
EXISTENCE OF QUASI-ARCS

JOHN M. MACKAY

Abstract. We show that doubling, linearly connected metric spaces are quasi-

arc connected. This gives a new and short proof of a theorem of Tukia.

1. Introduction

It is a standard topological fact that a complete metric space which is locally
connected, connected and locally compact is arc-wise connected. Tukia [6] showed
that an analogous geometric statement is true: if a complete metric space is linearly
connected and doubling, then it is connected by quasi-arcs, quantitatively. In fact,
he proved a stronger result: any arc in such a space may be approximated by a
local quasi-arc in a uniform way. In this note we give a new and more direct proof
of this fact.

This result is of interest in studying the quasisymmetric geometry of metric
spaces. Such geometry arises in the study of the boundaries of hyperbolic groups;
Tukia’s result was used in this context by Bonk and Kleiner [1], and also by the au-
thor [5]. (Bonk and Kleiner use Assouad’s embedding theorem to translate Tukia’s
result from its original context of subsets of Rn into our setting of doubling and
linearly connected metric spaces.)

Before stating the theorem precisely, we recall some definitions. A metric space
(X, d) is said to be doubling if there exists a constant N such that every ball can
be covered by at most N balls of half the radius. Note that any complete, doubling
metric space is proper: all closed balls are compact.

We say (X, d) is L-linearly connected for some L ≥ 1 if for all x, y ∈ X there
exists a compact, connected set J 3 x, y of diameter less than or equal to Ld(x, y).
(This is also known as bounded turning or LLC(1).) We can actually assume that
J is an arc, at the cost of increasing L by an arbitrarily small amount. To see this,
note that X is locally connected, and so the connected components of an open set
are open. Thus, for any open neighborhood U of J , the connected component of U
that contains J is an open set. We can replace J inside U by an arc with the same
endpoints, since any open, connected subset of a locally compact, locally connected
metric space is arc-wise connected [3, Corollary 32.36].

For any x and y in an embedded arc A, we denote by A[x, y] the closed, possibly
trivial, subarc of A that lies between them. We say that an arc A in a doubling
and complete metric space is an ε-local λ-quasi-arc if diam(A[x, y]) ≤ λd(x, y) for
all x, y ∈ A such that d(x, y) ≤ ε. (This terminology is explained by Tukia and
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Väisälä’s characterization of quasisymmetric images of the unit interval as those
metric arcs that are doubling and bounded turning [7].)

One non-standard definition will be useful in our exposition. We say that an
arc B ε-follows an arc A if there exists a coarse map p : B → A, sending end-
points to endpoints, such that for all x, y ∈ B, B[x, y] is in the ε-neighborhood of
A[p(x), p(y)]; in particular, p displaces points at most ε. (We call the map p coarse
to emphasize that it is not necessarily continuous.)

The condition that B ε-follows A is stronger than the condition that B is con-
tained in the ε-neighborhood of A. It says that, coarsely, the arc B can be obtained
from the arc A by cutting out ‘loops.’ (Of course, A contains no actual loops, but
it may have subarcs of large diameter whose endpoints are 2ε-close.)

We can now state the stronger version of Tukia’s theorem precisely, and as an
immediate corollary our initial statement [6, Theorem 1B, Theorem 1A]:

Theorem 1.1 (Tukia). Suppose (X, d) is a L-linearly connected, N-doubling, com-
plete metric space. For every arc A in X and every ε > 0, there is an arc J that
ε-follows A, has the same endpoints as A, and is an αε-local λ-quasi-arc, where
λ = λ(L,N) ≥ 1 and α = α(L,N) > 0.

Corollary 1.2 (Tukia). Every pair of points in a L-linearly connected, N -doubling,
complete metric space is connected by a λ-quasi-arc, where λ = λ(L,N) ≥ 1.

