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Abstract. We study relations between maps between relatively
hyperbolic groups/spaces and quasisymmetric embeddings between
their boundaries. More specifically, we establish a correspondence
between (not necessarily coarsely surjective) quasi-isometric em-
beddings between relatively hyperbolic groups/spaces that coarsely
respect peripherals, and quasisymmetric embeddings between their
boundaries satisfying suitable conditions. Further, we establish a
similar correspondence regarding maps with at most polynomial
distortion.

We use this to characterise groups which are hyperbolic relative
to some collection of virtually nilpotent subgroups as exactly those
groups which admit an embedding into a truncated real hyperbolic
space with at most polynomial distortion, generalising a result of
Bonk and Schramm for hyperbolic groups.
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1. Introduction

The boundary at infinity of a Gromov hyperbolic group is a crucial
invariant for studying the properties of the group. While its topology
is already important, one can say more by looking at its metric prop-
erties: a result of Paulin [Pau96] shows that two hyperbolic groups G
and H are quasi-isometric if and only if their boundaries are quasisym-
metric. This additional quasisymmetric structure on the boundary
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allows one to distinguish quasi-isometry types of hyperbolic groups
which have the same topological boundary, amongst other applica-
tions. Bonk and Schramm [BS00] further established a correspondence
of quasi-isometric embeddings between (certain) Gromov hyperbolic
spaces to quasisymmetric embeddings between their boundaries, with
refinements for classes of maps as we shall discuss below.

Our goal is to establish a similar correspondence for relatively hyper-
bolic groups (Definition 3.9). The motivating example of a relatively
hyperbolic group G is the fundamental group of a finite volume non-
compact hyperbolic manifold; G is a non-uniform lattice in Isom(Hn).
If n ≥ 3 then G is not Gromov hyperbolic, as it contains Zn−1 par-
abolic subgroups {Hi} due to the cusps, but one still can say the
pair (G, {Hi}) is relatively hyperbolic (with peripheral subgroups {Hi}).
That is, roughly, gluing in ‘horoballs’ to the left cosets of the Hi one
obtains a cusped space Cusp(G, {Hi}) which is Gromov hyperbolic (see
Definition 3.8), and so has a boundary ∂∞(G, {Hi}), which we call its
Bowditch boundary. This boundary was defined by Bowditch [Bow12]
(see also [GM08]) who showed that it depends only on (G, {Hi}) up to
homeomorphism, not on the other choices involved in its construction.
In this example ∂∞(G, {Hi}) is homeomorphic to Sn−1.

Out of the many relevant works on relatively hyperbolic groups,
we point out that the topology of the Bowditch boundary has been
well-studied, in particular in connection to splittings, see e.g. [Bow99a,
Bow99b]. We also highlight that maps between Bowditch boundaries
have been previously studied by Groff [Gro13]. Also, Gerasimov–
Potyagailo [GP13] study metric properties of the related Floyd bound-
aries, and in previous work we established metric properties of Bowditch
boundaries [MS20].

Finally, as this paper was being finalised Healy and Hruska released
a preprint with an extensive study of the properties of boundary maps
for relatively hyperbolic groups [HH20]. In Remark 1.7, we elaborate
upon how the results in [HH20] and in this paper complement each
other.

Since a given group can have different relatively hyperbolic structures
(with different Bowditch boundaries), to have a sensible theory we
have to restrict our attention to maps which respect the peripheral
structures, meaning that images and preimages of cosets of peripheral
subgroups are close to cosets of peripheral subgroups. For a precise
statement see Definition 2.2 below. The following example illustrates
why we need this notion.

Example 1.1. Let G = 〈x, y〉 be the fundamental group of a punctured
torus, which is hyperbolic relative to the parabolic subgroup H = 〈[x, y]〉.
Then ∂∞(G, ∅) is a Cantor set, while ∂∞(G, {H}) is a circle. So the
identity map from (G, ∅)→ (G, {H}) cannot induce a homeomorphism
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of the boundaries, while the identity map from (G, {H})→ (G, ∅) can-
not induce anything sensible on the boundary at all.

The peripheral structures are often automatically respected. When
(G, {Hi}) and (G′, {H ′i}) are relatively hyperbolic groups and no pe-
ripheral group is itself properly relatively hyperbolic, any quasi-isometry
from G to G′ will automatically respect the peripheral structures (see
Drutu [Dru09, Theorem 5.7] and also Groff [Gro13, Theorem 6.3]). In
this context, Groff shows that the two Bowditch boundaries are home-
omorphic [Gro13, Corollary 6.5].

A simplified statement of our first result (Theorem 2.8) is the fol-
lowing. A function f : G→ G′ coarsely respects peripherals if, roughly,
images and preimages of peripheral sets are in bounded neighbourhoods
of peripheral sets, see Definition 2.2.

