are the same relator, and u = v as
desired. �



24 JOHN M. MACKAY

5.2. Building a round tree. Suppose Y is a two dimensional complex
with a CAT(κ) metric, κ < 0, and there is an S1 action on Y that has
a unique fixed point. If, additionally, there is a tree embedded in Y
that meets every S1 orbit in a single point, then we say Y is a round
tree [11, 7.C3].

Our goal in this section is to build a 2-complex A which is topolog-
ically embedded in the Cayley complex Γ2, and whose 1-skeleton is a
quasi-convex subset of the Cayley graph Γ1. The complex A will be
quasi-isometric to a sector of a round tree; we abuse terminology and
simply refer to A as a round tree.

The ideas in this section are inspired by the arguments of Cham-
petier [6] and Bourdon [3]. However, unlike Champetier, we build more
than just a single (or finite number) of arcs in the boundary. Unlike
Bourdon, we do not have a particular nice hyperbolic building to work
in.

We build the round tree inductively. The round tree at step n is
denoted by An. Its branching is controlled by the index set T =
{1, . . . , 3 · (2m− 2)K−3}, where K = bM∗/2− 3c.

Each complex An is a union of complexes Aan indexed by an ∈ T n,
homeomorphic to a closed disc, which can each be thought of as a
triangular region with left edge a geodesic Lan from 1, right edge a
geodesic Ran from 1, and outer edge a path Ean , where an ∈ T n. The
left tree is Ln =

⋃
Lan , and the right tree is Rn =

⋃
Ran , where the

unions are over all an as above.

5.2.1. Initial step. Let L∅ = [1, s1], R∅ = [1, s2] be two distinct edges
from the identity in Γ. Combined, L∅ and R∅ give the reduced word
w = s−1

1 s2 of length 2. Choose some relator r ∈ R which contains w
as a subword, and let A0 be the face corresponding to r in Γ2 which
contains w as a sub-word in its boundary. Let E∅ be the path of length
|r| − 2 joining s1 to s2 along ∂A0.

5.2.2. Inductive step. Assume we have built An. Let us fix an =
(a1, . . . , an) ∈ T n, and use the notation E = Ean ⊂ ∂Aan for the
peripheral path joining the endpoints of Lan and Ran .

Consider the function d(1, ·) along E. By induction, this distance
is always at least n, and strict local minima are separated by a path
of length at least 50. (This follows from the fact that every relator
has length at least 88, and Lemma 5.5 below.) At points p ∈ E that
are not strict local minima for d(1, ·), there is at least one generator
s ∈ S that leaves E and extends the distance to the identity by one,
i.e., d(1, ps) = d(1, p) + 1, by Lemma 5.3. (In fact there are at least
2m− 3 such extensions.)
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Figure 4. Building Aan+1

We can split the path E into segments of length 6 centered on local
minima, and of length 3 or 4 in-between. For each endpoint z of the
segments we have an edge that leaves E and extends the distance to the
identity by one. This can be further extended two more steps to give
four points at a distance d(1, z)+3 from the identity. By Lemma 5.4 at
least three of these points will not satisfy the conclusion of the lemma.
(This will be useful to us later in the proof.) We then extend geodesics
from each of these three points K−3 times using Lemma 5.3, branching
2m− 2 times at each step. This gives us |T | = 3 · (2m− 2)K−3 distinct
points at a distance d(1, z) +K from the identity.

Now for each an+1 ∈ T , we have a corresponding geodesic of length
K leaving the endpoints of each segment in E. Adjacent paths, and the
segment between them, concatenate to give a path of length at most
K+6+K ≤M∗, so there is some relator having this word as a subpath.
Add these faces to Aan to define Aan+1 , where an+1 = (a1, . . . , an, an+1).
We let Lan+1 be the union of Lan and the path of length K extending
from its endpoint corresponding to an+1. We define Ran+1 likewise.
The outer edges of the faces in Aan+1 \Aan (that is, the portion of their
boundaries not in E, one of the geodesics of length K, or an adjacent
face) concatenate to give a path Ean+1 joining the endpoints of Lan+1

and Ran+1 together. Part of this process is illustrated in Figure 4.
We show that Ean+1 does not get closer than n+ 1 to the identity in

Γ. To be precise:
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Lemma 5.5. Suppose u′, v′ ∈ Ean are consecutive endpoints of seg-
ments, u, v ∈ Ean+1 are the corresponding points in Ean+1 (after sim-
plifying the path), and γuv ⊂ Ean+1 the path joining them, coming from
some relator r ∈ R. We show that any geodesic from p ∈ γuv to the
identity must pass through u or v, and include the corresponding sub-
path of γuv.

