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Abstract. We construct affine uniformly Lipschitz actions on L1 for
certain groups with hyperbolic features. For acylindrically hyperbolic
groups, our actions have unbounded orbits, while for residually finite
hyperbolic groups and for mapping class groups, the actions have proper
orbits, with the induced L1-metric quasi-isometric (respectively, almost
quasi-isometric) to the word metric.

1. Introduction

A countable group has Kazhdan’s Property (T) if and only if it has prop-
erty FH, sometimes also denoted FL2: every affine isometric action on
an L2 space has a fixed point. According to [BGM12], Property (T) for a
countable group is also equivalent to FL1: every affine isometric action on
an L1 space has a fixed point. At the other end of the spectrum, a group is
said to be a-T-menable (or to have the Haagerup Property) if it acts prop-
erly by affine isometries on a Hilbert space (equivalently, on an L1 space)
[CCJ+01,CDH10].

In this paper, we consider more flexible actions, namely those that are
“affine uniformly Lipschitz”, that is, affine actions where the linear part
is a uniformly bounded representation. We show that many groups with
hyperbolic features – including certain groups with Property (T) – admit
such actions on L1 with unbounded, even proper, orbits.

This relates to the following conjecture.

Conjecture 1.1 (Y. Shalom, see [Now15], Conjecture 35). Every hyperbolic
group acts properly by affine uniformly Lipschitz actions on a Hilbert space.

Shalom’s conjecture is in line with the general belief that when prop-
erty (T) is strengthened, rank one lattices (and, more generally, hyperbolic
groups) fail to have it (and eventually become a-T-menable in a weaker
sense), while higher rank lattices tend to have the stronger property. Indeed,
the strengthening of Property (T) that consists in requiring that every affine
uniformly Lipschitz action on a Hilbert space has a fixed point is satisfied
by all the higher rank lattices, due to recent work of Oppenheim [Opp22],
and de Laat–de la Salle [dLdlS23].

Many hyperbolic groups are known to be a-T-menable (e.g. discrete sub-
groups of SO(n, 1) and SU(n, 1), random groups with few relations), but
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of those which have Kazhdan’s Property (T), only lattices of Sp(n, 1) are
known to satisfy Shalom’s conjecture, due to work of Nishikawa [Nis20].
I. Vergara also has recent work building actions on subspaces of L1, see
Remark 1.10 below.

1.1. Bounded and unbounded orbits. In what follows, G denotes a
countable group, E a normed vector space, L(E,E) the algebra of linear
maps from E to E and B(E) the sub-algebra of bounded operators. Given
a linear representation π : G → L(E,E), a cocycle for π is a function
α : G→ E such that for all g, h ∈ G,

α(gh) = α(g) + π(g)α(h).

Equivalently, g · x = π(g)x + α(g) defines an affine action of G on E. By
a theorem of Mazur–Ulam, an isometric action on a Banach space is always
affine, with π an orthogonal representation.

Observe that an affine action of G on E is uniformly L-Lipschitz if and
only if its linear part is a representation of G uniformly bounded by L, that
is:

sup
g∈G
‖π(g)‖op = sup

g∈G
sup

x∈E:‖x‖≤1
‖π(g)x‖ ≤ L.

Following Bader–Furman–Gelander–Monod [BFGM07, Definition 1.5], given
a Banach space B, we say that a group G has property (F̄B) if every (contin-
uous) affine uniformly Lipschitz action on B has bounded orbits. Actually,
in [BFGM07], the definition requires fixed points rather than bounded or-
bits for (F̄B). While the two definitions are not equivalent for a single fixed
space B, the property that a group satisfies (F̄B) for the entire class of
superreflexive spaces is equivalent in the two formulations. On the other
hand, any countable group G acts by isometries on `1(G), therefore on the
subspace {f ∈ `1(G) ;

∑
g∈G f(g) = 1}. The latter subspace has a renorm-

ing that makes it an `1 space, on which G therefore has a affine uniformly
Lipschitz action with bounded orbits, but no global fixed point. Thus, for
the (non-superreflexive) spaces `1 and L1 = L1([0, 1]), our definition of (F̄B)
in terms of bounded orbits (rather than global fixed points) is appropriate1.

It is easy to observe that (F̄L1) implies (F̄`1), see Proposition 2.3.
Our first main result is as follows.

Theorem 1.2. Every acylindrically hyperbolic group G does not have prop-
erty (F̄`1), more precisely, for every ε > 0, G admits an affine uniformly
(2 + ε)-Lipschitz action with unbounded orbits on `1, hence likewise on
L1 = L1([0, 1]).

Recall that a countable group G is acylindrically hyperbolic if it admits an
acylindrical, non-elementary action on a Gromov hyperbolic space; examples
include non-elementary hyperbolic groups, mapping class groups that are
not virtually abelian and groups of outer automorphisms of free non-abelian
groups, Out(Fn), n ≥ 2. Many of these groups have Kazhdan’s Property

1The property that every affine isometric action on L1 has bounded orbits is equivalent
with the stronger property requiring a global fixed point for every such action, by Bader–
Gelander–Monod [BGM12, Theorem A]. Their method however does not extend to affine
uniformly Lipschitz actions.
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(T), therefore as mentioned above do not admit affine isometric actions on
L1 with unbounded orbits.

In Theorem 1.2, we cannot replace `1 by `p, or even Lp = Lp([0, 1]), for
p ∈ (1,∞). The reason is the following example, which follows from work
of Minasyan–Osin [MO19] and de Laat–de la Salle [dLdlS21].

Theorem 1.3 (Minasyan–Osin, de Laat–de la Salle, see §2.1). There exists
an acylindrically hyperbolic group Q so that every affine uniformly Lipschitz
action of Q on a uniformly curved Banach space X (in particular, Lp or
`p, for 1 < p < ∞) has a fixed point, i.e. Q has property (F̄X) for every
uniformly curved Banach space X.

Uniformly curved Banach spaces have been introduced by G. Pisier [Pis10]
as a subclass of the class of superreflexive Banach spaces, containing all the
known examples of the latter type of Banach spaces. See §2.1 for details.

1.2. Proper orbits. Another strengthening of Theorem 1.2 that cannot
be envisaged is to replace “unbounded orbits” by “proper orbits”, as the
example of Gromov monster groups that are acylindrically hyperbolic shows,
see Example 2.2.

Nonetheless, we are able to find proper orbits in some important cases.
Moreover, we can quantify the properness of the action, as in the following
definition.

Definition 1.4. Let G be a group with a proper left-invariant metric dG
and with an action G y X by uniformly Lipschitz transformations on a
metric space (X, dX). Suppose ρ : [0,∞)→ R is an increasing function with
limt→∞ ρ(t) =∞. We say that the action Gy X has ρ-proper orbits if for
some (any) o ∈ X there exists C > 0 so that

(1.5) dX(o, g · o) ≥ 1

C
ρ(dG(1, g))− C, ∀g ∈ G.

For any such action, any function ρ measuring the properness of the action
must satisfy ρ(t) ≤ at + b,∀t ≥ 0, for some positive constants a and b
(see Proposition 2.4). In particular, for such a group (G, dG) an action
Gy X has t-proper orbits if and only if every orbit map is a quasi-isometric
embedding. In this case, we say the orbits are undistorted.

Our next result, finding proper orbits for residually finite hyperbolic
groups, is as follows.

Theorem 1.6. If G is a residually finite hyperbolic group, then, for every
ε > 0, G admits an affine uniformly (2 + ε)-Lipschitz action on `1 = `1(N)
with undistorted orbits, and hence likewise on L1 = L1([0, 1]).

Examples of residually finite hyperbolic groups with Property (T) in-
clude uniform lattices in Sp(n, 1) and in F4(−20). A famous open problem
is whether every hyperbolic group is residually finite, in which case more
examples would come from random groups with many relations. Lattices
in Sp(n, 1) are known to have proper affine uniformly Lipschitz actions on
L2, by work of Nishikawa [Nis20], but there is no known method allowing to
deduce from this the L1 case (unlike for affine isometric actions). Nonethe-
less, Theorem 1.6 and an argument with induced representations show the
following.
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Corollary 1.7. If G is a simple Lie group with real rank one (which, ac-
cording to Cartan’s classification [Tit67], implies that G is one of the groups
SO0(n, 1),SU(n, 1),Sp(n, 1) with n ≥ 2, or F4(−20)), then G admits a proper

continuous affine uniformly (2 + ε)-Lipschitz action on L1 with undistorted
orbits, for every ε > 0.

This result is entirely new for Sp(n, 1) and F4(−20), where no proper con-

tinuous affine uniformly Lipschitz action on L1 was previously known. The
groups SO0(n, 1) and SU(n, 1) are known to be a-T-menable, and hence have
a proper continuous affine isometric action on L1.

The group SO0(n, 1) does have an affine isometric action on L1 with
undistorted orbits, induced by the action on the n-dimensional hyperbolic
space preserving a structure of measured walls ([Rob98], see also [CDH10,
Example 3.7]). The group SU(n, 1) cannot have such an action, therefore an
affine uniformly Lipschitz action on L1 with undistorted orbits is about the
best one can obtain for this group, and our construction of such an action
is new.

Besides residually finite hyperbolic groups, we can also strengthen The-
orem 1.2 to give proper, nearly undistorted, orbits in the case of mapping
class groups.

Theorem 1.8. The mapping class group, MCG(Σ), of a surface Σ of finite
type admits an affine uniformly (2 + ε)-Lipschitz action on `1 (hence also
on L1 = L1([0, 1])) with ρ-proper orbits, where one can take any ε > 0

and ρ(t) = t/(1 + log◦k+ t) for any k ∈ N, with log◦k+ (t) equal to the k-fold
composition of log when that is defined and positive, and equal to 0 otherwise.

1.3. Metric distorsion. Further context for our results is given by the
work on compression exponents. A way of measuring the metric distorsion

of a proper action is via its equivariant compression exponent α#
X , defined as

the supremum of the exponents α such that the inequality (1.5) is satisfied
with ρ(t) = tα.

This parameter has been studied for actions Gy X by isometric transfor-
mations, as a way of making quantitative the investigation of a-T-menability
and its Banach space versions. Exact values of compression exponents, and
especially of the best possible compression exponents for proper actions on
a certain class of Banach spaces (e.g. Hilbert or L1 spaces) are known for
for only a few groups so far.

It was proved in [NP08] that for a finitely generated group G acting iso-
metrically on a Banach space X with modulus of smoothness of power type

p > 1 (e.g. X = Lp), α#
X ≤

1
min(2,p)b(G) , where b(G) is a parameter measur-

ing the speed of divergence of canonical simple random walks on G. When
G is non-amenable, b(G) = 1. The Naor-Peres inequality seems to point
out that the equivariant representations on a Banach space that are met-
rically the most accurate (i.e. with the induced Banach metric the closest
to the word metric of the group) should be the ones provided by actions on
an L1 space. The a-T-menability does not necessarily imply the existence
of an action on an L1 space with undistorted orbits. This is not true even
for simple examples such as the Heisenberg group [CK10]. Moreover, there

exist finitely generated amenable groups such that α#
L1 = 0 [Aus11]. It is
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nevertheless known for a number of a-T-menable groups that α#
L1 = 1. In-

terestingly, for the proper actions on L1 spaces by affine uniformly Lipschitz
transformations that we obtain, the compression exponent is 1 (and we even
obtain undistorsion for residually finite hyperbolic groups).

1.4. Methods and remarks. We use a similar method in the proofs of
Theorems 1.2, 1.6 and 1.8. Given a group G and a representation π : G →
L(E,E) of it on an L1 space E, consider an action on E ⊕ E defined by:

g ·
(
x
y

)
=

(
π(g) D(g)

0 π(g)

)(
x
y

)
+

(
α(g)
β(g)

)
,

(
x
y

)
∈ E ⊕ E,

for suitable D : G→ L(E,E), α : G→ E, β : G→ E. This is a well-defined
affine uniformly Lipschitz action provided π is uniformly bounded, β is a
cocycle for π, D is a uniformly bounded derivation in the sense of [Pis01]
and α satisfies

(1.9) D(g)β(h) = α(gh)− α(g)− π(g)α(h)

for all g, h ∈ G. Our idea is that certain known constructions of quasi-
cocycles α for groups acting on `1 can be used together with (1.9) to define
suitable uniformly bounded derivations D (see §4). The properness or un-
boundedness of α then implies the same property for orbits of the resulting
affine uniformly Lipschitz action on `1 ⊕ `1 = `1.

In Theorem 1.2, we use the Brooks-type quasi-cocycles constructed in
[BBF16] to build the action. In Theorems 1.6 and 1.8, we use a varia-
tion of these quasi-cocycles provided in [BBF13], and put several quasi-
cocycles together to get a proper quasi-cocycle, using methods developed
by Bestvina–Bromberg–Fujiwara to show that such groups have “property
(QT)”, i.e. they admit proper isometric actions on a finite product of quasi-
trees [BBF21].

In reference to Shalom’s conjecture, one could attempt to make a similar
construction for a Hilbert space, and the algebraic side of our argument goes
through, however the boundedness of the derivations that we define heavily
depends on being in L1.