Corollary 1.2. Suppose that (G, {Hi}) and (G′, {H ′i}) are relatively
hyperbolic groups, and that f : G→ G′ is a quasi-isometric embedding
that coarsely respects peripherals. Then f extends to a quasi-isometric
embedding fCusp : Cusp(G, {Hi})→ Cusp(G′, {H ′i}). This map induces
a quasisymmetric embedding ∂∞fCusp : ∂∞(G, {Hi})→ ∂∞(G′, {H ′i}).

Recall that Cusp(G, {Hi}) denotes the cusped space where one takes
the Cayley graph of G and glues horoballs to the left cosets of groups
in {Hi} (see Definition 3.8 and [GM08]).

We note that if f is a quasi-isometry then a large part of the proof
of this result can be replaced by a much shorter argument; this is
done in the proof of [Gro13, Theorem 6.3], which contains a proof
of the theorem in this case. In both cases one first proves that the
extension fCusp is coarsely Lipschitz, but then the difference is that,
when f is a quasi-isometry, using a quasi-inverse of f one can see that
fCusp has a quasi-inverse. When f is not coarsely surjective, a more
sophisticated argument is needed, and more specifically we will rely
on detailed understanding of geodesics in relatively hyperbolic spaces,
which is not needed for the quasi-isometry case.

The quasisymmetric embedding ∂∞f is not arbitrary; for example,
it has to send parabolic points in ∂∞(G, {Hi}) to parabolic points in
∂∞(G′, {H ′i}). We find conditions on ∂∞f which are sufficient to give
a converse statement; i.e., any suitable quasisymmetric embedding h :
∂∞(G, {Hi})→ ∂∞(G′, {H ′i}) will induce a quasi-isometric embedding

ĥ : G → G′ so that ∂∞ĥ = h (see Theorem 2.9), but for now we state
a simpler result.

Corollary 1.3. Suppose that (G, {Hi}) and (G′, {H ′i}) are relatively
hyperbolic groups with infinite proper peripheral groups, and that h :
∂∞(G, {Hi}) → ∂∞(G′, {H ′i}) is a shadow-respecting quasisymmetry.

Then there exists a quasi-isometry ĥ : G → G′ so that ĥ extends to
give ∂∞(ĥ)Cusp = h.
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The ‘shadow’ of a horoball in the boundary is, roughly, the ball in
the boundary which consists of the end points of geodesic rays from
e ∈ G which meet the horoball. Given this, ‘shadow-respecting’ means
that parabolic points are mapped to parabolic points, with the corre-
sponding shadows approximately preserved, and in addition that near
parabolic points the map ĥ looks like a ‘snowflake’ map; see Defini-
tion 2.6.

In the case of hyperbolic groups G,G′, a quasisymmetric embed-
ding ∂∞G → ∂∞G

′ induces a quasi-isometric embedding G → G′ by
work of Bonk and Schramm [BS00] (see also Paulin [Pau96]). How-
ever, when we weaken h in Corollary 1.3 to be a shadow-respecting
quasisymmetric embedding, we will find an induced map ĥ : G → G′

that is polynomially distorted : there exists C > 0, α ∈ (0, 1] so that for
all x, y ∈ G,

1
C
dG(x, y)α − C ≤ dG′(ĥ(x), ĥ(y)) ≤ CdG(x, y) + C.

This is reasonable to expect: Bonk and Schramm [BS00] give us an
extension of h to a quasi-isometric embedding between the cusped
spaces. The shadow-respecting condition gives that this maps horoballs
to horoballs. However, for pairs of points in the same left coset of a pe-
ripheral group their distance in the group is essentially the exponential
of their distance in the cusped space. Thus the multiplicative distor-
tion of the quasi-isometry is exponentiated to a polynomial distortion
in the group.

As we will see in Theorem 2.9, one can correct for this by requir-
ing finer control around parabolic points. We also strengthen Corol-
lary 1.2 to apply to certain polynomially distorting maps (Definition
2.1), giving a correspondence between maps on the group and maps
on the boundary. Polynomially distorting maps have appeared in work
of many authors, for example in the study of embeddings into Hilbert
spaces, where they are used to define compression exponents [GK04].

Polynomially distorting maps, while not necessarily quasi-isometric
embeddings, do preserve some geometric properties of a group, and in
fact the results below provide examples of this.

If G has a polynomially (or indeed subexponentially) distorted em-
bedding f into a hyperbolic group H, then f is in fact a quasi-isometric
embedding, and G is hyperbolic. This follows from easily from stan-
dard facts about hyperbolic groups; see also Proposition 4.4. In this
paper we show an analogous result for relatively hyperbolic groups and
spaces (Theorem 4.1), generalising known results about quasi-isometric
embeddings. Here we state the version for groups.