Proof. Suppose some geodesic γ1p joins p to the identity without pass-
ing through u or v. We can assume that the edge of γ1p adjacent to p
is not in γuv. We can also assume that d(v′, p) ≤ d(u′, p). Let γ1v be
the geodesic path joining v to 1 (through v′).

Consider the closed path formed by γ1p, γ1v, [p, v]γuv , and the associ-
ated reduced diagram. One can glue on a face to this diagram, labelled
with the relator r, along [p, v]γuv and part of γ1v. Notice that in this
diagram, the r face and the face containing 1 are the only two with
exterior edges that are not geodesics. Therefore, by Lemma 3.12, these
faces each have one interior edge, and the diagram has the standard
form described in the lemma.

The face adjacent to r is labelled by a relator r′, which contains
[p, v]γuv in its boundary, and also the edge of γ1p adjacent to p, unlike
r. So the relators r and r′ must be distinct. Thus their overlap is at
most |r′|/8, and includes [v′, v]γ1v ∪ [p, v]γuv . Since γ1p and γ1v are both
geodesics, [1, v′]γ1v must contain at least |r′|/2− 2|r′|/8 = |r′|/4 of the
relator r′, which contradicts the choice of the paths [v′, v]. �

5.2.3. Properties of A. We have built an infinite polygonal complex
A =

⋃
n∈NAn. It is the union of planar complexes Aa ⊂ A indexed by

a = (a1, a2, . . .) ∈ TN, given by Aa =
⋃
n∈NA(a1,...,an).

Each Aa will carry a CAT(−1) metric, however A may not since the
links of the vertices v′ as above have simple closed paths of length two
(created by the |T | different faces all joined along their edges at v′).
Before we consider different metrics on A, we need to understand how
it sits inside Γ2.

The complex A was built abstractly, but with an obvious natural
polygonal immersion i : A→ Γ2. Denote the 1-skeleton of A by A1.

Lemma 5.6. The map i : A→ Γ2 is a topological embedding.
More precisely, for every p ∈ A, every geodesic joining i(p) to i(1) =

1 in Γ1 is the image under i of a geodesic joining p to 1 in A1.

Proof. By construction, there is at least one geodesic γ joining i(p) to
1 in A1. Suppose there is some geodesic γ′ ⊂ Γ1 joining i(p) to 1,
whose first edge is not in i(St(p)). So γ and γ′ form a bigon, and so by
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Lemma 3.11 there is some relation r ∈ R so that the first 3|r|/8 of γ
after i(p) is a subword of r.

The geodesic γ is made up of segments in the boundary of relators
in A, and special length three extensions that, by Lemma 5.4, do not
have any geodesic to the identity which begins with a subword of length
|r′|/4 + 3 of any relator r′ ∈ R.

Thus no such length three subword appears in the first 3|r|/8 −
(|r|/4 + 3) = |r|/8 − 3 vertices of γ. Therefore, |r|/8 − 3 = |r|(1/8 −
3/|r|) ≥ |r|(1/8 − δ) of r bounds a relator in A, so r is in A, contra-
dicting the hypothesis that γ′ left i(St(p)). �

Lemma 5.7. Consider A1 and Γ1 with their path metrics dA and dΓ.
Then the map i : A1 → Γ1 is a quasi-isometric embedding.

In other words, (A1, dA) is quasi-isometric to (A1, dΓ), where dΓ is
the pullback dΓ(x, y) = dΓ(i(x), i(y)).

Proof. Take any x, y ∈ A1. Since i is a topological embedding, clearly
dA(x, y) ≥ dΓ(x, y).