Our strategy for proving Theorem 1.1 is straightforward: find a method of
straightening an arc on a given scale (Proposition 2.1), then apply this result on a
geometrically decreasing sequence of scales to get the desired local quasi-arc as a
limiting object. The statement of this proposition and the resulting proof of the
theorem essentially follow Tukia [6], but the proof of the proposition is new and
much shorter. We include a complete proof for convenience to the reader.

The author thanks Mario Bonk and, in particular, his advisor Bruce Kleiner for
many helpful suggestions and fruitful conversations.

2. Main Results

Given any arc A and ι > 0, the following proposition allows us to straighten A
on a scale ι inside the ι-neighborhood of A.

Proposition 2.1. Given a complete metric space X that is L-linearly connected
and N -doubling, there exist constants s = s(L,N) > 0 and S = S(L,N) > 0 with
the following property: for each ι > 0 and each arc A ⊂ X, there exists an arc J
that ι-follows A, has the same endpoints as A, and satisfies

(∗) ∀x, y ∈ J, d(x, y) < sι =⇒ diam(J [x, y]) < Sι.

We will apply this proposition on a decreasing sequence of scales to get a local
quasi-arc in the limit. The key step in proving this is given by the following lemma.

Lemma 2.2. Suppose (X, d) is a L-linearly connected, N-doubling, complete metric
space, and let s, S, ε and δ be fixed positive constants satisfying δ ≤ min{ s

4+2S ,
1
10}.

Now, if we have a sequence of arcs J1, J2, . . . , Jn, . . . in X, such that for every n ≥ 1

• Jn+1 εδ
n-follows Jn, and

• Jn+1 satisfies (∗) with ι = εδn and s, S as fixed above,
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then the Hausdorff limit J = limH Jn exists, and is an εδ2-local 4S+3δ
δ2 -quasi-arc.

Moreover, the endpoints of Jn converge to the endpoints of J , and J ε-follows
J1.

We shall need some standard definitions. The (infimal) distance between two
subsets U, V ⊂ X is defined as d(U, V ) = inf{d(u, v) : u ∈ U, v ∈ V }. If U = {u},
then we set d(u, V ) = d(U, V ).

The r-neighborhood of U is the set N(U, r) = {x : d(x, U) < r}, and the
Hausdorff distance between U and V , dH(U, V ), is defined to be the infimal r such
that U ⊂ N(V, r) and V ⊂ N(U, r). For more information, see [2, Chapter 7].

We will now prove Theorem 1.1.

Proof of Theorem 1.1. Let s and S be given by Proposition 2.1, and set δ =
min{ s

4+2S ,
1
10}.

Let J1 = A and apply Proposition 2.1 to J1 and ι = εδ to get an arc J2 that
εδ-follows J1. Repeat, applying the lemma to Jn and ι = εδn, to get a sequence of
arcs Jn, where each Jn+1 εδ

n-follows Jn, and satisfies (∗) with ι = εδn.
We can now apply Lemma 2.2 to find an αε-local λ-quasi-arc J that ε-follows

A, where α = δ2 and λ = 4S+3δ
δ2 . Every Jn has the same endpoints as A, so J will

also have the same endpoints. �

The proof of Lemma 2.2 relies on some fairly straightforward estimates and a
classical characterization of an arc.

Proof of Lemma 2.2. For every n ≥ 1, Jn+1 εδ
n-follows Jn. We denote the associ-

ated coarse map by pn+1 : Jn+1 → Jn.
In the following, we will make frequent use of the inequality

∑∞
n=0 δ

n < 11
9 .

We begin by showing that the Hausdorff limit J = limH Jn exists. The collection
of all compact subsets of a compact metric space, given the Hausdorff metric, is itself
a compact metric space [2, Theorem 7.3.8]. Since {Jn} is a sequence of compact sets
in a bounded region of a proper metric space, to show that the sequence converges
with respect to the Hausdorff metric, it suffices to show that the sequence is Cauchy.