Remark 1.10. Independently, I. Vergara gave a construction of a proper
affine uniformly Lipschitz action on a subspace of L1 for certain groups,
including groups with property (QT) in the sense of [BBF21] (see [Ver21]),
and hyperbolic groups [Ver22]. Vergara’s results are stronger in that they
apply to more groups than ours, but they are weaker in that it is easier to
obtain a proper action on a subspace of an L1 space (equivalently, a proper
left-invariant kernel of a certain type) than a proper action on an entire L1

space (equivalently, a proper cocycle for a linear representation). Our proper
actions also have better distortion, with linear or almost linear distortion
functions, whereas Vergara obtains

√
t-proper orbits.

Our methods do not immediately extend to groups with property (QT), as
we use quasi-trees built from projection complexes of WPD axes in specific
ways. Nonetheless, in light of Vergara’s results and our own, it is natural to
ask the following.
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Question 1.11. Which groups admit proper affine uniformly Lipschitz ac-
tions on L1? Do groups with property (QT)? Do hierarchically hyperbolic
groups?

In a different direction, note the following remark on the Lipschitz con-
stants of our actions, prompted by a question of I. Vergara.

Remark 1.12. (1) In Theorems 1.2, 1.6, 1.8 and Corollary 1.7, the ‘2’
appearing in the Lipschitz constant (2 + ε) can be replaced with d =
dBM (`1, `10), the Banach–Mazur distance between `1 and its subspace
`10 of zero sum sequences, see Remark 4.9. Our methods cannot yield
L-Lipschitz actions for L < dBM (`1, `10). The constant 2 comes from
our estimate dBM (`1, `10) ≤ 2. As kindly explained to us by W.
Johnson, d > 1 (see Lemma 4.8). The precise value of d ∈ (1, 2]
seems to be unknown.

(2) An ultralimit argument along the lines of Fisher–Margulis shows that
for any given countable group G with Kazhdan’s Property (T) there
exists ε = ε(G) > 0 so that G does not admit an affine uniformly
(1 + ε)-Lipschitz action on an L1 space with unbounded orbits (see
Proposition 2.6). Therefore for a group with Kazhdan’s Property
(T), Theorems 1.2 and 1.6 cannot hold with Lipschitz constants ar-
bitrarily close to 1.

Finally, the following significant question remains open.

Question 1.13. Find an infinite finitely generated group with (F̄`1), or even
(F̄L1). Is any SL(n,Z), with n ≥ 3, such a group?

Vergara asks [Ver21, Question 1] a related question: Does SL(3,Z) ad-
mit a proper affine uniformly Lipschitz action (or at least an action with
unbounded orbits) on a subspace of an L1 space?

If one is willing to sacrifice finite generation, then there are examples.

Remark 1.14. Any “strongly bounded group” has (F̄`1), for example S∞,
the group of permutations of N [Ber06]. Recall that a group is “strongly
bounded” (or has “property (OB)”) if any (continuous) isometric action
of the group on any metric space has bounded orbits; note that any count-
able group with this property must be finite [dC06, Remark 2.5]. Any such
group G also has the property that any uniformly Lipschitz action of the
group on any metric space (X, d) also must have bounded orbits: the metric
dG(x, y) := supg∈G d(g · x, g · y) is comparable to d, and the same action is
isometric with respect to dG.

Outline. In Section 2 we provide some examples complementing Theorem
1.2 and some preliminary remarks. In Section 3 we explain how an affine
uniformly Lipschitz action on an Lp space of a finite index subgroup (respec-
tively, a certain type of lattice) Λ in a group G induces a similar action of G.
A construction of `1 actions given quasi-cocycles is shown in Section 4. The-
orem 1.2 is proved in Section 5 using the quasi-cocycles of [BBF16,HO13].

In Section 6 we use a variation of the quasi-cocycles of [BBF13] to build
proper actions on `1. In Section 7 we combine this with the tools of [BBF21]
to prove Theorems 1.6 and 1.8.
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2. Examples and preliminary remarks

We describe here two sets of examples illustrating that Theorem 1.2 is,
in some sense, optimal. We also make observations on orbits of uniformly
Lipschitz actions and on the relationship between actions on `1 and L1.

2.1. An acylindrically hyperbolic group with many fixed point prop-
erties. As explained in the introduction, in Theorem 1.2, the `1 space can-
not be replaced with an Lp space, for p ∈ (1,∞). Indeed, the combined work
of Minasyan–Osin and de Laat–de la Salle yields acylindrically hyperbolic
groups Q so that any affine uniformly Lipschitz action of Q on any uniformly
curved Banach space X (e.g. Lp or `p for 1 < p <∞) has a fixed point.

Proof of Theorem 1.3. By Minasyan–Osin [MO19, Theorem 1.1], every count-
able family of countable acylindrically hyperbolic groups has a common
finitely generated acylindrically hyperbolic quotient. In particular, there
exists a finitely generated infinite acylindrically hyperbolic group Q that is
quotient of all the non-elementary hyperbolic groups.

G. Pisier introduced in [Pis10] a subclass of the class of super-reflexive
Banach spaces, the uniformly curved Banach spaces. He proved that all
known examples of super-reflexive spaces are uniformly curved, and asked
whether super-reflexive implies uniformly curved [Pis10, Problem 2.4], a
question that remains open.

De Laat and de la Salle proved in [dLdlS21] that random groups in the
triangular model (which are non-elementary hyperbolic) satisfy fixed point
properties for affine isometric actions on arbitrarily large classes of uniformly
curved Banach spaces (see [DM19] for the Lp case). Therefore, the acylin-
drically hyperbolic group Q defined above inherits the fixed point property
for affine isometric actions on any uniformly curved Banach space.

Consequently, Q has the fixed point property for affine uniformly Lipschitz
actions on uniformly curved Banach spaces. Indeed, let Qy X be such an
action, given by:

x 7→ π(g)x+ ζ(g).

One can define an equivalent norm on X by:

‖x‖Q = sup
g∈Q
‖π(g)x‖.

The Banach space (X, ‖·‖Q) is linearly isomorphic and L-bi-Lipschitz equiv-
alent (or, with a different terminology, L-isomorphic) to a uniformly curved
Banach space, hence (X, ‖ · ‖Q) is itself uniformly curved [Pis10, Page 14].
The action of Q on (X, ‖ · ‖Q) is affine isometric, hence it has a fixed
point. �

2.2. Graphical small cancellation groups, Gromov monsters, re-
striction to cocycles that are not proper. We begin by noting that
Theorem 1.2 has the following consequence.
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Corollary 2.1. Every infinitely presented graphical Gr(7) small cancellation
group and every cubical small cancellation group admits an affine uniformly
Lipschitz action on `1 with unbounded orbits.

This follows from the results of Gruber and Sisto [GS18] and of Arzhant-
seva–Hagen [AH21], showing that infinitely presented graphical Gr(7) small
cancellation groups, respectively cubical small cancellation groups, are acylin-
drically hyperbolic. The former class of groups includes infinitely presented
classical C(7)-groups and, hence, classical C ′(1

6)-groups.
Small cancellation theory is a technique allowing to build infinite finitely

generated groups with unusual properties (the so-called “infinite monsters”),
mostly used to produce counter-examples to various conjectures. It is more
challenging to obtain positive results about the entire class of small can-
cellation groups, and while such results have been proven for algebraic and
geometric properties, for analytic properties much less has been known, until
recently.

Graphical small cancellation groups have been introduced by Gromov
in [Gro03] with the view to construct infinite groups with prescribed em-
bedded subgraphs in their Cayley graphs. Gromov used this technique com-
bined with a probabilistic argument to build the so called Gromov monsters,
groups that contain families of expanders embedded in a weak sense into
their Cayley graphs (see [AD08] for further details). More recently, Osajda
found Gromov monster groups which contain isometrically embedded ex-
panders and which satisfy the graphical small cancellation property [Osa20].
Gromov monsters are the only known counterexamples to the Baum–Connes
conjecture with coefficients [HLS02]. It is the same Gromov monsters that il-
lustrate the fact that in Theorem 1.2, ‘unbounded orbits’ cannot be strength-
ened to ‘proper orbits’.

Example 2.2. Let G be a Gromov monster group as constructed by Os-
ajda [Osa20]. As G is acylindrically hyperbolic, it has an affine uniformly
Lipschitz action on `1 (or L1) with unbounded orbits, by Theorem 1.2 (see
Corollary 2.1). On the other hand, G has isometrically embedded copies
of expanders in its Cayley graphs, so cannot embed uniformly into any Lp

space, for p ∈ (0, 2] [WW75]. Therefore, the uniformly bounded representa-
tions on `1 obtained by Theorem 1.2 do not admit proper cocycles in general,
only unbounded ones, not even if `1 is replaced with L1.

2.3. Remarks on uniformly Lipschitz actions. We justify the standard
fact mentioned in the introduction that in building an action on `1 we get
an action on L1 = L1([0, 1]) as well.

Proposition 2.3. If G admits an affine uniformly Lipschitz action on `1

with unbounded (respectively ρ-proper) orbits, then G admits an affine uni-
formly Lipschitz action on L1([0, 1]) with unbounded (respectively ρ-proper)
orbits.

Proof. We can view `1 as a complemented subspace of L1, i.e. L1 = Y ⊕Z is a
topological direct sum of closed subspaces Y,Z with Y isometrically isomor-
phic to `1, see for example Albiac–Kalton [AK16, Lemma 5.1.1]. Therefore,
any affine action of a group G on `1 can be extended to one on L1 via
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g · (y, z) = (g · y, z). This action is uniformly Lipschitz if the action on `1

is, and it clearly preserves the properties of having unbounded or ρ-proper
orbits. �

Next, again as standard, we note that the properness function ρ of a
uniformly Lipschitz affine action grows at most linearly.

Proposition 2.4. Suppose G is a group endowed with a proper left-invariant
metric dG and acting on a metric space (X, dX) by uniformly L-Lipschitz
affine transformations. Then for every o ∈ X there exists Lo, Co ≥ 0 so that

(2.5) dX(o, g · o) ≤ LoddG(1G, g)e+ Co, ∀g ∈ G,

moreover, we can either take

Lo = Ldiam{g · o : dG(1G, g) ≤ 1} and Co = 0,

or fix a basepoint x0 and take

Lo = Ldiam{g · x0 : dG(1G, g) ≤ 1} and Co = (L+ 1)dX(o, x0).

Proof. For any g ∈ G write g = s1s2 . . . sk, where si, i ∈ {1, . . . , k}, are in
the closed ball BG(1G, 1) of radius 1 around the identity element 1G ∈ G,
and k ≤ ddG(1G, g)e.

For the first choice of constants, consider:

dX(o, g · o) ≤ dX(o, s1 · o) + dX(s1 · o, s1s2 · o) + · · ·
+ dG((s1 · · · sk−1) · o, (s1 · · · sk) · o)
≤ Lk sup{dX(o, g · o) : g ∈ BG(1G, 1)}.

For the second choice of constants, fix x0 and consider:

dX(o, g · o) ≤ dX(o, x0) + dX(x0, g · x0) + dX(g · x0, g · o)
≤ (1 + L)dX(o, x0) + Lk sup{dX(x0, g · x0) : g ∈ BG(1G, 1)}

by the same argument as before. �

Finally, as mentioned in the introduction, we note the following rigidity
result for countable groups with Property (T) acting on L1.

Proposition 2.6. If G is a countable group with Property (T), then there
exists ε = ε(G) > 0 so that G does not admit an affine uniformly (1 + ε)-
Lipschitz action on an L1 space with unbounded orbits.

Proof. We begin by noting that Property (T) implies that G is finitely gen-
erated. Assume for a contradiction that G has a sequence of actions ρn
with unbounded orbits by affine uniformly (1 + εn)-Lipschitz actions on an
L1 space, where εn → 0. Let S be a generating set. An argument as in
the proof of [DK18, Theorem 19.22], together with [DK18, Corollary 19.18]
imply that a rescaled ultralimit of the actions ρn is an action ρω by affine
isometries on an L1–space Xω such that for every x ∈ Xω the diameter of
Sx is at least 1. This contradicts the theorem in [BGM12], stating that
every such action of a group with Property (T) must have a global fixed
point. �
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3. Lattices and induced representations

To show that a group admits a proper (respectively, unbounded orbits)
affine uniformly Lipschitz action on an Lp space, by a fairly standard induc-
tion it suffices to show the same property for a finite index subgroup. We
use this result in the proofs of Theorems 1.6 and 1.8. We state the results
more generally, as it is interesting to see how these properties behave in
the more general context of lattices in locally compact groups, and needed
for Corollary 1.7. The following propositions require some adaptations from
standard arguments, as we have only uniformly Lipschitz actions rather than
isometric actions.

First, for completeness, we note that if (F̄B) holds for a lattice then it
holds for the ambient group; we do not use this result elsewhere.

Proposition 3.1 (cf. [BdlHV08, Proposition 2.5.5], [BFGM07, Proposition
8.8]). Suppose G is a locally compact group with Haar measure µ, and Λ a
lattice in G. For any Banach space B, if Λ has (F̄B) then G has (F̄B).

Proof. Let M(B) be the set of all closed and bounded subsets of B, which
is a complete metric space when endowed with the Hausdorff metric dH .
Suppose G has a continuous affine L-Lipschitz action on B, and hence also
on M(B). The Λ-orbits in B are bounded by (F̄B); let O = Λ · 0 ∈ M(B)
be the closure of one such orbit.