Corollary 1.4. Let G be hyperbolic relative to {Hi}. If H is a subex-
ponentially distorted subgroup of G then H is relatively quasiconvex in
G, and so H is hyperbolic relative to subgroups {Kj} each of which is
the intersection of a conjugate (in G) of some Hi with H.
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For the case of polynomial distortion see also [GP13, Theorem C].
The reason for proving Theorem 4.1 here is that we will use it

in conjunction with Theorem 2.9 to generalise a result of Bonk and
Schramm which characterises hyperbolic groups (amongst finitely gen-
erated groups with a word metric) as those which admit a quasi-
isometric embedding into some Hn [BS00]. In an analogous way, we
characterise groups that are hyperbolic relative to virtually nilpotent
subgroups. A truncated real hyperbolic space is the complement of a
collection of (disjoint) horoballs in some Hn which is then given the
resulting length metric [BH99, page 362]. A truncated real hyperbolic
space is hyperbolic relative to the collection of boundary horospheres,
in the sense of Definition 3.8.

Theorem 1.5. Suppose G is finitely generated group with a word met-
ric. Then the following are equivalent:

• G is hyperbolic relative to some collection of virtually nilpotent
subgroups,
• G admits a polynomially distorted embedding into some trun-

cated real hyperbolic space, and
• G admits a subexponentially distorted embedding into some trun-

cated real hyperbolic space.

The inclusion X → Hn of a truncated real hyperbolic space X into
its ambient hyperbolic space is a coarse embedding (that is, a uniformly
proper coarse Lipschitz map, Definition 2.1), but with exponential dis-
tortion. So if G is hyperbolic relative to virtually nilpotent groups
then the above theorem gives a coarse embedding of G → Hn, which,
as already mentioned, cannot be subexponentially distorted unless G
is hyperbolic. The general problem of which groups admit coarse em-
beddings into real hyperbolic spaces (with any distortion function) is
also of interest, see work of Hume and the second author [HS17] and of
Tessera [Tes20]; in the latter paper it is shown that the only amenable
groups which coarsely embed into real hyperbolic spaces are the virtu-
ally nilpotent ones.

The embedding in Theorem 1.5 is built in roughly the same way
as Bonk–Schramm’s result: one applies Assouad’s embedding theo-
rem to embed the boundary into some Euclidean space, and then
extends the map inside using Theorem 2.9 (the stronger version of
Corollary 1.3 which applies to relatively hyperbolic spaces such as a
truncated real hyperbolic space). Given such an embedding, to find
the relatively hyperbolic structure on G we use that a truncated real
hyperbolic space is hyperbolic relative to the horospheres of the re-
moved horoballs, and pull back the relatively hyperbolic structure to
the embedded group (via Corollary 4.2, a consequence of Theorem
4.1 and work of Druţu [Dru09] relating ‘metric’ relative hyperbolicity,
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‘asymptotic tree-gradedness’ in her terminology, to ‘algebraic’ relative
hyperbolicity).

Theorem 1.5 cannot be extended to quasi-isometric embeddings: if G
is a non-uniform lattice in Isom(CH2) then a quasi-isometric embedding
into a truncated real hyperbolic space would induce a quasi-isometric
embedding of the real Heisenberg group with its Carnot metric into a
Euclidean space, which is impossible. However, Theorem 1.5 and some
consideration of the geometry of the horoballs motivates the following.

Question 1.6. Is a finitely generated group hyperbolic relative to some
collection of virtually abelian subgroups if and only if the group admits
a quasi-isometric embedding into some truncated real hyperbolic space?

Remark 1.7. As this paper was being finished, in independent work
Healy–Hruska released a preprint studying metric properties of bound-
aries of relatively hyperbolic groups [HH20]. Similar to us, they show
that quasi-isometries of relatively hyperbolic groups extend to quasi-
isometries of the cusped spaces and quasisymmetries of the Bowditch
boundary [HH20, Theorem 1.2].

While on the surface the results look similar to results in this pa-
per, we would like to point out that the contents of the papers are
actually rather different. In fact, the main point of [HH20] is to show,
roughly, that using different models of horoballs does not affect the
cusped space, and they dedicate a lot of work to the study of different
types of horoballs in order to do so. They are then able to extend maps
on peripheral sets to horoballs, which, as indicated below Corollary
1.2, is basically all one needs to extend quasi-isometries of relatively
hyperbolic groups to quasi-isometries of cusped spaces. In contrast,
we regard as our main contribution in Corollary 1.2 to be the case of
non-coarsely-surjective quasi-isometric embeddings, while we only use
horoballs very similar to one fixed model, so that our extensions come
with less work.

The papers complement each other in that, roughly, thanks to [HH20]
we can apply our results to different models of cusped spaces, while we
strengthen certain results of [HH20], like [HH20, Theorem 1.2], in the
case of our particular cusped spaces.

1.1. Outline. In Section 2 we give the full statements of our results,
with definitions of the classes of maps involved on the spaces and their
boundaries. In particular, we highlight the “shadow-respecting qua-
sisymmetric embeddings” in Definition 2.6, which is the appropriate
class of maps on boundaries in our context. The main results are the
following. First, Theorem 2.8 gives extensions of maps between rela-
tively hyperbolic spaces to maps between their Bowditch boundaries,
which leads to Corollary 1.2. Second, Theorem 2.9 gives the converse,
extending maps between the boundaries to maps between the spaces,
which leads to Corollary 1.3.
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Section 3 contains preliminary material on the metric geometry of
cusped spaces and their boundaries, and basic properties of the classes
of quasisymmetric maps introduced in Section 2. In Section 4 we prove
Corollary 1.4 and Theorem 1.5, assuming Theorem 2.9.