One bound follows by construction: Jn+m ⊂ N(Jn, 11
9 εδ

n) for all m ≥ 0. For
the second bound, take Jn+m and split it into subarcs of diameter at most εδn, and
write this as Jn+m = Jn+m[z0, z1] ∪ · · · ∪ Jn+m[zk−1, zk] for some z0, . . . , zk and
some k > 0. Our coarse maps compose to give p : Jn+m → Jn, showing that Jn+m
11
9 εδ

n-follows Jn. Furthermore, since d(zi, zi+1) ≤ εδn, we have d(p(zi), p(zi+1)) ≤
4εδn ≤ sεδn−1. Combining this with the fact that p maps endpoints to endpoints,
for n ≥ 2 we have

Jn = Jn[p(z0), p(z1)] ∪ · · · ∪ Jn[p(zk−1), p(zk)] ⊂ N({p(z0), . . . , p(zk)}, Sεδn−1)

⊂ N
(
Jn+m,

11
9
εδn + Sεδn−1

)
.

Taken together, these bounds give dH(Jn, Jn+m) ≤ 11
9 εδ

n + Sεδn−1, so {Jn} is
Cauchy and the limit J = limH Jn exists. Moreover, J is compact (by definition)
and connected (because each Jn is connected).

Now we let an, bn denote the endpoints of Jn. Since pn(an) = an−1, and pn
displaces points at most εδn, the sequence {an} is Cauchy and hence converges to
some point a ∈ J . Similarly, {bn} converges to a point b ∈ J .
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There are two cases to consider. If a = b, then d(an, bn) ≤ 2 11
9 εδ

n ≤ sεδn−1.
Consequently, diam(Jn) ≤ Sεδn−1, J = limH Jn has diameter zero, and thus J =
{a}. Otherwise, a 6= b and so J is non-trivial. We claim that in this case J is a
local quasi-arc.

To show J is an arc with endpoints a and b it suffices to demonstrate that every
point x ∈ J \ {a, b} is a cut point [4, Theorems 2-18 and 2-27]. The topology of
Jn induces an order on Jn with least element an and greatest bn. Given x ∈ J , we
define three points hn(x), xn and tn(x) that satisfy an < hn(x) < xn < tn(x) < bn,
where xn is chosen such that d(x, xn) ≤ 11

9 εδ
n, and hn(x) and tn(x) are the first

and last elements of Jn at distance (S + 1)εδn−1 from x. As long as x is not equal
to a or b, for n greater than some n0 these points will exist and this definition will
be valid.

We shall denote the 11
9 εδ

n-neighborhoods of Jn[an, hn(x)] and Jn[tn(x), bn] by
Hn(x) and Tn(x) respectively, and define H(x) = ∪{Hn(x) : n ≥ n0} (the Head)
and T (x) = ∪{Tn(x) : n ≥ n0} (the Tail). By definition, H(x) and T (x) are open.
We claim that, in addition, they are disjoint and cover J \ {x}, and so x is a cut
point.

Fix y ∈ J , and suppose y /∈ H(x) ∪ T (x). We want to show that y = x.
To this end, we bound the diameter of Jn[hn(x), tn(x)] using Jn−1. Because
d(pn(hn(x)), pn(tn(x))) ≤ 2εδn−1 + 2(S + 1)εδn−1 ≤ sεδn−2, we know that the
diameter of Jn−1[pn(hn(x)), pn(tn(x))] must be less than Sεδn−2. Thus the diam-
eter of Jn[hn(x), tn(x)] is less than Sεδn−2 + 2εδn−1, as Jn εδn−1-follows Jn−1.