Let µ also denote the G-invariant measure on G/Λ, which we may as-
sume satisfies µ(G/Λ) = 1. Consider the continuous map Φ : G/Λ →
M(B), gΛ 7→ g · O. Let ν = Φ∗(µ) be the push-forward of µ, which is a
G-invariant measure on M(B).

Since limR→∞ ν(BdH (O,R)) = 1, there existsR0 such that ν(BdH (O,R0)) >
1/2. Now for any g ∈ G, BdH (g ·O,LR0) ⊃ g ·BdH (O,R0), hence ν(BdH (g ·
O,LR0)) > 1/2 also. Therefore BdH (g · O,LR0) ∩ BdH (O,R0) 6= ∅ and
consequently dH(O, g ·O) ≤ (L+ 1)R0.

In conclusion, for all g ∈ G, d(0, g · 0) ≤ diam(O) + dH(O, g · O) ≤
diam(O) + (L+ 1)R0. �

The existence of a proper action on a certain type of Banach space is
obviously inherited by lattices.

Proposition 3.2. Suppose G is a locally compact group and Λ < G is
a lattice whose word metric dΛ satisfies dG(x, y) ≥ τ(dΛ(x, y)),∀x, y ∈ Λ,
where τ : [0,∞)→ [0,∞) is a proper function. If G acts with ρ-proper orbits
on a metric space X, then Λ acts with ρ ◦ τ -proper orbits on X.

In order to show that unbounded/proper actions of a lattice induce similar
actions of the ambient group, we require that the lattice be “integrable” in
an appropriate sense.

Definition 3.3 (cf. [BFGM07, Definition 8.2] ). Let G be a locally compact
group admitting a proper left-invariant metric and a Haar measure µ, and
let Λ be a finitely generated lattice of G with a word norm | · |Λ (i.e. |h|Λ =
dΛ(1, h), where dΛ is a word metric on Λ). We say Λ is p-integrable for
some p ∈ [1,∞) if there exists a Borel fundamental domain B for Λ acting
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on G, so that {hB}h∈Λ partitions G and µ(∂B) = 0, and for all g ∈ G,∫
B
|α(g, γ)|pΛ dµ(γ) <∞,

where α(g, γ) ∈ Λ is uniquely defined by α(g, γ)γg−1 ∈ B for g ∈ G, γ ∈ B.

This is a mild restriction. Every uniform lattice, in particular every finite
index subgroup of a finitely generated group, is p-integrable for all p ≥
1. Lattices in all simple Lie groups of rank one (except for those locally
isomorphic to PSL(2,R)) and irreducible lattices in semisimple Lie groups
of rank at least two are 1-integrable due to work of Shalom [Sha00, §2] (see
[BFS13, Theorem 1.9]).

We now state the main result of this section.

Proposition 3.4 (cf. [BBF21, §2.2], [BdlHV08, Appendix E]). Suppose G
is a locally compact group admitting a proper left-invariant metric and a
Haar measure µ, and Λ is a finitely generated p-integrable lattice in G. We
likewise denote by µ the (right) G-invariant measure on Λ\G induced by the
Haar measure. If Λ admits an affine uniformly L-Lipschitz action on some
Lp(Ω, ν) then G admits a continuous affine uniformly L-Lipschitz action on
Lp(Λ\G× Ω, µ× ν) such that:

(1) if Λ y Lp(Ω, ν) has unbounded orbits, then Gy Lp(Λ\G×Ω, µ×ν)
has unbounded orbits;

(2) if Λ y Lp(Ω, ν) has ρ-proper orbits, then G y Lp(Λ\G × Ω, µ × ν)
has ρ

(
1
C t− C

)
-proper orbits, for some C > 0.

Alternatively, Proposition 3.4, (1), states that if a locally compact group
G has (F̄L1) then so does any 1-integrable lattice in it. Note too that if Λ ≤ G
is a finite index subgroup and Ω = N, then L1(Λ\G× Ω) = L1(N) = `1.

Proof. The construction of the action proceeds in several stages, with the
verification of (1) and (2) at the end.

The normed vector space. Fix a Borel fundamental domain B as in
Definition 3.3. Let X = Lp(Ω, ν), with its given Λ-action. We now de-
fine a Banach space Y which has two equivalent guises: one as the space
Lp(B,µ;X) in the sense of Bochner integration, and the other as the quo-
tient set of the space of functions{

f : G→ X : f(hγ) = h · f(γ), ∀h ∈ Λ, γ ∈ G,
∫
B
‖f(γ)‖pX dµ(γ) <∞

}
with respect to the equivalence relation

f1 ∼ f2 ⇔
∫
B
‖f1(γ)− f2(γ)‖pX dµ(γ) = 0.

With the second definition, the quotient space Y is endowed with the norm

‖f‖Y =

(∫
B
‖f(γ)‖pX dµ(γ)

)1/p

.

Let 0Y ∈ Y be the function that is identically 0 ∈ X on B (and h · 0
on hB, ∀h ∈ Λ). Define the addition and scalar multiplication on Y by
(tf + f ′)(γ) = tf(γ) + f ′(γ) for t ∈ R, f, f ′ ∈ Y , γ ∈ B, and extend
equivariantly by Λ. The set Y becomes a normed vector space with origin
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0Y . Both its norm and the two operations on it depend on the choice of the
domain B. The space Y is isometric to

Lp(B,µ;X) = Lp(B,µ;Lp(Ω, ν;R)) = Lp(B × Ω, µ× ν;R).

The action of G on Y . Cocycle for the action. We define a left action of G
on Y by g ·f(γ) = f(γg−1) for all g, γ ∈ G. The condition of Λ-equivariance
is clearly satisfied by g · f . We will show later that ‖g · f‖Y <∞. Note that
for a, b, γ ∈ G,

((ab) · f)(γ) = f(γb−1a−1) = (a · (b · f))(γ).

For any g ∈ G, we define a left action • : G × B → B and a cocycle
α : G×B → Λ by

g • γ := α(g, γ)γg−1 ∈ B, ∀γ ∈ B, g ∈ G.

Every g ∈ G defines a partition of B as
⊔
h∈ΛBg,h, where Bg,h denotes

the intersection B ∩ hBg, and γ 7→ g • γ restricted to every Bg,h is the
composition between a right multiplication by g−1 and a left multiplication
by h−1 = α(g, γ). Hence, this defines a left measure-preserving action of G
on B. In terms of elements of Y , for γ ∈ Bg,h,

(g · f)(γ) = h · f(h−1γg−1) = h · f(g • γ) = α(g, γ)−1 · f(g • γ).

The action on Y is well-defined. As Λ is a lattice, µ is also right-invariant,
thus for f ∈ Y, g ∈ G,

(3.5) ‖g · f‖pY =

∫
B
‖α(g, γ)−1 · f(g • γ)‖pX dµ(γ).

Recall from Definition 3.3 that Λ is finitely generated with word norm | · |Λ
associated to some symmetric generating set. Since the action of Λ on X is
uniformly L-Lipschitz, according to Proposition 2.4, we can write

‖h · 0‖X ≤ |h|ΛLC, ∀h ∈ Λ,

where C = maxs∈S ‖s · 0‖X . So for every h ∈ Λ and x ∈ X,

‖h · x‖X ≤ ‖h · x− h · 0‖X + ‖h · 0‖X
≤ L‖x‖X + ‖h · 0‖X
≤ L‖x‖X + CL|h|Λ.

The above and the inequality (a+ b)p ≤ 2p(ap + bp),∀a, b ≥ 0, imply that

‖g · f‖pY =

∫
B
‖α(g, γ)−1 · f(g • γ)‖pX dµ(γ)

≤ (2L)p
∫
B
‖f(g • γ)‖pXdµ(γ) + (2CL)p

∫
B
|α(g, γ)−1|pΛdµ(γ)

= (2L)p
∫
B
‖f(γ)‖pXdµ(γ) + (2CL)p

∫
B
|α(g, γ)|pΛdµ(γ) <∞

by p-integrability, where the last equality uses that the action B 7→ B, γ 7→
g • γ is measure preserving.

Therefore f ∈ Y implies g · f ∈ Y .
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The action on Y is affine. Given a1, a2 ∈ R such that a1 + a2 = 1 and
f1, f2 ∈ Y we want to show that

(3.6)
(
g · (a1f1 + a2f2)

)
(γ) = a1(g · f1)(γ) + a2(g · f2)(γ), ∀γ ∈ B.

Corresponding to the element g ∈ G there is a splitting B =
⊔
h∈ΛBg,h.

It suffices to prove (3.6) on each Bg,h with h ∈ Λ. When γ ∈ Bg,h, the left
hand side of (3.6) becomes:

h · (a1f1 + a2f2)(h−1γg−1) = h ·
[
a1f1(h−1γg−1) + a2f2(h−1γg−1)

]
In the equality above, we applied the definition of the vector space struc-

ture of Y , which is the usual one, for the restrictions to the fundamental
domain B. We now use the fact that h ∈ Λ is an affine transformation of
X, and thus continue with

= a1h · f1(h−1γg−1) + a2h · f2(h−1γg−1) = a1(g · f1)(γ) + a2(g · f2)(γ).

The action on Y is uniformly Lipschitz. For g ∈ G and f1, f2 ∈ Y , using
that the action of Λ on X is L-Lipschitz, and the substitution γ′ = γg−1,

‖g · f1 − g · f2‖pY =

∫
B

∥∥(g · f1)(γ)− (g · f2)(γ)
∥∥p
X
dµ(γ)

=
∑
h∈Λ

∫
Bg,h

‖(g · f1)(γ)− (g · f2)(γ)‖pX dµ(γ)

=
∑
h∈Λ

∫
Bg,h

‖h · f1(h−1γg−1)− h · f2(h−1γg−1)‖pX dµ(γ)

≤ Lp
∑
h∈Λ

∫
Bg,h

‖f1(h−1γg−1)− f2(h−1γg−1)‖pX dµ(γ)

≤ Lp
∑
h∈Λ

∫
h−1Bg,hg−1

‖f1(γ′)− f2(γ′)‖pX dµ(γ′)

= Lp
∫
B
‖f1(γ′)− f2(γ′)‖pX dµ(γ′).

The last equality above is due to the fact that the subsets {h−1Bg,hg
−1}h∈Λ

partition B as they are the image of the partition {Bg,h}h∈Λ under the action
of g on B.

The action G× Y → Y is continuous. For each fixed g, the map f 7→ g · f
from Y to Y is uniformly Lipschitz, so it suffices to show that for each f ∈ Y ,
the orbit map G→ Y, g 7→ g · f is continuous.

First, we show continuity at g = 1G. Let ε > 0 and f ∈ Y be arbitrary.
Recall that we can identify Y with Lp(B,µ;X). Since the interior of B is an
open subset of G, and µ(∂B) = 0, we can find a continuous function f1 with
compact support contained in the interior of B, and with dY (f, f1) < ε/(3L).
By compactness, there exists δ > 0 so that for all a ∈ G with dG(1G, a) < δ

and for all γ in the support of f1 we have dX(f1(γ), f1(γa−1)) < ε/(3µ(B)1/p)
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and that γa−1 ∈ B. Thus

dY (f, a · f) ≤ dY (f, f1) + dY (f1, a · f1) + dY (a · f1, a · f)

≤ ε

3L
+

(∫
B
‖f1(γ)− f1(γa−1)‖pX dµ(γ)

)1/p

+ LdY (f1, f)

≤ ε

3L
+
ε

3
+
ε

3
< ε.

Thus G→ Y, g 7→ g · f is continuous at g = 1G.
The general case follows: given g ∈ G, f ∈ Y , ε > 0, choose δ > 0 so that

dG(1G, a) < δ implies that dY (f, a · f) < ε/L. Then dG(g, g′) < δ implies
that dG(1, g−1g′) < δ, so dY (f, (g−1g′) · f) < ε/L, so dY (g · f, g′ · f) < ε.

We now proceed to the comparison between the orbits of Λ in X and the
orbits of G in Y .
(1) Unbounded orbits for G. For every g ∈ G, by (3.5)

‖g · 0Y ‖pY =

∫
B
‖α(g, γ)−1 · 0Y (g • γ)‖pX dµ(γ).

Suppose the G-orbit of 0Y is bounded. We wish to show the Λ-orbit of
0X is bounded to obtain a contradiction. If Λ is finite index in G this is
straightforward, but for the general case we require the following result of
Ozawa, translated into our notation.

Theorem 3.7 ([Oza11, Corollary 9]). Let G be a second countable locally
compact group G with lattice Λ, fundamental domain B and cocycle α : G×
B → Λ. Suppose ` : Λ→ R≥0 is a function such that `(hh′) ≤ C(`(h)+`(h′))
for some fixed C ≥ 1 and all h, h′ ∈ Λ. Let L : G→ [0,∞] be defined by

L(g) :=

∫
B
`(α(g, γ))dµ(γ).

If L is essentially bounded, then ` is bounded.

Note that Ozawa states his corollary for C = 1 but the proof shows the
C > 1 case also since [Oza11, Theorem 8] allows this. Ozawa also works
with G/Λ rather than Λ\G, and a section σ : G/Λ → G rather than a
fundamental domain σ(G/Λ), but these changes are superficial.

Proceeding with our proof, let ` : Λ→ R≥0 be defined by `(h) = ‖h·0X‖X .
Note that for any h, h′ ∈ Λ,

`(hh′) = ‖hh′ · 0X‖X = ‖h · (h′ · 0X)− h · 0X + h · 0X‖X
≤ ‖h · (h′ · 0X − 0X)‖X + ‖h · 0X‖X ≤ L`(h′) + `(h).