The proofs of Theorems 2.8 and 2.9 are contained in Sections 5 and
6 respectively.

1.2. Notation. A � B means A ≤ λB for some λ ≥ 1; A � B means
A � B and B � A.
A . B means A ≤ B + C for some C; A ≈ B means A . B and

B . A.
A w B means A ≤ λB + µ for some λ ≥ 1 and µ ≥ 0; A u B means

A w B and B w A. Moreover A uλ,µ B means that A/λ − µ ≤ B ≤
λA+ µ.

For U a subset of a metric space X, and C > 0, we denote the
C-neighbourhood of U by NC(U) = {x ∈ X : d(x, U) ≤ C}.

1.3. Acknowledgements. We thank Christopher Hruska, David Hume
and referee(s) for helpful comments. The first author was partially sup-
ported by EPSRC grant EP/K032208/1.

2. Statement of results

There are various characterisations of relatively hyperbolic spaces
(X,P), where X is a geodesic metric space and P is a collection of
(coarsely connected) subspaces of X called ‘peripheral’ subsets. (Note
that we allow peripheral sets to be bounded, which is not always the
case in the literature. Also, we always assume X is geodesic.) In this
paper, the main characterisation we use is that, roughly, X is hyper-
bolic relative to P (i.e. (X,P) is relatively hyperbolic) if the cusped
space Cusp(X,P) formed by gluing in horoballs to each P ∈ P is Gro-
mov hyperbolic. We allow (and later need) different models for these
horoballs, entailing some preliminary discussion, so we defer the full
definition to Section 3, see Definition 3.8. In a few papers, includ-
ing [DS05, Dru09], relative hyperbolicity is referred to as ‘asymptotic
tree-gradedness’.

Given a finitely generated group G and subgroups {Hi} we say that
the pair (G, {Hi}) is relatively hyperbolic if any Cayley graph X of G
is relatively hyperbolic with peripheral sets P given by all left cosets
of all {Hi}. We give the precise definition in the next section (see
Definition 3.9).

To state our results, we have to first define the varieties of coarse
maps and of quasisymmetric maps that we work with.

2.1. Coarse maps. We denote the metric on a metric space X by dX ,
or just d if there is no possibility of confusion.
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Definition 2.1. A map f : X → X ′ between metric spaces is coarsely
Lipschitz if there exists C > 0 so that for all x, y ∈ X,

dX′(f(x), f(y)) ≤ CdX(x, y) + C.

We say f is τ -uniformly proper, for some τ : [0,∞) → R with
limt→∞ τ(t) =∞, if it is coarsely Lipschitz and if for all x, y ∈ X,

τ(dX(x, y)) ≤ dX′(f(x), f(y)).

We say a τ -uniformly proper map f is

(1) a quasi-isometric embedding if we can take τ linear,
(2) polynomially distorted if we can take τ(t) = tα − C for some

α ∈ (0, 1] and C > 0, or
(3) subexponentially distorted if we can take τ so that we have

limt→∞ τ(t)/ log t =∞.

These notions are progressively weaker: (1)⇒ (2)⇒ (3).
When mapping between relatively hyperbolic spaces, our maps should

interact well with the peripheral sets.

Definition 2.2. A map f : X → X ′ between relatively hyperbolic
spaces (X,P), (X ′,P ′) coarsely respects peripherals if

(1) ∃C > 0 so that for all P ∈ P there exists P ′ ∈ P ′ so that
f(P ) ⊂ NC(P ′),

(2) ∀C ′ > 0 ∃C > 0 so that for all P ′ ∈ P ′ either diam f−1(NC′(P
′)) ≤

C, or there exists P ∈ P so that f−1(NC′(P
′)) ⊂ NC(P ),

We are also interested in polynomially distorting maps which have
better control on peripheral sets, namely they behave like coarse snow-
flake maps on each.

Definition 2.3. A polynomially distorted map f : X → X ′ between
relatively hyperbolic spaces (X,P), (X ′,P ′) which coarsely respects pe-
ripherals is a snowflake on peripherals if ∃C > 0 so that for every
P ∈ P there exists λ ∈ (0, 1] so that for all x, y ∈ P ,

1

C
dX(x, y)λ − C ≤ dX′(f(x), f(y)) ≤ CdX(x, y)λ + C.