For every n ≥ n0, y is 11
9 εδ

n close to some yn ∈ Jn. Since y /∈ H(x) ∪ T (x), yn
must lie in Jn[hn(x), tn(x)], so

d(x, y) ≤ d(x, Jn[hn(x), tn(x)]) + diam(Jn[hn(x), tn(x)]) + d(yn, y)

≤ 2
11
9
εδn + (S + 2δ)εδn−2 =

(
2

11
9
δ2 + S + 2δ

)
εδn−2,

therefore d(x, y) = 0 and J \ (H(x) ∪ T (x)) = {x}.
We now show that H(x) and T (x) are disjoint. If not, then Hn(x)∩Tm(x) 6= ∅ for

some n and m. It suffices to assume n ≤ m. Now Tm(x) ⊂ N(Jm[xm, bm], 11
9 εδ

m)
by definition. We send Jm to Jn using f = pn+1 ◦ · · · ◦ pm : Jm → Jn, to get that
Tm(x) ⊂ N(Jn[f(xm), bn], 3εδn). Since

d(f(xm), xn) ≤ d(f(xm), xm) + d(xm, x) + d(x, xn) < 4εδn < sεδn−1

we have, even for n = m,

Tm(x) ⊂ N(Jn[xn, bn], 3εδn) ∪B(xn, (S + 3δ)εδn−1).

Since (S + 3δ)εδn−1 + 11
9 εδ

n < (S + 1
2 )εδn−1, Hn(x) cannot meet Tm(x) in the

ball B(xn, (S+3δ)εδn−1). Thus Hn(x)∩Tm(x) 6= ∅ implies that there exist points p
and q in Jn such that an ≤ p ≤ hn(x) < xn ≤ q ≤ bn and d(p, q) < 3εδn < sεδn−1.
But then we know that Jn[p, q] has diameter less than Sεδn−1, while containing
both hn(x) and xn. This contradicts the definition of hn(x), so H(x) ∩ T (x) = ∅.

We have shown that J is an arc with endpoints a and b; it remains to show that
J is a local quasi-arc with the required constants.

Say we are given x and y in J , with xn and yn as before. Our argument shows
that the segments Jn[xn, yn] converge to some arc J̃ [x, y], because Jn+1[xn+1, yn+1]
(εδn + Sεδn−1)-follows Jn[xn, yn] for all n ≥ 2. This arc J̃ [x, y] must lie in J ,
therefore J̃ [x, y] must equal J [x, y]. Now, suppose that d(x, y) ∈ (εδn+1, εδn] holds
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for some n ≥ 2. Then d(xn, yn) ≤ 3εδn + εδn < sεδn−1, and so the subarc J [x, y],
which lies in N(Jn[xn, yn], 11

9 ε(δ
n+Sδn−1)), has diameter less than Sεδn−1+3ε(δn+

Sδn−1) ≤ 4S+3δ
δ2 d(x, y), as desired.

Furthermore, this same argument gives that, for all n ≥ 2, J 11
9 ε(δ

n + Sδn−1)-
follows Jn, which itself 11

9 εδ-follows J1 = A. Taking n sufficiently large, we have
that J ε-follows A. �

3. Discrete paths and the proof of Proposition 2.1

The proof of Proposition 2.1 is based on a quantitative version of a simple geo-
metric result. Before we state this result, recall that a maximal r-separated set N
is a subset of X such that for all distinct x, y ∈ N we have d(x, y) ≥ r, and for all
z ∈ X there exists some x ∈ N with d(z, x) < r.

Now suppose that we are given a maximal r-separated set N in an L-linearly
connected, N -doubling, complete metric space X. Then we can find a collection of
sets {Vx}x∈N so that each Vx is a connected union of finitely many arcs in X, and
for all x, y ∈ N :

(1) d(x, y) ≤ 2r =⇒ y ∈ Vx.
(2) diam(Vx) ≤ 5Lr.
(3) Vx ∩ Vy = ∅ =⇒ d(Vx, Vy) > 0.