Consider the geodesic triangle in Γ1 between 1, x and y with edges
γ1x, γ1y and γxy. In light of Lemma 3.11, consider the structure of a
reduced diagram D for this triangle.

The geodesics γxy and γ1x form a spur starting at x that ends at a
vertex or an interior edge of D joining p ∈ γxy to p′ ∈ γ1x. Likewise, γxy
and γ1y form a spur starting at y that ends at a vertex or an interior
edge of D joining q ∈ γxy to q′ ∈ γ1y. Also, γ1x and γ1y form a spur
starting at 1 that ends at a vertex or an interior edge of D joining
p′′ ∈ γ1x to q′′ ∈ γ1y.

We claim that dA(p′′, q′′) ≤ M/8. Either p′′ = q′′, or p′′ and q′′ lie
on an interior edge of a relator in the spur starting at 1. If this relator
lies in A, then we are done. Otherwise, by the same argument as in
Lemma 5.6, its two external edges in γ1x and γ1y have length at most
|r|/4 + 3 + |r|(1/8− δ). We also know that the two internal edges have
length at most |r|(1/8 − δ). Therefore the boundary of |r| has length
at most

2(|r|/4 + 3 + |r|(1/8− δ)) + 2|r|(1/8− δ) = |r|(1− 4δ + 6/|r|) < |r|,

a contradiction.
Since we chose p, p′, p′′, q, q′, q′′ to make the spurs as long as possible,

the analysis of Lemma 3.11 shows that [p, q]γxy is adjacent to at most
three faces in D, thus dΓ(p, q) ≤ 3M/2.
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Similarly, dΓ(p′, p′′) = dA(p′, p′′) ≤ 3M/2 and dΓ(q′, q′′) = dA(q′, q′′) ≤
3M/2. Now, recall that dΓ(p, p′), dΓ(q, q′) ≤M/8, so

dA(x, p′) = dΓ(x, p′) ≤ dΓ(x, p) +M/8, and

dA(y, q′) = dΓ(y, q′) ≤ dΓ(y, q) +M/8.

Combining all these results, we see that

dA(x, y) ≤ dA(x, p′) + dA(p′, p′′) + dA(p′′, q′′) + dA(q′′, q′) + dA(q′, y)

≤
(
dΓ(x, p) +

M

8

)
+

3M

2
+
M

8
+

3M

2
+

(
dΓ(q, y) +

M

8

)
≤ dΓ(x, y) +

27M

8
. �

6. A lower bound for conformal dimension

In this section, we will build a model space X quasi-isometric to
A1, and show that Cdim(∂∞X) has the desired lower bound. Since we
have a quasi-symmetric inclusion of ∂∞A into ∂∞Γ = ∂∞G, this will
complete the proof of Theorem 5.1.

Let X be the graph with a vertex for each face in A, and an edge
between two vertices if the boundaries of the corresponding faces have
non-empty intersection.

Lemma 6.1. (A1, dA)
q.i.
' (X, dX)

Proof. Let f : X → A1 be a map that sends each vertex x ∈ X to some
vertex in A on the edge of the corresponding face. Clearly, every point
in A1 is within a dA-distance of M/2 from some point in f(X).

If dX(x, y) = 1 for x, y ∈ X, then dA(f(x), f(y)) ≤ M , where
M is the maximum perimeter of a face. Thus for any x, y ∈ X,
dA(f(x), f(y)) ≤MdX(x, y).

Each edge in a geodesic [f(x), f(y)] ⊂ A1 is the edge of some face
in A, and adjacent edges will give intersecting faces (by definition).
Adding the faces for x and y to this chain, shows that dX(x, y) ≤
dA(f(x), f(y)) + 2. �

We recall the relevant lemma of Pansu and Bourdon.

Lemma 6.2 ([3, Lemma 1.6]). Suppose Z is a compact metric space
containing a family of curves C = {γi : i ∈ I}, with diameters uniformly
bounded away from zero.