Assuming (as we often will) that each P ∈ P is unbounded, λ is
uniformly bounded away from zero by a constant depending on the
polynomial distortion of f . A natural example of a snowflake on pe-
ripherals map is a quasi-isometric embedding which coarsely respects
peripherals; in this case each λ = 1. Fairly immediately, relatively
hyperbolic spaces with unbounded peripherals and snowflake on pe-
ripheral maps form a category, see Proposition 5.11.
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2.2. Quasisymmetric maps. We now consider boundaries and the
maps between them. As discussed in Section 3, gluing a horoball H(P )
to each P ∈ P gives a Gromov hyperbolic space Cusp(X,P). This
space has Gromov boundary ∂∞Cusp(X,P) = ∂∞(X,P) which comes
decorated with the following data:(

∂∞(X,P), ρ, {(aP , rP )}P∈P
)
,

where ρ is a visual metric with visual parameter ε > 0 with respect
to a basepoint o ∈ X, each aP = ∂∞P ∈ ∂∞(X,P) is the parabolic
point associated to H(P ), and each rP = e−εd(o,P ) is the radius of the
“shadow” of P in ∂∞(X,P). We formalise this as follows, considering
P as an abstract index set for points aP and radii rP of balls in a given
metric space (Z, ρ).

Definition 2.4. A shadow decorated metric space is a tuple(
Z, ρ,B = {(aP , rP )}P∈P

)
,

where (Z, ρ) is a metric space, and for P ∈ P we have aP ∈ Z, rP > 0,
with all aP distinct and sup rP � diamZ.

The notion of quasisymmetric mappings was generalised to metric
spaces by Tukia and Väisälä [TV80].

Definition 2.5. A distortion function is a homeomorphism η : [0,∞)→
[0,∞). A topological embedding (respectively homeomorphism) h : (Z, ρ)→
(Z ′, ρ′) between metric spaces (Z, ρ) and (Z ′, ρ′) is called an η-quasi-
symmetric embedding (resp. homeomorphism), for some distortion func-
tion η, if for every triple of points x, y, z ∈ Z and t ≥ 0,

ρ(x, y) ≤ tρ(x, z) =⇒ ρ′(h(x), h(y)) ≤ η(t)ρ′(h(x), h(z)).

If η is not specified we just call h a quasisymmetric embedding (resp.
homeomorphism).

For maps between shadow decorated metric spaces, we refine this
definition as follows. The reader should have in mind boundaries of
relatively hyperbolic spaces, and as we will see the definition charac-
terises the extension to the boundary of a quasi-isometric embedding
between spaces coarsely respecting peripherals, in particular the be-
haviour of such extensions around parabolic points. To explain the
terminology we use in the last property below, in analysis on metric
spaces, for a metric space (Z, ρ) and ε > 0 such that (Z, ρε) is also a
metric space (for example, ε ∈ (0, 1]), the identity map (Z, ρ)→ (Z, ρε)
is called a ‘snowflake’ transformation.

Definition 2.6. Suppose (Z, ρ,B), (Z ′, ρ′,B′) are shadow decorated met-
ric spaces. A shadow-respecting η-quasisymmetric embedding h is an
η-quasisymmetric embedding h : (Z, ρ)→ (Z ′, ρ′) so that, for a constant
C ≥ 1,
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(1) for all (a, r) ∈ B, there exists (a′, r′) ∈ B′ where a′ = h(a) and
for all b ∈ Z,

ρ(a, b) ≤ r =⇒ ρ′(a′, h(b)) ≤ Cr′;

(2) for all (a′, r′) ∈ B′ if a′ = h(a), (a, r) ∈ B then for all b ∈ Z,

r ≤ ρ(a, b) =⇒ r′ ≤ Cρ′(a′, h(b)),

and if no such (a, r) ∈ B exists, ρ′(a′, h(Z)) ≥ r′/C;
(3) for all (a, r) ∈ B, there exists λa ∈ (0,∞) so that, writing (a′, r′)

as in (1), for all b, c ∈ Z if(
ρ(a, b)

r

)
ρ(a, b) ≤ ρ(b, c) ≤ ρ(a, b) ≤ r,

then
ρ′(h(b), h(c))

r′
�C

(
ρ(b, c)

r

)λa
.

If h is a homeomorphism we say that it is a shadow-respecting η-
quasisymmetry.

If λa equals a fixed λ for all (a, r) ∈ B, we say h asymptotically
λ-snowflakes.

The first two properties here say that h should respect the sizes of
shadows, while the third says that as we get close to the centre of
a shadow the map should look more and more like a suitably scaled
snowflake embedding. A basic example of a shadow-respecting qua-
sisymmetry that asymptotically snowflakes is given by a change of vi-
sual metric on the boundary of a fixed relatively hyperbolic space: if
ρ and ρ′ are visual metrics with parameters ε and ε′ respectively, then
ρ′ � ρε

′/ε, and the radii rP = e−εd(o,P ) and r′P = e−ε
′d(o,P ) also satisfy

r′P = (rP )ε
′/ε. Definition 2.6 then holds with each λa = ε′/ε; note that

the hypothesis in property (3) is superfluous.

Remark 2.7. In Definition 2.6, if h is a homeomorphism, we can
state (1), (2) more simply as: h induces a bijection B → B′, (a, r) 7→
(h(a), r′h(a)) ∈ B′, and for all (a, r) ∈ B

B(a′, r′h(a)/C) ⊂ h(B(a, r)) ⊂ B(a′, Cr′h(a)).