Moreover

L(g) =

∫
B
`(α(g, γ))dµ(γ) =

∫
B
‖α(g, γ) · 0X‖Xdµ(γ)

≤ L
∫
B
‖α(g, γ)−1 · 0X‖Xdµ(γ) ≤ L

(∫
B
‖α(g, γ)−1 · 0X‖pX

)1/p

= L‖g · 0Y ‖Y .
As the G orbit of 0Y is bounded, L is essentially bounded, hence Theo-
rem 3.7 implies that ` is bounded. Therefore the Λ orbit of 0X is bounded,
contradiction.
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(2) Proper orbits. Let K ⊂ B be a measurable compact subset so that
µ(K) ≥ 2

3µ(B). When Λ is a cocompact lattice, we take K = B. To every
element g ∈ G we can associate the set Kg = {γ ∈ B : γ ∈ K, g • γ ∈ K},
which satisfies µ(Kg) ≥ 1

3µ(B).
Since Kg ⊂ K is compact, there exists C > 0 so that for any g ∈ G, any

a ∈ Kgg
−1 satisfies ‖g‖G − C ≤ ‖a‖G ≤ ‖g‖G + C.

Thus, if γ ∈ Kg, as α(g, γ) translates γg−1 back to g • γ = α(g, γ)γg−1 ∈
K, we must have |α(g, γ)|Λ ≥ 1

C′ ‖α(g, γ)‖G − C ′ ≥ 1
C′ (‖g‖G − C) − C ′ for

some C ′.
Therefore,

‖g · 0Y ‖pY =

∫
B
‖α(g, γ)−1 · 0Y (g • γ)‖pX dµ(γ)

≥
∫
Kg

‖α(g, γ)−1 · 0‖pX dµ(γ)

≥ µ(Kg)
1

C ′′
ρ
(

1
C′ (‖g‖G − C)− C ′

)
− C ′′

for some C ′′. �

4. Construction

In this section, we describe the basic tools needed to build our actions.

4.1. Linear representations and derivations. As in the introduction,
let E be a normed vector space, let L(E,E) be the algebra of linear maps
from E to E, and B(E) the sub-algebra of bounded operators.

We endow E ⊕ E with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖. The particular
product norm will not be relevant most of the time.

Let G be a group. We begin by describing how to build a linear represen-
tation on E ⊕ E using a linear representation on E and a derivation with
respect to it. (Compare for example [Pis01, Proof of Theorem 2.1].)

Consider two maps π : G→ L(E,E), D : G→ L(E,E), and an associated
map πD : G→ L(E ⊕ E,E ⊕ E) defined by

πD(g) =

(
π(g) D(g)

0 π(g)

)
.

Definition 4.1. Given π : G → L(E,E) a linear representation, a map
D : G→ L(E,E) is an algebraic derivation with respect to π if it satisfies
the Leibniz rule

D(gh) = D(g)π(h) + π(g)D(h), for all g, h ∈ G.

If moreover π is uniformly bounded and D maps into B(E), we call D a
derivation with respect to π. If moreover supg∈G ‖D(g)‖op <∞, we call the
derivation D bounded.

Note that when π is the trivial representation, D becomes a group homo-
morphism, obviously factoring through the abelianization of G.

Proposition 4.2. We have that:



16 CORNELIA DRUŢU AND JOHN M. MACKAY

(1) πD is a linear representation ⇔ π is a linear representation and D
is an algebraic derivation with respect to π.

(2) Assuming (1) holds, for any g ∈ G,

‖πD(g)‖op ≤ ‖π(g)‖op + ‖D(g)‖op ≤ 2‖πD(g)‖op.

Hence, πD is a uniformly bounded representation ⇔ π is uniformly
bounded and D is a bounded derivation with respect to π.

Proof. (1) For any g, h ∈ G, we have

πD(g)πD(h) =

(
π(g)π(h) π(g)D(h) +D(g)π(h)

0 π(g)π(h)

)
.

(2) We have the following bounds for g ∈ G, x, y ∈ E:∥∥∥∥πD(g)

(
x
y

)∥∥∥∥ = ‖π(g)x+D(g)y‖+ ‖π(g)y‖

≤ ‖π(g)‖op (‖x‖+ ‖y‖) + ‖D(g)‖op‖y‖

≤ (‖π(g)‖op + ‖D(g)‖op)
∥∥∥∥(xy

)∥∥∥∥ ,
whence ‖πD(g)‖op ≤ ‖π(g)‖op + ‖D(g)‖op. For the second inequality, we
note that

‖D(g)y‖+ ‖π(g)y‖ =

∥∥∥∥πD(g)

(
0
y

)∥∥∥∥ ≤ ‖πD(g)‖op‖y‖,

from which we can deduce that ‖D(g)‖op ≤ ‖πD(g)‖op and ‖π(g)‖op ≤
‖πD(g)‖op. �

Now consider a function ζD : G→ E ⊕ E,

ζD(g) =

(
αD(g)
βD(g)

)
.

Lemma 4.3. The function ζD defines a cocycle for the representation πD
if and only if βD is a cocycle for π, and for all g, h ∈ G,

(4.4) αD(gh) = αD(g) + π(g)αD(h) +D(g)βD(h).

Proof. The cocycle equation ζD(gh) = ζD(g) + πD(g)ζD(h) is equivalent to{
αD(gh) = αD(g) + π(g)αD(h) + D(g)βD(h);
βD(gh) = βD(g) + π(g)βD(h).

�

To find a cocycle for πD, we want βD : G → E to be a cocycle for π
independent of D, so we can simply write β instead of βD. However, the
obstruction to αD being a cocycle for π depends on D and β.

4.2. Construction. Our idea is to reverse this algebra: for a suitable rep-
resentation π, cocycle β for π, and function α, we find a derivation D so
that (α, β) is a cocycle for πD, equivalently so that β is a cocycle for π and
(4.4) is satisfied. In the following, the span of a collection of vectors has
the usual meaning of subspace of all finite linear combinations of the given
vectors.
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Lemma 4.5. Let H be a subgroup of a group G. Suppose β : G → E is
a cocycle for a representation π : G → L(E,E), with β(gh) = β(g) for all
g ∈ G, h ∈ H; therefore β([g]), for [g] ∈ G/H, is well-defined. Suppose
further that {β([g]) : [g] ∈ G/H, [g] 6= [1]} is linearly independent.

Let E′ = Span{β(g) : g ∈ G} and let α : G→ E be an arbitrary map with
α(1) = 0 and α(gh) = α(g) for all g ∈ G, h ∈ H. Define D(g) : E′ → E by

(4.6) D(g)β([g′]) = α(gg′)− α(g)− π(g)α(g′),∀g′ ∈ G.

Then D satisfies

D(gh) = D(g)π(h) + π(g)D(h)

for all g, h ∈ G, considered as functions in L(E′, E).

The conditions in this lemma are natural. The domain ofD(g) is naturally
E′, which is a π(G)-invariant subspace, as π(g)β(g′) = β(gg′)− β(g) for all
g, g′ ∈ G. To have D(g) map E′ → E′, it then suffices that α maps into E′.
To make D(g) well-defined, we define it on a linearly independent set. Note
that β(1) = 0 as β is a cocycle. We therefore want α(1) = 0 as well: indeed,
in (4.6), when we let g′ = 1 we obtain D(g)0 = −π(g)α(1), and since D(g)
and π(g) are linear, the conclusion follows.

In the particular case when α maps into E′ ⊂ E, this lemma states that
D is an algebraic derivation for π restricted to π : G → L(E′, E′). We will
later apply the lemma when E is the closure of E′, and use boundedness to
extend D to be a derivation on the whole space E.

Proof of Lemma 4.5. It suffices if the equality between linear maps

D(ab) = D(a)π(b) + π(a)D(b)

is satisfied on the family of vectors {β(g) : g ∈ G}.
For any g ∈ G, the left hand side becomes

D(ab)β(g) = α(abg)− α(ab)− π(ab)α(g),

while the right hand side becomes

[D(a)π(b) + π(a)D(b)]β(g)

= D(a)(β(bg)− β(b)) + π(a)
(
α(bg)− α(b)− π(b)α(g)

)
= α(abg)− α(a)− π(a)α(bg)− [α(ab)− α(a)− π(a)α(b)]

+ π(a)α(bg)− π(a)α(b)− π(a)π(b)α(g)

= α(abg)− α(ab)− π(ab)α(g). �

In the particular construction we now describe, we will always consider
β to be a coboundary; this is no real loss of generality, because most of the
classes of groups to which we will apply our results contain large subclasses
of groups with Property (T). More significantly, we will restrict our attention
to Banach spaces that are isomorphic to `1 (sub)spaces, where we are able
to show that the algebraic derivation D above can be extended to a bounded
derivation.

Given a discrete, countable (infinite) set Q, denote by `1Q the standard
`1-Banach space of functions {f : Q → R :

∑
q∈Q |f(q)| < ∞}. Denote the
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subspace of zero sum functions by:

`10Q =

{
f ∈ `1Q :

∑
q∈Q

f(q) = 0

}
,

and its intersection with the subspace of finitely supported functions by:

`100Q =

{
f ∈ `1Q :

∑
q∈Q

f(q) = 0, |{q : f(q) 6= 0}| <∞

}
.

For the sake of completeness, we include the following easy observation,
with proof.

Lemma 4.7. The subspace `10Q is the closure of the subspace `100Q.

Proof. If (fi) is a sequence in `100Q converging to f ∈ `1(Q), then∣∣∣∣∣∑
q∈Q

f(q)

∣∣∣∣∣ =

∣∣∣∣∣∑
q∈Q

(f(q)− fi(q))

∣∣∣∣∣ ≤∑
q∈Q
|f(q)− fi(q)| = ‖f − fi‖ → 0

as i → ∞, giving that `100Q ⊂ `10Q. Conversely `10Q ⊂ `100Q since `100Q
is dense in `10Q: given f ∈ `10Q and ε > 0, choose Q′ ⊂ Q finite with∑

q∈Q\Q′ |f(q)| < ε/2. Define g ∈ `100Q by setting g = 0 on Q \ Q′, and

setting g = f in Q′, except for one point where the value of g is adjusted by∑
q∈Q\Q′ f(q) ∈ (−ε/2, ε/2). This function satisfies ‖f − g‖ < ε. Therefore

the claim holds. �

The spaces `10Q and `1 are isomorphic, in fact:

Lemma 4.8. The Banach–Mazur distance between `10 = `10N and `1 = `1N

dBM (`10, `
1) = inf{‖F‖op‖F−1‖op : F : `10 → `1 isomorphism}

satisfies dBM (`10, `
1) ∈ (1, 2], with the upper bound attained by an isomor-

phism F .

As mentioned before, the proof we provide below that dBM (`10, `
1) > 1

was explained to us by W. Johnson.

Remark 4.9. Thus, if we build an affine uniformly L-Lipschitz action of
a group on (the `1-sum of finitely many copies of) `10Q, conjugating by an
appropriate isomorphism we can find an affine uniformly Lipschitz action
on `1 with Lipschitz constant (dBM (`10, `

1) + ε)L.

Proof of Lemma 4.8. Let N = {0, 1, 2 . . .}. Define F : `10 → `1(N \ {0}) by
F (f) = f |N\{0}. This clearly satisfies ‖F (f)‖ ≤ ‖f‖, and has an inverse

F−1 : `1(N \ {0})→ `10 defined by

F−1(f)(q) =

{
f(q) if q 6= 0,

−
∑

q 6=0 f(q) if q = 0,

which satisfies ‖F−1(f)‖ ≤ 2‖f‖, so F is the isomorphism required to show
the upper bound dBM (`10, `

1) ≤ 2.
For the lower bound, consider the subspace

X = {(x0, x1, . . .) ∈ `10 : xi = 0, ∀i ≥ 3}.
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This is a contractively complemented subspace of `10, i.e. there is a projection

P : `10 → `10, P ((xi)) =
(
x0, x1,

∑
i≥2

xi, 0, . . .
)

with image X and ‖P‖op = 1.
Suppose dBM (`10, `

1) = 1. Then there is a sequence of isomorphisms

Fi : `10 → `1 with ‖Fi‖op = 1 and ‖F−1
i ‖op → 1. Let Xi = Fi(X), and

consider the sequence of projections FiPF
−1
i : `1 → `1 with image Xi.

Taking an ultralimit of these spaces and maps we get a contractive projection
Pω : E → E on a space E isometrically isomorphic to some L1 space, with
image Xω isometrically isomorphic to X.

Any contractively complemented subspace of any L1 space is (isometri-
cally isomorphic to) an L1 space, see e.g. [BL74]. But X is not isometric to
R2 with the L1-metric – for example the unit ball is a hexagon rather than
a square – contradiction. So dBM (`10, `

1) > 1. �

The following statement is our main tool for building affine uniformly
Lipschitz actions on `1. For q ∈ Q, let δq ∈ `1Q denote the indicator
function of q.