Suppose further that there is a probability measure µ on C and con-
stants C > 0, σ > 0 such that for all balls B(z, r) in Z

µ({γ ∈ C|γ ∩B(z, r) 6= ∅}) ≤ Crσ.
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Then the conformal dimension of Z is at least 1 + σ
τ−σ , where τ is the

packing dimension of Z, and in fact τ − σ ≥ 1.

We need to estimate σ and τ for Z = ∂∞X.
By Lemma 5.7, any geodesic in (A1, dA) is within a uniformly bound-

ed Hausdorff distance from a geodesic with the same endpoints in Γ1.
Thus (A1, dA) is also Gromov hyperbolic. Since X is quasi-isometric
to A1, it too is Gromov hyperbolic. The boundary ∂∞X of X carries
a visual metric ρ with parameter ε, for some ε > 0.

In other words, for all points u, v ∈ ∂∞X, connected by a bi-infinite
geodesic γuv ⊂ X,

ρ(u, v) � e−ε(u·v),

where (u · v) = d(1, γuv), and � indicates a multiplicative error of
Cρ ≥ 1.

Let C = {∂∞Aa ⊂ Z : a ∈ TN}, where we abuse notation by iden-
tifying Aa with f(Aa) ⊂ X. These curves have diameters uniformly
bounded away from 0 since any geodesic in X asymptotic to the end-
points of ∂∞Aa must pass uniformly close to the origin. There is a
natural probability measure µ on TN so that, for fixed b1, . . . , bn ∈ T ,
n ∈ N,

µ({(a1, a2, . . .) ∈ TN : ai = bi, 1 ≤ i ≤ n}) = |T |−n.

Lemma 6.3. For this choice of C, ρ, µ, we can take σ = (log |T |)/ε.

Proof. Fix some z ∈ ∂∞X. Then z lies in the boundary of some Aa,
a = (a1, a2, . . .) ∈ TN.

Suppose w ∈ B(z, r) ⊂ ∂∞X. Then w lies in the boundary of some
Ab, b = (b1, b2, . . .) ∈ TN, and

1

Cρ
e−ε(z·w) ≤ ρ(z, w) ≤ r,

so
(z · w) ≥ (−1/ε) log(Cρr).

Suppose an 6= bn, and n is the smallest such n. Then deleting all vertices
in X at distance n from the root face will disconnect the boundaries
of Aa and Ab, and so γzw must pass within n of the root face. Thus
(z · w) ≤ n, so if w ∈ B(z, r), am = bm for all

m < (−1/ε) log(Cρr).

Therefore,

µ({b ∈ TN : Ab ∩B(z, r) 6= ∅}) ≤ |T |(1/ε) log(Cρr)+1

≤ |T |1+log(Cρ)/ε · r(log |T |)/ε. �
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It remains to bound τ . When we built An+1 from An, we added |T |
faces to each segment along En. So each face in An that bordered En
could have at most M |T | faces joined on to it. This gives a way to
label every point in ∂∞X by an element of

W = {1, 2, . . . ,M |T |}N,
and we denote that labelling by f : ∂∞X → W , which is an injection.

Put the metric ρW on W , where

ρW ((a1, a2, . . .), (b1, b2, . . .)) = exp(−εmin{n : an 6= bn}).
Then f−1 : f(∂∞X)→ ∂∞X is a Lipschitz bijection, so

τ = dimP(∂∞X) ≤ dimP(f(∂∞X)) ≤ dimP(W ) = log(M |T |)/ε.
Thus, by Lemma 6.2,

Cdim(∂∞X) ≥ 1 +
σ

τ − σ
≥ 1 +

log(|T |)/ε
log(M |T |)/ε− log(|T |)/ε

= 1 +
log |T |
log(M)

.

Since |T | = 3 · (2m− 2)K−3, K = bM∗/2− 3c, and M∗ ≥ 12, we have

log |T | = log(3/8) +K log(2m− 2) ≥ CM∗ log(2m),

for C = 1/100.
Finally,

∂∞X
q.s.
' ∂∞A

q.s.
⊂ ∂∞Γ = ∂∞G,

so we conclude that

Cdim(∂∞G) ≥ Cdim(∂∞X) ≥ 1 + C log(2m) · M∗

log(M)
. �
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