It is not clear that shadow-respecting quasisymmetric maps form a
category, however they do when the spaces involved are “uniformly
perfect”, see Proposition 3.25.

2.3. A correspondence between maps. We can now state our two
main theorems.

Theorem 2.8. Suppose (X,P), (X ′,P ′) are relatively hyperbolic spaces,
where each P ∈ P is unbounded.
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Suppose f : X → X ′ is a map which is a snowflake on periph-
erals (and so also polynomially distorting and coarsely respecting pe-
ripherals). Then f extends to a quasi-isometric embedding fCusp :
Cusp(X,P)→ Cusp(X ′,P ′), quantitatively.

The boundary map ∂∞fCusp : ∂∞(X,P) → ∂∞(X ′,P ′) is a shadow-
respecting quasisymmetric embedding, quantitatively.

Moreover, if f is a quasi-isometric embedding, then ∂∞fCusp asymp-

totically ε′

ε
-snowflakes, where ε, ε′ denote the visual parameters of the

boundary metrics on ∂∞(X,P), ∂∞(X ′,P ′), respectively.
Finally, if (X ′′,P ′′) is also a relatively hyperbolic space and g : X ′ →

X ′′ is a snowflake on peripherals, then (g ◦ f)Cusp is bounded distance
to gCusp ◦ fCusp, and ∂∞(g ◦ f)Cusp = (∂∞gCusp) ◦ (∂∞fCusp). That is,
(X,P) 7→ ∂∞Cusp(X,P), f 7→ ∂∞fCusp is a functor from relatively
hyperbolic spaces having unbounded peripherals with snowflake on pe-
ripheral maps to shadow decorated metric spaces with shadow-respecting
quasisymmetric embeddings.

Corollary 1.2 is an immediate consequence, since a quasi-isometry
that coarsely respects peripherals is automatically a snowflake on pe-
ripherals (with each λ = 1), and we may discard any finite peripheral
groups from {Hi}. (As an aside, the assumption above on unbounded
peripherals is necessary in order to get the uniqueness of extensions
required for functoriality.)

The proof of Theorem 2.8 is in Section 5.

Theorem 2.9. Suppose (X,P), (X ′,P ′) are two relatively hyperbolic
spaces that are visually complete (Definition 3.21), and h : ∂∞(X,P)→
∂∞(X ′,P ′) is a shadow-respecting, η-quasisymmetric embedding. Then

there exists a polynomially distorted embedding ĥ : X → X ′, which is
a snowflake on peripherals, so that h = ∂∞(ĥ)Cusp, and ĥ is unique up
to bounded distance.

Moreover, if h also asymptotically ε′

ε
-snowflakes then ĥ is a quasi-

isometric embedding, where ε, ε′ denote the visual parameters of the
boundary metrics on ∂∞(X,P), ∂∞(X ′,P ′), respectively.

Finally, if (X ′′,P ′′) is also a relatively hyperbolic space that is visu-
ally complete, and j : ∂∞(X ′,P ′)→ ∂∞(X ′′,P ′) is a shadow-respecting,

quasisymmetric embedding, then ĵ ◦ h and ĵ◦ĥ are at bounded distance.
That is, ∂∞(X,P) 7→ X, h 7→ ĥ is a functor from shadow decorated
boundaries of relatively hyperbolic spaces with shadow-respecting qua-
sisymmetric embeddings, to relatively hyperbolic spaces with equivalence
classes of snowflake on peripheral maps, where two such maps are con-
sidered equivalent if they are bounded distance apart.

The property of being ‘visually complete’ (Definition 3.21) is satis-
fied by relatively hyperbolic groups having proper infinite peripheral
groups (Proposition 3.23), and is equivalent to the Bowditch boundary
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being uniformly perfect (Lemma 3.22). The importance of this condi-
tion is two-fold: first, by work of Tukia–Väisälä it allows us to upgrade
quasisymmetric maps to “power” quasisymmetric maps, which have
quasi-isometric extensions by Bonk–Schramm, see Theorem 6.6 and
discussion. Second, without it we cannot hope for uniqueness of exten-
sions ĥ: consider the many quasi-isometries of Z which induce the same
boundary maps. Healy–Hruska also show that boundaries of relatively
hyperbolic groups are uniformly perfect, see [HH20, Section 1.1] and
references within, particularly to work of Meyer [Mey09].

Corollary 1.3 now follows from Theorem 2.9.

Proof of Corollary 1.3. If h : ∂∞(G, {Hi})→ ∂∞(G′, {H ′i}) is a shadow-
respecting quasisymmetry, then by Proposition 3.25 h−1 is also a shadow-

respecting quasisymmetry, and so idG ≈ ̂id∂∞(G,{Hi}) = ĥ ◦ h−1 ≈
ĥ ◦ ĥ−1, where ≈ means the maps agree up to bounded error. Thus as

ĥ, ĥ−1 are both coarsely Lipschitz, they must be quasi-isometries. �

The proof of Theorem 2.9 is in Section 6 (with the map ĥ being f̂ |X
where f̂ is a map between cusped spaces constructed via Theorem 6.6
due to Bonk and Schramm).