Proposition 4.10. Consider a group G acting transitively on a discrete set
Q, a point x0 ∈ Q and Gx0 its stabilizer. Let π be the orthogonal repre-
sentation of G on `1Q defined by π(g)(f)(·) = f(g−1·), which restricts to
an orthogonal representation on `10Q. Let β : G → `10Q be the coboundary
β(g) = δx0 − π(g)δx0 = δx0 − δgx0. Suppose α : G → `10Q is a function
with α(1) = 0 and α(gh) = α(g) for all g ∈ G, h ∈ Gx0, that moreover is a
quasi-cocycle for π, that is:

∆(α) := sup
g,g′∈G

‖α(gg′)− α(g)− π(g)α(g′)‖ <∞.

Then there is an affine uniformly (1+∆(α))-Lipschitz action of G on the
space `10Q⊕ `10Q for which (α, β) is the cocycle.

Consequently, by rescaling α and conjugating the action by an isomor-
phism, for any L > dBM (`10, `

1), e.g. any L > 2, we can find an affine
uniformly L-Lipschitz action on `1 with a cocycle having norm comparable
to (α, β).

Proof. First, β(gh) = β(g) for all g ∈ G, h ∈ Gx0 , and {β([g]) : [g] ∈
G/Gx0 , [g] 6= [1]} are linearly independent vectors whose span is `100Q.

Lemma 4.5 applies to define, for each g ∈ G, linear maps D(g) : `100Q →
`10Q that satisfy

(4.11) D(gh) = D(g)π(h) + π(g)D(h), for all g, h ∈ G.

For any f ∈ `100Q, we can write

f =
∑

[g]∈G/Gx0 ,[g]6=[1]

−f(gx0)β(g).
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We now bound D:

D(g)f = D(g)

 ∑
[g′]∈G/Gx0 ,[g′]6=[1]

−f(g′x0)β(g′)


=

∑
[g′]∈G/Gx0 ,[g′]6=[1]

−f(g′x0)D(g)β(g′),

thus

‖D(g)f‖ ≤
∑

[g′]∈G/Gx0 ,[g′]6=[1]

|f(g′x0)|∆(α)

= ∆(α)
∑

x∈Q\{x0}

|f(x)| ≤ ∆(α)‖f‖,

i.e. the linear maps D(g) : `100Q→ `10Q are all bounded with norm at most
∆(α). Therefore, for every g ∈ G, we can extend D(g) to a linear operator

on `10Q = `100Q, with ‖D(g)‖op ≤ ∆(α).
Since (4.11) is true on a dense subspace of `10Q, and both sides are bounded

operators, it holds considering the two sides as operators on `10Q, so D is a
bounded derivation on `10Q with ‖D(g)‖op ≤ ∆(α) for all g ∈ G.

Proposition 4.2 and Lemma 4.3 then apply to give a representation πD
on `10Q⊕ `10Q which admits (α, β) as a cocycle, with πD uniformly bounded
by 1 + ∆(α).

Finally, given ε > 0, we can apply the argument above to εα which satisfies
∆(εα) = ε∆(α) to find an action on `10Q⊕`10Q. As in Lemma 4.8, we can find
an isomorphism F : `10Q → `1 such that ‖F‖op‖F−1‖op ≤ dBM (`10, `

1) + ε,
and conjugate the action above by F ⊕ F to find an action(

x
y

)
7→ FπD(g)

(
F−1

(
x
y

))
+

(
Fεα(g)
Fβ(g)

)
on `1 ⊕ `1 = `1 which is uniformly L-Lipschitz for any L satisfying

‖F‖op(1 + ε∆(α))‖F−1‖op ≤ (dBM (`10, `
1) + ε)(1 + ε∆(α)) ≤ L,

and has cocycle (εFα(g), Fβ(g)) comparable to (α, β). �

5. Quasi-cocycles for acylindrically hyperbolic groups

In this section, we use a quasi-cocycle construction of Bestvina–Bromberg–
Fujiwara [BBF16] and Hull–Osin [HO13] for acylindrically hyperbolic groups
to show the following.

Theorem 1.2 Any acylindrically hyperbolic group G admits an affine uni-
formly (2 + ε)-Lipschitz action on `1 with unbounded orbits for any ε > 0,
hence likewise for L1 = L1([0, 1]).

We begin by recalling Bestvina–Bromberg–Fujiwara’s extension of Brooks’
counting quasi-morphism.

Notation 5.1. Let T be a real tree.
For x, y ∈ T we let [x, y] denote the oriented geodesic segment from x to

y. For x, y, p, q ∈ T we write [x, y]
◦
⊂ [p, q] if [x, y] is contained in [p, q] and

if their orientations agree.
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Consider the free group F2 = 〈a, b〉, w ∈ F2 a reduced non-empty word,

Ẽ a normed vector space with an isometric linear F2-action, and e ∈ Ẽ a
(non-zero) vector.

In the Cayley graph of F2 with respect to {a, b, a−1, b−1}, using the nota-
tion introduced in 5.1 we define, for every g ∈ F2,

w+(g) = {h ∈ F2 : [h, hw]
◦
⊂ [1, g]},

w−(g) = {h ∈ F2 : [h, hw]
◦
⊂ [g, 1]},

and

(5.2) η = ηw,e : F2 → Ẽ, η(g) =
∑

h∈w+(g)

h · e−
∑

h∈w−(g)

h · e.

A short argument gives the following.

Proposition 5.3 ([BBF16, Proposition 2.1]). The function η is a quasi-
cocycle that is moreover anti-symmetric, i.e. η(g−1) = −g−1 · η(g).

The idea is that, when computing η(gg′)−η(g)−g ·η(g′), all terms cancel
apart from a bounded number involving h located near the centre of the
tripod with vertices 1, g, gg′.

We may now prove the theorem.

Proof of Theorem 1.2. We aim to apply Proposition 4.10 to the action of G
on itself.

Following [BBF16, Proof of Corollary 1.2], let K be the maximal fi-
nite normal subgroup of G. By Osin [Osi16, Theorem 1.2] and Dahmani–
Guirardel–Osin [DGO17, Theorem 2.24] there exists a hyperbolically em-
bedded F2 ×K ≤ G (compare [BBF16, Theorem 4.5]).

Let F2 = 〈a, b〉. Consider Ẽ = `10(F2) with the usual left F2-action,

the vector e = δ1 − δa2 ∈ Ẽ and the word w = ab, and define the quasi-
cocycle η = ηw,e using the formula (5.2). As in [BBF16, Example 2.3], η is
unbounded:

η((ab)n) = (1 + ab+ · · ·+ (ab)n−1)e =

n−1∑
i=0

(
δ(ab)i − δ(ab)ia2

)
so ‖η((ab)n)‖ = 2n → ∞ as n → ∞. Extend η trivially on K, that is,
for (g, k), (h, l) ∈ F2 × K, let η((g, k))((h, l)) = η(g)(h). This defines an
unbounded quasi-cocycle on `10(F2 ×K).

The subgroup F2×K is hyperbolically embedded in G, and `10(F2×K) is a
(F2×K)-submodule of `10(G), therefore, according to [HO13, Theorem 1.4],
η extends to an (anti-symmetric unbounded) quasi-cocycle α : G→ `10(G).

Proposition 4.10 applied to Q = G with the action on itself by left mul-
tiplication, and x0 = 1 with trivial stabilizer yields an affine uniformly Lip-
schitz action Gy `10(G)⊕ `10(G) with cocycle ζ = (α, β) for α as above and
β(g) = δ1 − δg. Since α is unbounded, G y `10(G) ⊕ `10(G) has unbounded
orbits.

As remarked in Proposition 4.10, up to rescaling α and conjugating by an
isomorphism, for any ε > 0 we can find an affine uniformly (2 + ε)-Lipschitz
action of G on `1 with unbounded orbits. The L1 statement follows from
Proposition 2.3. �
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6. Quasi-trees and quasi-cocycle estimates

Bestvina–Bromberg–Fujiwara [BBF21] showed that residually finite hy-
perbolic groups and mapping class groups have “Property (QT)”: they act
properly and isometrically on a finite product of quasi-trees. In their proof,
the quasi-trees are quasi-trees of spaces, built from axes of loxodromic (or
hyperbolic) elements in a hyperbolic graph, using projection complexes in
the sense of their paper [BBF15]. In this section, for a group acting on
such a graph, we build an affine uniformly Lipschitz action on `1 with a cer-
tain lower bound on distance. We do this by combining our methods with
those from [BBF21], and with a construction of quasi-cocycles on quasi-trees
inspired by Bestvina–Bromberg–Fujiwara [BBF13].

6.1. Quasi-cocycles on quasi-trees. First, we outline a variation on Best-
vina–Bromberg–Fujiwara’s quasi-cocycle construction for quasi-trees [BBF13,
§5]. Their construction is a ‘quasi-fied’ version of that in §5, where one re-
places w by a high power of an ‘axial WPD element’ f . The main difference
between their construction and ours is that w is replaced only by a suffi-
ciently long initial segment of an axis of a hyperbolic element f , and the
resulting constants are independent of the translation length of f . This is
necessary in our later construction of proper cocycles. For the case of map-
ping class groups, we also need to allow for an infinite subgroup J acting
trivially on the axis, and we want the group to act ‘acylindrically modulo J ’.
Given these changes, and that the preprint [BBF13] is unpublished (being
superseded by [BBF16]), we include proofs for what we need.

Let us describe the setup.

Notation 6.1. Suppose G is a group acting isometrically on a metric space
Y , and J ≤ G is a subgroup. Let YJ = {y ∈ Y : jy = y, ∀j ∈ J}.

Definition 6.2. A Cγ-quasi-geodesic in Y is a subset γ that is Cγ-quasi-
isometric to Z. We say that G acts (D,B)-acylindrically on γ modulo J ,
where J ≤ G and D = D(ε), B = B(ε) > 0 are functions in ε > 0, if γ ⊂ YJ
and for every ε > 0, if x, y ∈ γ with dY (x, y) ≥ D(ε) and x′, y′ ∈ Y then

|{[g] ∈ G/J : dY (x′, gx), dY (y′, gy) ≤ ε}| ≤ B(ε).

We require an extension of Notation 5.1.

Notation 6.3. Let T be a tree. For x, y, p, q ∈ T and ε, L ≥ 0, we write

[x, y]
◦
⊂ε,L [p, q] if [x, y]∩B(x, L) is contained in the ε-neighbourhood of [p, q],

if [x, y] ∩ [p, q] 6= ∅ and on the intersection their orientations agree.

Clearly, if ε is small enough compared to L and the lengths of [p, q] and
[x, y], then the condition that [x, y] ∩ [p, q] 6= ∅ becomes superfluous.

Now let us suppose Y = Q is a CQ-quasi-tree, and fix φ : Q → T a
CQ-quasi-isometry to a tree.

Let γ ⊂ Q be a Cγ-quasi-geodesic on which G acts (D,B)-acylindrically
modulo a subgroup J ≤ G. Suppose there exists f ∈ G which acts hyper-
bolically on Q, that is, all its orbits are quasi-geodesics, and fγ = γ, so γ is
a quasi-axis for f . Suppose M ≥ 1 is given, and let F = fM .
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Fix x0 ∈ γ and ε, L ≥ 0, and define W+(g) = W+,ε,L,F,x0(g) by

W+(g) = {[h] ∈ G/J : ∃t ∈ G s.t. [φ(thx0), φ(thFx0)]
◦
⊂ε,L [φ(tx0), φ(tgx0)]},

and similarly define W−(g) = W−,ε,L,F,x0(g) by

W−(g) = {[h] ∈ G/J : ∃t ∈ G s.t. [φ(thx0), φ(thFx0)]
◦
⊂ε,L [φ(tgx0), φ(tx0)]}.

These are coarse versions of w+(g), w−(g) from §5. The use of an auxiliary
tree ensures we get perfect cancelling away from the tripod point in our
quasi-cocycle estimate below, but as φ is likely not equivariant we then also
involve t translates to correct this. Because x0, Fx0 ∈ QJ , W±(g) are well
defined. Moreover, if Gx0 is the stabilizer of x0, then for all g ∈ G, g′ ∈ Gx0
we have that W+(gg′) = W+(g) and W−(gg′) = W−(g).

The sets W−(g) and W+(g) are essentially independent of the exponent
M of F , if M is large enough; the main purpose of F is to give an orientation
to the quasi-axis γ.

Theorem 6.4 (cf. [BBF13, Proposition 5.8]). Let G be a group acting on
a CQ-quasi-tree Q, f ∈ G a hyperbolic element with an f -invariant Cγ-
quasi-axis γ on which G acts (D,B)-acylindrically modulo J ≤ G, and let
x0 ∈ γ.

For every ε > 0 there exists L0 = L0(D,CQ, Cγ , ε) such that if L ≥ L0 and

M ≥ 1 large enough, for F = fM the sets W±,ε,L,F,x0(g) allow to construct
quasi-cocycles as follows.

Given an isometric linear action of G on a normed vector space E, and
a non-zero vector e ∈ E such that j · e = e for every j ∈ J , the map

α : G→ E, α(g) =
∑

[h]∈W+,ε,L,F,x0
(g)

h · e−
∑

[h]∈W−,ε,L,F,x0 (g)

h · e

defines a quasi-cocycle with ∆(α) ≤ C(D,B,CQ, Cγ , L), and α(gg′) = α(g)
for all g ∈ G, g′ ∈ Gx0, and with α(1) = 0.

Remark 6.5. We emphasise that L0 does not depend on the translation
length of f or F .

Proof. Step 1. To show that α is well-defined, it suffices to check that
the sums in α are finite.