For x ∈ N , we can construct each Vx by defining it to be the union of finitely
many arcs joining x to each y ∈ N with d(x, y) ≤ 2r. By linear connectedness, we
can ensure that diam(Vx) ≤ 4Lr. Condition (3) is trivially satisfied for compact
subsets of a metric space, but we will strengthen it to the following:

(3′) Vx ∩ Vy = ∅ =⇒ d(Vx, Vy) > δr.

Lemma 3.1. We can construct the sets Vx satisfying (1), (2) and (3 ′) for δ =
δ(L,N).

Proof. Without loss of generality, we can rescale the metric to set r = 1.
Since X is doubling, the maximum number of 1-separated points in a 20L-ball

is bounded by a constant M = M(20L,N). We can label every point of N with an
integer between 1 and M , such that no two points have the same label if they are
separated by a distance less than 20L.

To find this labelling, consider the collection of all such labellings on subsets of N
under the natural partial order. A Zorn’s Lemma argument gives the existence of a
maximal element: our desired labelling. So N is the disjoint union of 20L-separated
sets N1, . . . ,NM .

Now let N≤n = ∪nk=1Nk, and consider the following

Claim ∆(n). We can find Vx for all x ∈ N≤n, such that for all x, y ∈ N≤n (1),
(2) and (3 ′) are satisfied with δ = 1

2 (5L)−n.

∆(0) holds trivially, and Lemma 3.1 immediately follows from ∆(M), with δ =
δ(L,N) = 1

2 (5L)−M . So we are done, modulo the statement that ∆(n) =⇒
∆(n+ 1) for n < M . �

Proof that ∆(n) =⇒ ∆(n+ 1), for n < M . By ∆(n), we have sets Vx for all x in
N≤n.
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As Nn+1 is 20L-separated we can treat the constructions of Vx for each x ∈ Nn+1

independently. We begin by creating a set V (0)
x that is the union of finitely many

arcs joining x to its 2-neighbors in N . We can ensure that diam(V (0)
x ) ≤ 4L.

Now construct V (i)
x inductively, for 1 ≤ i ≤ n. V (i−1)

x can be 5L-close to at most
one y ∈ Ni. If d(V (i−1)

x , Vy) ∈ (0, 1
2 (5L)−i), then define V (i)

x by adding to V (i−1)
x an

arc of diameter at most L(5L)−i joining V (i)
x to Vy. Otherwise, let V (i)

x = V
(i−1)
x .

Continue until i = n and set Vx = V
(n)
x .

Note that Vx satisfies (1) and (2) by construction. The only non-trivial case
we need to check for (3′) is whether d(Vx, Vy) ∈ (0, 1

2 (5L)−n) for some y ∈ Ni,
i < n. (The i = n case follows from the last step of the construction.) Then, since
Vx = V

(n)
x ⊃ V (i)

x , V (i)
x ∩Vy 6= ∅, and d(V (i)

x , Vy) ≥ 1
2 (5L)−i. The construction then

implies that

d(Vx, Vy) ≥ 1
2

(5L)−i(1− (2L)(5L)−1 − (2L)(5L)−2 − · · · − (2L)(5L)−(n−i))

>
1
2

(5L)−n(5L)
(

1− 2/5
1− (1/(5L))

)
≥ 5

2

(
1
2

(5L)−n
)
,

contradicting our assumption, so ∆(n+ 1) holds. �

We now finish by using this construction to prove our proposition.

Proof of Proposition 2.1. By rescaling the metric, we may assume that ι = 20L. If
d(a, b) ≤ 20 = ι

L , then join a to b by an arc of diameter less than ι. This arc will,
trivially, satisfy our conclusion for any S ≥ 1.

Otherwise, d(a, b) > 20. In the hypotheses for Lemma 3.1, let r = 1 and let N be
a maximal 1-separated set in X that contains both a and b. Now apply Lemma 3.1
to get {Vx}x∈N satisfying (1), (2) and (3′) for δ = δ(L,N) > 0.