3. Preliminaries on horoballs and relative hyperbolicity

In this section we define models of horoballs and the notions of rela-
tively hyperbolic groups and spaces, and their (Bowditch) boundaries.
We then collect some preliminary results on quasi-centres in hyperbolic
spaces, separation of horoballs, visual completeness and transient sets.

3.1. Horoballs. There are many definitions of relatively hyperbolic
groups and metric spaces. We will give one in terms of cusped spaces
defined in a way that allows us to consider both real hyperbolic horoballs
and the following combinatorial horoballs.

Definition 3.1. Suppose Γ is a connected graph with vertex set V
and edge set E, where every edge has length one. The horoball H(Γ) is
defined to be the graph with vertex set V ×N and edges ((v, n), (v, n+1))
of length 1, for all v ∈ V , n ∈ N, and edges ((v, n), (v′, n)) of length
e−n, for all (v, v′) ∈ E.

Note that H(Γ) is quasi-isometric to the metric space constructed
from Γ by gluing to each edge in E a copy of the strip [0, 1] × [1,∞)
in the upper half-plane model of H2, where the strips are attached to
each other along v × [1,∞).

As is well known, these horoballs are hyperbolic with boundary a
single point. Moreover, it is easy to estimate distances in horoballs.
(Recall that we write A ≈ B if |A−B| is bounded by some constant.)
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Lemma 3.2. Suppose Γ and H(Γ) are defined as above. Let dΓ and dH
denote the corresponding path metrics. Then for each (x,m), (y, n) ∈
H(Γ), we have

dH((x,m), (y, n)) ≈ 2 log(dΓ(x, y)e−max{m,n} + 1) + |m− n|.

Proof. We may assume that m ≤ n. We can suppose dΓ(x, y) ≥ 2en,
as if not |m − n| ≤ dH((x,m), (y, n)) ≤ 2 + |m − n|. Consequently
log(dΓ(x, y)e−n + 1) ≈ log dΓ(x, y) − n. By construction of H(Γ), any
geodesic γ between x and y in H(Γ) must, for some t ≥ n, go from
(x,m) to (x, t) changing only the second coordinate, then follow a ge-
odesic γ′ ⊂ Γ× {t} ⊂ H(Γ) to (y, t), then back to (y, n). Thus

(3.3) dH((x,m), (y, n)) ≤ 2(t− n) + |n−m|+ e−tdΓ(x, y),

with equality for the best choice of t. It is readily seen that this value is
attained for the least t so that lt = e−tdΓ(x, y) satisfies lt/e+2 ≥ lt, that
is, lt ≤ C := 2e/(e−1). So the best choice of t is t = dlog(dΓ(x, y)/C)e
which is ≥ n, and the right hand side of (3.3) is ≈2+C 2(log dΓ(x, y)−
n)− 2 logC + |n−m|. �

This metric distance estimate is all we really need in our results, so we
abstract it as follows. A metric space P is (ε-)coarsely connected if there
exists ε > 0 so that for any x, y ∈ P there exists x = x0, x1, . . . , xn = y
in P with d(xi−1, xi) ≤ ε for each i = 1, . . . , n.

Definition 3.4. Let (P, dP ) be a coarsely connected metric space. An
admissible horoball is a geodesic metric space (H(P ), dH(P )) which is
δ-hyperbolic with a single boundary point {aP} = ∂∞H(P ), and for
which there exists C > 0, L ≥ 1 satisfying the following properties.
There exists a subset P̂ ⊂ P with dP (x, P̂ ) ≤ C for all x ∈ P , and P̂ is
identified with a topologically embedded subset of H(P ). Moreover we
require:

(1) for each x ∈ P̂ ⊂ H(P ) there exists a geodesic ray γx : [0,∞)→
H(P ) with γx(0) = x and (necessarily) γx(∞) = aP .

(2) for every p ∈ H(P ) there exists x ∈ P̂ with dH(P )(p, γx) ≤ C,

(3) for any x, y ∈ P̂ with dH(P )(x, y) ≤ 1 we have dH(P )(x, y) ≥
dP (x, y)/L,

(4) and for any x, y ∈ P̂ and m,n ≥ 0,

dH(P )(γx(m), γy(n)) ≈C 2 log(dP (x, y)e−max{m,n} + 1) + |m− n|.

A collection of admissible horoballs on a collection of spaces is uni-
form if the constants δ, C, L may be chosen uniformly.

In our definition of a relatively hyperbolic space below, and in all our
results, we require uniformly admissible horoballs in order to control
the horoball geometry up to uniformly bounded errors.
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Example 3.5 ([Sis12, Definitions 3.1,3.2]). For a k-coarsely connected
metric space (P, dP ), define a graph approximation ΓP by choosing as

vertex set a maximal ε-separated subset P̂ in (P, d), and connecting by

an edge any x, y ∈ P̂ with dP (x, y) ≤ R for a suitable R chosen to make
ΓP connected. Then let H(P ) be the graph horoball (Definition 3.1) on
ΓP . Properties (1,2,3) of Definition 3.4 follow by construction, and
Definition 3.4(4) by Lemma 3.2.