Fix g ∈ G, ε > 0. By hyperbolicity, we have

Lemma 6.6. There exists C1 = C1(CQ, Cγ , ε) so that if [h] ∈W+,ε,L,F,x0(g)
for some L > 0, then for any geodesics [hx0, hFx0], [x0, gx0], the intersection
[hx0, hFx0] ∩B(hx0, L/CQ) lies in the C1-neighbourhood of [x0, gx0].

Let D = D(2C1) be given by the acylindricity function for γ, and suppose
L/CQ ≥ D(2C1), that is L ≥ L0 := CQD(2C1). Let y0 ∈ [x0, Fx0] be a
point with d(x0, y0) = L/CQ.

Cover [x0, gx0] by finitely many balls of radius 2C1; the number of balls is
≤ 1 +d(x0, gx0)/2C1. If [h] ∈W+(g), then Lemma 6.6 implies that hx0 and
hy0 both lie in one of these finitely many balls. Hence it suffices to bound
the number of [h] for which hx0 and hy0 map into two specified such balls.
But as d(x0, y0) ≥ D(2C1), by acylindricity, this number is at most B(2C1).

The proof that W−(g) is finite for L ≥ L0 is identical.
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Step 2. We now check that α is a quasi-cocycle. For g, g′ ∈ G, let us
consider

(6.7) α(gg′)− α(g)− g · α(g′).

We claim that all but a uniformly bounded number of summands in this
expression cancel.

Fix geodesics [x0, gx0], [x0, gg
′x0] and [gx0, gg

′x0] in Q, and let z ∈ Q be
a point within CQ of all three.

Lemma 6.8. There exists R1 = R1(CQ) and a partial pairing up of identical
elements in W±(gg′),W±(g), gW±(g′) such that the following trichotomies
hold:

• Every [h] ∈W+(gg′) either pairs with a unique [h] ∈W+(g), or with
a unique [h] ∈ gW+(g′), or [hx0, hFx0]∩B(hx0, CQL)∩B(z,R1) 6= ∅.
• Likewise if [h] ∈ W−(gg′) then it pairs with a unique [h] ∈ W−(g),

or with a unique [h] ∈ gW−(g′), or [hx0, hFx0] ∩ B(hx0, CQL) ∩
B(z,R1) 6= ∅.
• If [h] ∈ W+(g) is not already paired up, then either it pairs with

[h] ∈ gW−(g′) or else [hx0, hFx0] ∩B(z,R1) 6= ∅.
• Finally, if [h] ∈ W−(g) is not already paired up, then either it pairs

with a unique [h] ∈ gW+(g′) or else [hx0, hFx0] ∩ B(hx0, CQL) ∩
B(z,R1) 6= ∅.

The key point in the proof of the lemma is the equivariance that is implicit
in the definitions of W+(g) and W−(g), from which it follows that

gW+(g′) = {[h] ∈ G/J : ∃t ∈ G, [φ(thx0), φ(thFx0)]
◦
⊂ε,L [φ(tgx0), φ(tgg′x0)]},

and a similar expression for gW−(g′).
According to the definition of α, any paired terms given by Lemma 6.8

will cancel in (6.7).
It remains to count the unpaired terms. By the argument from Step 1,

these unpaired terms have hx0 and hy0 lying within C1 of three geodesic sub-
segments of [x0, gx0], [x0, gg

′x0], [gx0, gg
′x0] of length ≤ C2 = C2(CQ, L,R1).

Again, by the argument from Step 1, the number of these terms will be ≤ C
for C = C(C2, B). Thus ∆(α) ≤ C‖e‖ as desired. Finally, α(gg′) = α(g) for
all g ∈ G, g′ ∈ Gx0 by the analogous property for W−(g) and W+(g), and
α(1) = 0 as W−(1) = W+(1) = ∅. �

6.2. Projection complexes and distance estimates. We now consider
how the construction of quasi-cocycles in Theorem 6.4 behaves when applied
to certain quasi-trees that result from projection complexes, with the goal
to find lower bounds on their norms.

First, we recall the definition of a quasi-tree of metric spaces resulting
from a projection complex. All our metric spaces are graphs with edge
lengths 1 (or later, K ≥ 1), but the graphs need not be locally finite.

Suppose Y is a collection of uniform CA-quasi-geodesics with projections
{π′Y | Y ∈ Y}. For any X ∈ Y \ {Y }, π′Y (X) is a subset of Y . Suppose
(Y, {π′Y | Y ∈ Y}) satisfy the strong projection axioms with constant ξ′, in
the sense of [BBFS19] and [BBF21, §2.3].
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For Y ∈ Y \ {X,Z}, define dY (X,Z) = diam [π′Y (X) ∪ π′Y (Z)]. For
K ≥ 4ξ′, define a quasi-tree of metric spaces CK(Y) by taking the disjoint
union of spaces in Y and connecting all pairs of spaces X,Z ∈ Y with the
property that dY (X,Z) < K for all Y ∈ Y \ {X,Z}, by joining every point
in π′X(Z) with every point in π′Z(X) by an edge of length K. The space
CK(Y) thus obtained is a CQ = CQ(CA, ξ

′)-quasi-tree [BBFS19, Theorem
6.6].

We extend the projections and distances between them to CK(Y). If
x ∈ X ∈ Y and Y ∈ Y \ {X} set π′Y (x) = π′Y (X), and set π′X(x) = {x}.
For each Y ∈ Y, extend dY to CK(Y) as follows: suppose x ∈ X ∈ Y, z ∈
Z ∈ Y. Then if X 6= Y, Z 6= Y , set dY (x, z) = dY (X,Z); if X 6= Z set
dX(x, z) = diam [{x} ∪ π′X(Z)]; and if X = Z set dX(x, z) to be the given
distance in X.

We are usually only interested in large values of dY , therefore we often
use the truncated distance {{dY (·, ·)}}L, whose meaning is as follows.

Notation 6.9. For real numbers L,N > 0, {{N}}L equals N if N ≥ L, and
0 otherwise.

In [BBF21], the authors write dY (·, ·)L for {{dY (·, ·)}}L.
When constructing proper quasi-cocycles for both residually finite hyper-

bolic groups and mapping class groups, the following standing assumptions
and notation will apply. Note that given the other assumptions, the final
two points are guaranteed to hold for suitable x0, . . . , xp, φ.

Assumptions 6.10. Suppose:

• A′ is a collection of graphs that are CA-quasi-geodesics;
• {π′Y }Y ∈A′ is a collection of projections so that (A′, {π′Y }) satisfy the

strong projection axioms with constant ξ′;
• H is a finitely generated group acting on the disjoint union

⊔
Y ∈A′ Y ,

respecting the partition and not flipping the ends of any Y ;
• A′ = H · γ, for some γ ∈ A′;
• J is a subgroup which fixes every point of γ;
• K ≥ 4ξ′ is given so that CK(A′) is a CQ-quasi-tree ;
• H acts on γ ⊂ CK(A′) (D,B)-acylindrically modulo J , and there

exists an element f ∈ H acting hyperbolically, fγ = γ;
• x0, x1, . . . , xp ∈ γ are a collections of basepoints that are moreover

representatives of H-orbits of vertices in CK(A′), so that every point
of CK(A′) is within distance CA of such an orbit. Since 〈f〉 acts
coboundedly on the CA–quasi-geodesic γ, we need only finitely many
such orbits. Let CF = max{dγ(x0, xi) : i = 1, . . . , p}.
• φ : CK(A′)→ T is a fixed CQ-quasi-isometry to a tree T .

These assumptions imply that every Y ∈ A′ is endowed with an orienta-
tion. Indeed, every h′ ∈ H so that h′γ = Y induces a well-defined orientation
on Y , coming from f . As there is no element in the stabilizer of γ swapping
its endpoints, this orientation is independent of h′.

Under these standing assumptions, we are going to use quasi-cocycles of
the type constructed in Theorem 6.4.



26 CORNELIA DRUŢU AND JOHN M. MACKAY

Recall Notation 6.3 and the definitions of W±,ε,L,F,x0(g). If L is large
enough then the sets W+,ε,L,F,x∗(g) and W−,ε,L,F,x∗(g) are disjoint, for any
choice of basepoint x∗ ∈ γ:

Lemma 6.11. Given ε ≥ 0, there exists L′ = L′(CQ, CA, ε) so that for any

L ≥ L′ and any M large enough that F = fM translates by at least L, and
any basepoint x∗ ∈ γ, W+,ε,L,F,x∗(g) ∩W−,ε,L,F,x∗(g) = ∅.

Proof. Suppose [h] ∈ W+,ε,L,F,x∗(g) ∩ W−,ε,L,F,x∗(g). Then, coarsely, the
initial segment of [hx∗, hFx∗] travels towards [x∗, gx∗] then follows along
[x∗, gx∗] going towards both x∗ and gx∗, which is absurd for L large enough
depending on ε, CA, CQ. �

We now relate the sum of the projection distances

(6.12)
∑
Y ∈A′

{{dY (x0, gx0)}}L

to the sizes of the sets W±,ε,L,F,xi , i ∈ {0, 1, . . . , p}.

Lemma 6.13. There exists an appropriate choice of constants ε = ε(CA, CQ)
and L′0 = L′0(D,CQ, CA, ε) to be used in the definition of W±,ε,L,F,xi (with L′0
larger than L0(D,CQ, CA, ε) from Theorem 6.4, and larger than L′(CQ, CA, ε)
from Lemma 6.11) and an appropriate choice of the threshold L∗ = L∗(L

′
0, ε,

CQ, CA,K) to be used in the sum of the projection distances (6.12) so that
for every L ≥ L∗ we can find a bound C > 0 with the property that every
g ∈ H determines a partition A′ = A′1(g) t A′2(g) satisfying the following.

(a) The partial sum of distances corresponding to A′2(g) is bounded:∑
Y ∈A′2(g)

{{dY (x0, gx0)}}L ≤ C.

(b) For each Y ∈ A′1(g), there exists i = iY ∈ {0, 1, . . . , p}, N(Y, g, i) ≥
1
C {{dY (x0, gx0)}}L > 0, and h ∈ H satisfying hγ = Y such that:

• [h], [hf ], . . . , [hfN(Y,g,i)] are distinct elements in W−,ε,L′0,F,xi(g)∪
W+,ε,L′0,F,xi

(g);

• for every [h′] ∈ W±,ε,L′0,F,xi(g) with h′γ = Y there exists j ∈
{0, . . . , N(Y, g, i)} such that d(h′xi, hf

jxi) ≤ C.
(c) In particular,∑
Y ∈A′1(g)

{{dY (x0, gx0)}}L ≤ C
p∑
i=0

[
|W+,ε,L′0,F,xi

(g)|+ |W−,ε,L′0,F,xi(g)|
]
.

Proof. There exists L1 = L1(CA, CQ) so that if L ≥ L1 then dY (x0, gx0) ≥ L
implies that in CK(A′) the geodesics from x0 to gx0 pass within a uniformly
bounded distance δQ = δQ(CQ) of both π′Y (x0) and π′Y (gx0).

Step 1. Let A′1a(g) be composed of those Y ∈ A′ so that π′Y (x0), π′Y (gx0)
are both at a distance at least CF +κQ from {x0, gx0}, where κQ = κQ(CQ)
is large enough compared to δQ and to the bottleneck constant and the
hyperbolicity constant of CK(A′) so that for every i the projections π′Y (xi)
and π′Y (gxi) are within distance 2κQ of π′Y (x0) and π′Y (gx0), respectively.
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Suppose π′Y (x0) and π′Y (gx0) appear on Y in that order, with respect to
the orientation on Y . Choose i ∈ {0, . . . , p} and h ∈ H with hγ = Y , so that
hxi is CA-close to π′Y (x0), and hence (CA + 2κQ)-close to π′Y (xi). (If the
order of π′Y (x0) and π′Y (gx0) on Y is reversed, we choose hxi to be CA-close
to π′Y (gx0) and proceed analogously.)

Let yi ∈ γ be a point at distance ∈ [L,L + CA] from xi in the direction
of f , and let M ≥ 1 be large enough so that for F = fM , yi is between xi
and Fxi. The geodesics in CK(A′) from hxi to hFxi pass within bounded
distance of hyi. Thus there exists ε = ε(CA, CQ) so that φ(hyi) is within
distance ε of [φ(hxi), φ(hFxi)] in T ; note that ε does not depend on L.

Let the constant L′0 used in the definition of W±,ε,L′0,F,xi(g) be the max-

imum of L0 = L0(D,CQ, CA, ε) from Theorem 6.4 and L′ = L′(CQ, CA, ε)
from Lemma 6.11. Assume moreover that the threshold L∗ = L∗(L

′
0, ε, CQ,

CA,K) used in the sum of the projection distances (6.12) is the maxi-
mum between L1(CA, CQ) mentioned in the beginning of the proof and
CQ(L′0 + 3ε + CQ) ≥ L0. Then dCK(A′)(xi, yi) ≥ L ≥ L∗ implies that
in T

dT (φ(hxi), φ(hyi)) ≥ L′0 + 3ε.

Moreover, [φ(hxi), φ(hyi)] and [φ(hxi), φ(hFxi)] agree in B(φ(hxi), L
′
0).