We want to ‘discretize’ A by finding a corresponding sequence of points in N .
Now, every open ball in X meets the arc A in a collection of disjoint, relatively
open intervals. Since N is a maximal 1-separated set, the collection of open balls
{B(x, 1) : x ∈ N} covers X; in particular, it covers A. By the compactness of A,
we can find a finite cover of A by connected, relatively open intervals, each lying in
some B(x, 1), x ∈ N .

Using this finite cover, we can find points xi ∈ N and yi ∈ A for 0 ≤ i ≤ n,
such that a = y0 < · · · < yn = b in the order on A, and A[yi, yi+1] ⊂ B(xi, 1) for
each 0 ≤ i < n. Since a, b ∈ N , we have that x0 = a and xn = b. The sequence
(x0, . . . , xn) is a discrete path in N that corresponds naturally to A.

We now find a subsequence (xrj
) of (xi) such that the corresponding sequence

of sets (Vxrj
) forms a ‘path’ without repeats. Let r0 = 0, and for j ∈ N+ define rj

inductively as rj = max{k : Vxk
∩ Vxrj−1

6= ∅}, until rm = n for some m ≤ n. The
integer rj is well defined since d(y(rj−1+1), xk) ≤ 1 for k = rj−1 and k = rj−1 + 1,
so Vx(rj−1+1) ∩ Vxrj−1

6= ∅. Note that if i + 2 ≤ j then Vxri
∩ Vxrj

= ∅, and thus
d(Vxri

, Vxrj
) > δ.

Let us construct our arc J in segments. First, let z0 = xr0 . Second, for each
i from 0 to m − 1, let Ji = Ji[zi, zi+1] be an arc in Vxri

that joins zi ∈ Vxri
to

some zi+1 ∈ Vxri+1
, where zi+1 is the first point of Ji to meet Vxri+1

. (In the case
i = m− 1, join zm−1 to xrm = zm.) Set J = J0 ∪ · · · ∪ Jm.
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This path J is an arc since each Ji ⊂ Vxri
is an arc, and if there exists a point

p ∈ Ji ∩ Jj for some i < j, then j = i+ 1 and p = zi+1 = zj . This is true because
Vxri

∩ Vxrj
6= ∅ implies that j = i + 1, and the definition of zi+1 implies that

Ji ∩ Vxri+1
= {zi+1}. Any finite sequence of arcs that meet only at consecutive

endpoints is also an arc, so we have that J is an arc.
In fact, J satisfies (∗). For any y, y′ ∈ J , y < y′, we can find i ≤ j such that

zi ≤ y < zi+1, zj ≤ y′ < zj+1. (If y = zm, set i = m; likewise for y′.) If d(y, y′) ≤ δ
then, because y ∈ Vxri

and y′ ∈ Vxrj
, we have d(Vxri

, Vxrj
) ≤ δ, so either j = i or

j = i + 1. This gives that J [y, y′] ⊂ Vxri
∪ Vxrj

, and so diam(J [y, y′]) is bounded
above by 10L.

Furthermore, J ι-follows A. There is a coarse map f : J → A defined by the
following composition: first map J to N by sending y ∈ J [zi, zi+1) ⊂ J to xri

∈ N ,
and sending xrm

to itself. Second, map each xri
to the corresponding yri

in A.
Taking arbitrary y < y′ in J as before, we see that

J [y, y′] ⊂ J [zi, zj+1] ⊂ N({xri
, . . . , xrj

}, 5L) ⊂ N({yri
, . . . , yrj

}, 5L+ 1)

⊂ N(A[yri , yrj ], 5L+ 1) ⊂ N(A[f(y), f(y′)], ι).

We let s = 1
20Lδ and S = 1

20L10L, and have proven the Proposition. �

Remark: This method of proof allows one to explicitly estimate the constants
given in the statements of Theorem 1.1 and Corollary 1.2, but for most applications
this is not necessary.
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