As φ(hxi) and φ(hyi) are ≥ 3ε apart and both are in the ε-neighbourhood

of [φ(xi), φ(gxi)], we have that [φ(hxi), φ(hFxi)]
◦
⊂ε,L′0 [φ(xi), φ(gxi)], i.e.

[h] ∈ W+,ε,L′0,F,xi
(g). Let C(Y, g, i) be the set of all [h′] ∈ W+,ε,L′0,F,xi

(g) ∪
W−,ε,L′0,F,xi(g) with h′γ = Y . Since all h ∈ C(Y, g, i) are orientation preserv-

ing, C(Y, g, i) is entirely contained either inW+,ε,L′0,F,xi
(g) or inW−,ε,L′0,F,xi(g).

We have just shown that our chosen [h] is in C(Y, g, i) when dY (x0, gx0) ≥ L.

A similar argument shows that [hf ], [hf2], . . . , [hfN(Y,g,i)] are in C(Y, g, i) for
some N(Y, g, i) ≥ 1

C {{dY (x0, gx0)}}L, where C = C(L, f) ≥ 1 depends on
the translation length of f .

Since we can choose N(Y, g, i) so that hxi and hfN(Y,g,i)xi lie close to
π′Y (x0) and π′Y (gx0), respectively, we have that every [h′] ∈ W±,ε,L′0,F,xi(g)

with h′γ = Y has h′xi in the C-neighbourhood of

{hf jxi : j = 0, . . . , N(Y, g, i)}.

Step 2. Let A′1b(g) be composed of those Y ∈ A′ for which

dCK(A′)(π
′
Y (x0), π′Y (gx0)) ≥ 5(CF + CQ + CA + κQ + L).

Suppose π′Y (x0), π′Y (gx0) appear on Y in that order (the other case is
similar). Choose points y, z ∈ Y so that π′Y (x0), y, z, π′Y (gx0) appear on
Y in that order, and that dY (π′Y (x0), y), dY (z, π′Y (gx0)) ∈ [CF + CQ, CF +
CQ + CA]. Choose i ∈ {0, . . . , p} and h ∈ H so that hγ = Y and hxi is
CA-close to y and hence (2CA + 2CQ + 2CF + κQ)-close to π′Y (xi).

The same argument as in Step 1 yields a finite sequence

[h], [hf ], [hf2], . . . , [hfN(Y,g,i)]

contained in C(Y, g, i), for some

N(Y, g, i) ≥ 1

C
{{dY (y, z)}}L ≥

1

2C
{{dY (x0, gx0)}}L ,
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such that every [h′] ∈ W±,ε,L′0,F,xi(g) has h′xi in some C-neighbourhood of

{hf jxi : j = 0, . . . , N(Y, g, i)}, where C = C(L, f) + CF + CQ + CA, with
C(L, f) the constant appearing in Step 1.

Step 3. Let A′2a(g) be composed of those Y ∈ A′ for which

{π′Y (x0), π′Y (gx0)} ⊂ B(x0, 6(CF + CQ + CA + κQ + L)).

Assume L ≥ K. If dCK(A′)(x0, gx0) ≤ 6(CF +CQ +CA +κQ +L) +κQ then
the distance formula [BBFS19] gives∑
Y ∈A′

{{dY (x0, gx0)}}L ≤ 4dCK(A′)(x0, gx0) ≤ C ′ := 28(CF+CQ+CA+κQ+L),

so the Lemma is proved with A′2(g) = A′,A′1(g) = ∅.
Otherwise, choose y ∈ [x0, gx0] at distance 6(CF+CQ+CA+L)+2κQ from

x0, then assuming L ≥ 4κQ, for each Y ∈ A′2a(g) we have {{dY (x0, gx0)}}L ≤
2 {{dY (x0, y)}}L. Thus again by the distance formula,∑

Y ∈A′2a(g)

{{dY (x0, gx0)}}L ≤ 2
∑

Y ∈A′2a(g)

{{dY (x0, y)}}L

≤ 8dCK(A′)(x0, y)

≤ C ′′ := 48(CF + CQ + CA + L) + 16κQ.

Step 4. Let A′2b(g) be composed of those Y ∈ A′ for which

{π′Y (x0), π′Y (gx0)} ⊂ B(gx0, 6(CF + CQ + CA + κQ + L)).

Then as in Step 3, ∑
Y ∈A′2b(g)

{{dY (x0, gx0)}}L ≤ C
′′.

We can now finish the proof of (a) and (b), by taking the constant C to
be the maximum of 2C and C ′ + C ′′, and letting A′1(g) = A′1a(g) ∪ A′1b(g)
and A′2(g) = A′2a(g) ∪ A′2b(g).

The statement (c) follows from the fact that, by definition, Y 6= Y ′ implies
C(Y, g, i) ∩ C(Y ′, g, i) = ∅. �

We will apply these bounds in two different ways in the following two sub-
sections, which are used in the cases of residually finite hyperbolic groups
and mapping class groups respectively. The challenge is to find a combina-
tion of quasi-cocycles as in Theorem 6.4 which is proper, by finding suitable
choices of e and using distance formula estimates as in this subsection.

6.3. A linear lower bound. Our first (linear) lower bound applies in “non-
elementary” cases, when the fixed set of J in CK(A′) contains points arbi-
trarily far from γ.

Proposition 6.14. Suppose that in addition to the Assumptions 6.10 we
have the following property:

(B) for every i ∈ {0, 1, . . . , p} and every n ∈ N there exist h ∈ H with
Jhxi = hxi and hxi at distance at least n from γ.
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Then there exists L∗ = L∗(D,CA, CQ,K) so that for any L ≥ L∗ and any
ε > 0 we can find a Banach space E isometrically isomorphic to `1, an affine
uniformly (2+ ε)-Lipschitz action of H on E, x 7→ π(g)x+ ζ(g), and C > 0,
so that for all g ∈ H,

(6.15) ‖ζ(g)‖ ≥ 1

C

∑
Y ∈A′

{{dY (x0, gx0)}}L − C.

Proof. We use the quasi-cocycles constructed in Theorem 6.4 combined with
the construction described in Proposition 4.10.

Let ε = ε(CA, CQ), L′0(D,CQ, CA, ε) and L∗(L
′
0, ε, CQ,K) be the constants

given by Lemma 6.13.
In order to build our quasi-cocycles, we need the following.

Lemma 6.16. For each i ∈ {0, . . . , p}, there exist gi,0, gi,1 ∈ H so that
Jgi,jxi = gi,jxi, and for every h ∈ G, the triple {φ(hxi), φ(hgi,0xi), φ(hgi,1xi)}
is not contained in the ε-neighbourhood of a geodesic in the tree T .

Proof. By our additional assumption (B), recalling CK(A′)J denotes the set
of points fixed by J , then Hxi∩CK(A′)J contains points arbitrarily far from
γ. Choose gi,0 ∈ H so that gi,0xi lies sufficiently far from γ and in CK(A′)J ,
depending on CQ, ε, and then choose gi,1 = fN so that xi, gi,0xi, gi,1xi make
a sufficiently non-degenerate tripod in CK(A′). The conclusion follows. �

For each i = 0, . . . , p, consider the action of H on Hxi by left translation,
the associated action on `1(Hxi) and the coboundary βi(g) = δxi−δgxi . For
j = 0, 1, let αgi,j be the quasi-cocycle given by Theorem 6.4 for the vector

ei,j = βi(gi,j) ∈ `10(Hxi) and L = L′0. Let αi = αgi,0 + αgi,1 : H → `10(Hxi);
as it is a sum of quasi-cocycles, it is also a quasi-cocycle.

Apply Proposition 4.10 to find an affine uniformly Lipschitz action of H
on the space Vi = `10(Hxi)⊕ `10(Hxi) for which ζi = (αi, βi) is the cocycle.

These actions combine to define an affine uniformly Lipschitz action of H
on E =

⊕p
i=0 Vi with the `1 metric, for which (ζi)i=0,...,p is the cocycle.

The statements (a) and (c) in Lemma 6.13 imply that∑
Y ∈A′

{{dY (x0, gx0)}}L ≤ C + C

p∑
i=0

(
|W−,ε,L′0,F,xi(g)|+ |W+,ε,L′0,F,xi

(g)|
)
,

so it suffices to show that for each i ∈ {0, . . . , p} and g ∈ G:

(6.17) |W+,ε,L′0,F,xi
(g)|+ |W−,ε,L′0,F,xi(g)| ≤ ‖αgi,0(g) + αgi,1(g)‖.

But

αgi,0(g) + αgi,1(g) =
∑

[h]∈W+,ε,L′0,F,xi
(g)

(
2δhxi − δhgi,0xi − δhgi,1xi

)
−

∑
[h]∈W−,ε,L′0,F,xi

(g)

(
2δhxi − δhgi,0xi − δhgi,1xi

)
.

By Lemma 6.11, W+(g) ∩W−(g) = ∅, and it is impossible for [h] ∈ W+(g)
and [h′] ∈ W−(g) to satisfy hxi = h′xi. Thus, any cancelling of 2δhxi for
[h] ∈ W+(g) can only come from terms of the form −δh′′gi,0xi or −δh′′′gi,1xi
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for some other [h′′], [h′′′] ∈ W+(g). Lemma 6.16 implies that for each [h] ∈
W+(g), at most one of hgi,0 and hgi,1 could also be in W+(g). Thus∑

[h]∈W+,ε,L′0,F,xi
(g)

∣∣(αgi,0(g) + αgi,1(g)
)

(hxi)
∣∣ ≥ |W+,ε,L′0,F,xi

(g)|.

Similarly, considering negative values, we obtain∑
[h]∈W−,ε,L′0,F,xi

(g)

∣∣(αgi,0(g) + αgi,1(g)
)

(hxi)
∣∣ ≥ |W−,ε,L′0,F,xi(g)|.

At this point we have not controlled the Lipschitz constant of the action.
However, as in Proposition 4.10, given ε > 0, up to rescaling each αi and
conjugating the action on each Vi to get an action on `1, we can find a
uniformly (2 + ε)-Lipschitz affine action on `1 with cocycle comparable to
(ζi)i=0,...,p. This completes the proof. �

6.4. A weaker lower bound on distance. Without the additional as-
sumption (B), we can only obtain a version of (6.15) in which the right
hand side is of the form θ

(
1
C

∑
Y ∈A′ {{dY (x0, gx0)}}L − C

)
for some proper

functions θ. The idea is that instead of constructing a quasi-cocycle using
a vector ei,0 + ei,1 with finite support in a tripod shape, we find a vector e
with support in γ and values that decay at a suitable rate: e is in `10(γ), but
sums of k translations of e have `1 norm growing almost linearly in k.

We now precisely describe the types of functions θ that we can thus find.

Assumption 6.18. Suppose θ : N→ [0,∞) satisfies the following:

• θ is non-decreasing with limt→∞ θ(t) =∞;
• θ is sub-additive;
• there exists Θ : N→ [0,∞) with Θ ∈ `1(N), and for all t ∈ N,

θ(t) ≤
t∑
i=1

∞∑
j=i

Θ(j).

Lemma 6.19. For every k ∈ N,

θ(t) =
t

1 + log◦k+ t

satisfies Assumption 6.18, where log◦k+ (t) equals the k-fold composition of
log when that is defined and positive, and equals 0 otherwise.

Proof. Let

Θ(t) =
1

t log(t) log(log(t)) · · · log◦(k−1)(t)(log◦k(t))2
,

for t > T large enough that the denominator is positive, otherwise set Θ(t) =
1. Then Θ is summable by the integral test, repeatedly substituting t = eu,
etc. to see that∫ ∞

t=T

1

t log(t) · · · (log◦k(t))2
dt =

∫ ∞
u=log(T )

1

u log(u) · · · (log◦(k−1)(u))2
du

= · · · =
∫ ∞
v=log◦k(T )

1

v2
dv =

1

log◦k(T )
<∞.
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This same calculation shows that for t > T ,

t∑
i=1

∞∑
j=i

Θ(j) > T +
t∑

i=T

1

log◦k(i)
> T +

t− T
log◦k(t)

>
t

1 + log◦k(t)
.

On the other hand, for t ≤ T ,

t∑
i=1

∞∑
j=i

Θ(j) >

t∑
i=1

Θ(i) = t = θ(t).

For any s, t ∈ N,

θ(s+ t) =
s

1 + log◦k+ (s+ t)
+

t

1 + log◦k+ (s+ t)
≤ θ(s) + θ(t)

since log◦k+ is non-decreasing, thus θ is sub-additive.

Let T ′ be the k-fold composition of exp applied to 0, so log◦k(t) is well-
defined and positive if and only if t > T ′. For t ≤ T ′, θ(t) = t so is clearly
non-decreasing. For t > T ′,

θ′(t) =
1

(1 + log◦k(t))2

(
1 + log◦k(t)− t

log◦(k−1)(t) · · · log◦2(t) log(t)t

)
> 0

since for k = 1, log(t) > 0 and for k ≥ 2 and t > T ′,

1− 1

log◦(k−1)(t) · · · log(t)
> 0.

Thus in all cases θ is increasing. �

We now prove that, without property (B), a weaker lower bound for the
norm of the cocycle can be obtained.

Proposition 6.20. Suppose that the Assumptions 6.10 are satisfied and let
θ be a function satisfying Assumption 6.18.

Then there exists L∗ = L∗(D,CA, CQ,K) so that for every L ≥ L∗ and
every ε > 0 we can find a Banach space E isometrically isomorphic to `1,
an affine uniformly (2 + ε)-Lipschitz action of H on E, x 7→ π(g)x + ζ(g),
and C > 0, so that for all g ∈ H,

‖ζ(g)‖ ≥ 1

C
θ

(
1

C

∑
Y ∈A′

{{dY (x0, gx0)}}L − 1

)
.

In the inequality above, we interpret θ(t) for t ∈ R as θ(t) = θ(max{0, dte}).

Proof. For every i ∈ {0, 1, . . . , p}, consider the action of H on `1(Hxi) and
the coboundary βi(g) = δxi − δgxi .

Consider the constants provided by Lemma 6.13, ε = ε(CA, CQ) and
L′0 = L′0(D,CQ, CA, ε) to be used in the definition of W±,ε,L,F,xi(g), and
the threshold L∗ = L∗(L

′
0, ε, CQ, CA,K) to be used in the sum of the pro-

jection distances.
For each i = 0, . . . , p we wish to construct a suitable quasi-cocycle using

Theorem 6.4. In what follows, we use the notation from the conclusion of
Lemma 6.13.
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The main difference is that, in the application of Theorem 6.4, we cannot
choose the vector ei = βi(g) ∈ `10(Hxi), or indeed any vector ei ∈ `100(Hxi),
since the subgroup J may, in the absence of the assumption (B), fix only
γ and nothing else, so j · e = e would force gxi ∈ γ, and the associated
quasi-cocycle would not grow in all directions, e.g. ‖α(fm)‖ would remain
bounded as m→∞.

Instead, let

ei =
∑
j∈N

Θ(j)
(
δfjxi − δf−jxi

)
∈ `10(Hxi),

where Θ is the function from Assumption 6.18 for θ. The support of ei lies
in γ so j · ei = ei for all j ∈ J .

Let αi : H → `10(Hxi) be the quasi-cocycle given by Theorem 6.4 for the
vector ei. The values of αi(g) on Y are found by summing h·ei where hxi lies
along the interval in Y between π′Y (xi) and π′Y (gxi), in particular outside
a uniformly bounded neighbourhood of this interval the values summed are
either all negative or all positive. Suppose, without loss of generality, that
the orientation on Y is from π′Y (xi) to π′Y (gxi), with hxi close to π′Y (xi). By
Assumption 6.18 and the previous discussion, for each Y we can just take
the negative values and bound:∑

y∈Hxi∩Y
|αi(g)(y)| ≥

∑
j<0

∣∣∣ ∑
[h′]∈C(Y,g,i)

(h′ · ei)(hf jxi)
∣∣∣

≥
∑
j<0

∣∣∣N(Y,g,i)∑
k=0

(hfk · ei)(hf jxi)
∣∣∣

≥
∑
j<0

N(Y,g,i)∑
k=0

Θ(−j + k)

≥
N(Y,g,i)∑
k=1

∞∑
j=k

Θ(j) ≥ θ(N(Y, g, i)).

Apply Proposition 4.10 to find an affine uniformly Lipschitz action of
H on the space Vi = `10(Hxi) ⊕ `10(Hxi) with cocycle ζi = (αi, βi). Let
E =

⊕p
i=0 Vi with the `1-metric, and combine the actions to define an affine

uniformly Lipschitz action of H on E with cocycle ζ = (ζi)i=0,...,p.
We have that

‖ζ(g)‖ =

p∑
i=0

‖ζi(g)‖ ≥
p∑
i=0

∑
Y ∈A′

∑
y∈Y
|αi(g)(y)|

≥
∑

Y ∈A′1(g)

θ(N(Y, g, iY )) ≥ θ
( ∑
Y ∈A′1(g)

N(Y, g, iY )

)

≥ θ
( ∑
Y ∈A′1(g)

1

C
{{dY (x0, gx0)}}L

)

≥ θ

(
1

C

∑
Y ∈A′

{{dY (x0, gx0)}}L − 1

)
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using the subadditivity of θ and the bound from Lemma 6.13, (a).
Again, at this point we have not controlled the Lipschitz constant of the

action. However, again as in Proposition 4.10, given ε > 0, up to rescaling
each αi and conjugating the action on each Vi to get an action on `1, we can
find a uniformly (2+ ε)-Lipschitz affine action on `1 with comparable bound
on the cocycle. �

7. Proper quasi-cocycles

We now combine the methods of the previous section with the results in
[BBF21].

7.1. Residually finite hyperbolic groups. Bestvina–Bromberg–Fujiwara
show the following.

Theorem 7.1 (Bestvina–Bromberg–Fujiwara [BBF21]). Suppose G is a
non-elementary residually finite hyperbolic group with Cayley graph Γ. Then
there exist constants ξ′,K,CQ, CA with the following property: For any
L∗ ≥ K one can find:

• a finite index subgroup H ≤ G,
• finitely many CA-quasi-axes γ1, . . . , γn in Γ for hyperbolic elements

in G,
• for each Ai = H · γi projections {π′Y }Y ∈Ai satisfying the strong pro-

jection axioms with constant ξ′, and CK(Ai) a CQ-quasi-tree with H
acting (D,B)-acylindrically on it modulo the trivial group,
• basepoints xi ∈ γi, i = 1, . . . , n, and a constant C > 0 so that for

any g ∈ H,

|g| = dΓ(1, g) ≤ C
n∑
i=1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ + C.

Proof. This follows the proof of property (QT) for such G [BBF21, §3]
exactly, with the only difference in [BBF21, §3.3] in the application of
[BBF21, Proposition 3.3]: one fixes the segment constant ‘L’ to satisfy
[BBF21, Proposition 3.3] for ‘K’= L∗. The rest of the proof follows to
find the finite index subgroup, and uniform quasi-axes, so that the required
distance bound holds. �

We now prove:

Theorem 1.6. If G is a residually finite hyperbolic group, then, for every
ε > 0, G admits an affine uniformly (2 + ε)-Lipschitz action on `1 = `1(N)
with undistorted orbits, and hence likewise on L1 = L1([0, 1]).

Proof. By Proposition 3.4(2), we may assume that G is torsion-free. We
may also assume that G is non-elementary, since Z has a standard affine
isometric action on `1(N), generated by f 7→ f + δ1.

Let ξ′,K,D,B,CA, CQ be given by Theorem 7.1, let L∗ ≥ K be then given
by Proposition 6.14. Apply Theorem 7.1 to find the finite index subgroup
H, collections of axes A1, . . . ,An, and constant C for the distance estimate.

For i = 1, . . . , n apply Proposition 6.14 to find a space Ei isometrically
isomorphic to `1 with an affine uniformly (2 + ε)-Lipschitz action on Ei
with cocycle ζi so that the cocycle bound is satisfied for A′ = Ai and ‘C’
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= Ci. Let C∗ = max{C1, . . . , Cn}. Consider the `1 space
⊕n

i=1Ei (isomet-
rically isomorphic to `1) with the product action having cocycle (ζi). Then
combining the distance bounds, for any g ∈ H,

|g| = dΓ(1, g) ≤ C
n∑
i=1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ + C

≤ CC∗
n∑
i=1

‖ζi(g)‖+ CC2
∗m+ C

= CC∗‖ζ(g)‖+ CC2
∗m+ C. �

Induction then gives us proper affine uniformly Lipschitz actions on L1

for simple rank 1 Lie groups.

Proof of Corollary 1.7. For G a simple Lie group with real rank 1 and Haar
measure µ, let Λ be a residually finite uniform lattice in G. By Theo-
rem 1.6, Λ has a affine uniformly Lipschitz action on `1(N) = L1(N, σ)
with undistorted orbits, where σ is the counting measure. By Proposi-
tion 3.4, (2), G admits a continuous affine uniformly Lipschitz action on
L1(Λ\G× N, µ× σ) ∼= L1([0, 1]) with undistorted orbits. �

7.2. Proper quasi-cocycles for mapping class groups. Let Σ be a con-
nected orientable surface of genus g with p punctures and let ξ(Σ) = 3g+p−3
be the complexity of the surface. In what follows, we consider the mapping
class group MCG(Σ) of the surface Σ, that is, the quotient of the group
of homeomorphisms of Σ by the subgroup of homeomorphisms isotopic to
the identity. The mapping class group of a surface of finite type is finitely
generated [Bir74]. For ξ(Σ) ≤ 1, MCG(Σ) is virtually free and therefore
has a standard affine isometric action on `1(N) such that the orbit map is a
quasi-isometric embedding. Hence, in what follows we assume that ξ(Σ) ≥ 2.

Bestvina–Bromberg–Fujiwara show the following [BBF21, §4].

Theorem 7.2 (Bestvina–Bromberg–Fujiwara [BBF21]). Suppose G is a fi-
nite index subgroup of a mapping class group MCG(Σ) of a surface Σ as
above. Then there exist constants ξ′,K,CQ, CA and two functions D and B
with the following property: For any L∗ ≥ K one can find:

• a finite index subgroup H ≤ G,
• a finite collection of subsurfaces Ui, i ∈ {1, . . . , n}, and, for each i,

a CA-quasi-axis γi in the curve graph C(Ui) for a Ui-pseudo-Anosov
element,
• for each Ai = H · γi, projections {π′Y }Y ∈Ai satisfying the strong

projection axioms with constant ξ′, and CK(Ai) the corresponding
CQ-quasi-tree endowed with an H-isometric action, as defined in
[BBF21, Section 2.3]
• the action of H on each CK(Ai), i ∈ {1, . . . , n}, is (D,B)-acylindrical

on γi modulo Ji, where Ji is the subgroup of H that fixes Ui,
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• basepoints xi ∈ γi, i = 1, . . . , n, and a constant C > 0 so that for
any g ∈ H,

|g| = dΓ(1, g) ≤ C
n∑
i=1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ + C.

Proof. This follows the proof of property (QT) for such G [BBF21, §4] nearly
exactly, with the only differences:

• when taking the initial finite index subgroup ‘G’ in [BBF21, §4.8],
one may intersect with our given G to find a further finite index
subgroup.
• in [BBF21, §4.6] in the application of [BBF21, Proposition 4.18]: one

chooses ‘T ’ given a choice of ‘K’≥ L∗ so that the distance bound of
[BBF21, Proposition 4.18] holds for ‘K’= L∗.

The rest of the proof follows to find the finite index subgroup, and uniform
quasi-axes, so that the required distance bound holds. �

We now show:

Theorem 1.8. The mapping class group, MCG(Σ), of a surface Σ of finite
type admits an affine uniformly (2 + ε)-Lipschitz action on `1 (hence also
on L1 = L1([0, 1])) with proper orbits, for any ε > 0.

Moreover, for any function θ satisfying Assumption 6.18, one can require
that the cocycle α satisfies ‖α(g)‖ ≥ 1

C θ(|g|)−C for some C and all g ∈ G.

Proof. As mentioned in the beginning of the section, without loss of gener-
ality we may assume that ξ(Σ) ≥ 2.

We begin with a choice of finite index subgroup G ≤ MCG(Σ) to make
sure that there is no axis flipping.

Let constants ξ′,K,CQ, CA and functions D,B be given by Theorem 7.2.
Let L∗ ≥ K be then given by Proposition 6.14. Apply Theorem 7.2 to

find the finite index subgroup H, collections of axes {Ai} and quasi-trees
{CK(Ai)}, and constant C for the distance estimate.

Identically to the proof of Theorem 1.6, for i = 1, . . . , n apply Proposi-
tion 6.20 to find a space Ei isometrically isomorphic to `1 with an affine
uniformly (2 + ε)-Lipschitz action on Ei with cocycle ζi so that the cocycle
bound is satisfied for A′ = Ai and ‘C’ = Ci. Let C∗ = max{C1, . . . , Cn}.
Consider the `1 space

⊕n
i=1Ei with the product action having cocycle (ζi).

Then combining the distance bounds, for any g ∈ H,

‖ζ(g)‖ ≥
n∑
i=1

‖ζi(g)‖

≥ 1

C∗

n∑
i=1

θ

 1

C∗

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ − C∗


≥ 1

C∗
θ

 n∑
i=1

1

C∗

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ − C∗n


≥ 1

C∗
θ

(
1

C∗C
‖g‖ − 1− C∗n

)
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≥ 1

C ′
θ(‖g‖)− C ′

by subadditivity, for some suitable C ′. �

Remark 7.3. The lower bound in Theorem 1.8 can be improved as follows.
It is known that dΓ(1, g) is in fact quasi-isometric to

n∑
i=1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ .

Assume that A1, . . . ,Ak correspond to axes of pseudo-Anosovs (which in
this case are Dehn twists) on subsurfaces U1, . . . , Uk that are annuli, that
is ξ(Ui) = −1, while all the other subsurfaces have ξ(Ui) > −1. Each Aj
satisfies the Assumptions 6.10, but for j > k the extra assumption (B) is
also satisfied. Therefore, one can find a proper affine uniformly Lipschitz
action on `1 such that the lower bound of the cocycle is

θ

 1

C

k∑
i=1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ − C

+
1

C

n∑
i=k+1

∑
Y ∈Ai

{{dY (xi, gxi)}}L∗ − C.

Note that
∑n

i=k+1

∑
Y ∈Ai {{dY (xi, gxi)}}L∗ is quasi-isometric to the Weil–

Petersson metric induced on MCG(Σ) via its identification with an orbit in
the Teichmüller space.
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