Other than graph horoballs, the only other example we work with
directly is the following.

Proposition 3.6. Let H be a horoball in HN ; in the upper half plane
model RN

+ we may take H = {x = (xi) ∈ RN
+ : xN ≥ 1}. Then H is an

admissible horoball for ∂∞H ∼= RN−1 ⊂ RN
+ \H.

Proof. Write ‖ · ‖2 for the standard norm on RN−1. Definition 3.4(1,2)
holds trivially. The hyperbolic distance between (x, em), (y, en) ∈ RN−1×
[1,∞) = H satisfies:

dH((x, em), (y, en))

= 2 log

(√
‖x− y‖2

2 + (em − en)2 +
√
‖x− y‖2

2 + (em + en)2

2
√
emen

)

≈ log

(
‖x− y‖2

2 + (em + en)2

emen

)
.

(3.7)

Without loss of generality suppose m ≤ n. If ‖x − y‖2 ≤ en, (3.7)
is ≈ log en−m = |m − n|. Otherwise, ‖x − y‖2 ≥ en and (3.7) is
≈ log(‖x−y‖2

2e
−(m+n)) = 2 log(dRN−1(x, y)e−n)+|n−m|. In either case,

this approximately equals the distance estimate of Definition 3.4(4).
Finally, the shortest path distance between (x, 1), (y, 1) ∈ ∂∞H ⊂

HN \H is ‖x− y‖2, so

dH((x, 1), (y, 1))

‖x− y‖2

=
2 log

(
‖x− y‖2 +

√
‖x− y‖2

2 + 4
)
− 2 log(2)

‖x− y‖2

→ 1 as ‖x− y‖2 → 0,

and Definition 3.4(3) follows. �

3.2. Cusped spaces.

Definition 3.8 (cf. [Sis12, Definitions 3.3–3.4]). Suppose (X, d) is a
geodesic metric space, P a collection of uniformly coarsely connected
subsets of X with metrics dP = d|P for P ∈ P, and {H(P )}P∈P a
collection of uniformly admissible horoballs for P.

The cusped space Cusp(X,P) = Cusp(X, {H(P )}P∈P) is the path

metric space obtained from X and {H(P )}P∈P by identifying each P̂
with its copies in H(P ) and in P ⊂ X.
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If Cusp(X,P) is a Gromov hyperbolic geodesic space, we say that
(X,P) is relatively hyperbolic, or that X is hyperbolic relative to the
collection of subsets P. The elements of P are called peripheral sets.
We also assume X and Cusp(X,P) are proper.

The original definition in [Sis12] used only the admissible horoballs
of Example 3.5, and showed that (X,P) being relatively hyperbolic
was independent of the choice of graph approximation horoballs [Sis12,
Proposition 4.9].

Except for the application to truncated hyperbolic spaces (Theo-
rem 1.5), we are mainly interested in relatively hyperbolic group pairs
(G, {Hi}) as defined below, and the reader may primarily keep this
case in mind.

Definition 3.9. Suppose G is a finitely generated group, and {Hi}ni=1

a collection of finitely generated subgroups of G. Let S be a finite
generating set for G, so that S ∩Hi generates Hi for each i = 1, . . . , n.

We say that (G, {Hi}) is relatively hyperbolic if a Cayley graph X of
G with respect to S, is hyperbolic relative to the collection P of copies of
Cayley graphs of Hi in X on each left coset of Hi, for each i. (We may
use graph horoballs, as in Definition 3.1, on the corresponding Cayley
graphs.)

Definitions 3.8 and 3.9 are equivalent to the other usual definitions
of (strong) relative hyperbolicity; see [Sis12, Proposition 4.9], [GM08,
Theorem 3.25], and also [Bow12]. It is also equivalent to being ‘asymp-
totically tree-graded’, as in [DS05] and [Dru09].

Note that, as previously remarked, we do not assume peripheral
sets are unbounded. We remark that the hyperbolicity of Cusp(X,P)
implies that neighbourhoods of different peripheral sets have bounded
intersection, in particular two unbounded peripheral sets have infinite
Hausdorff distance.

The fact that we may take any uniformly admissible horoballs in
Definition 3.8 is allowed by the following result.

Proposition 3.10. Suppose (X, d) is a geodesic metric space, P a col-
lection of uniformly coarsely connected subsets of X, and {H(P )}P∈P
and {H′(P )}P∈P are two uniformly admissible collections of horoballs,
with resulting cusped spaces Cusp(X, {H(P )}) and Cusp(X, {H′(P )}).
Then there exists C so that the following holds.

For x ∈ P ∩H(P ) let f(x) ∈ P ∩H′(P ) be a point with dX(x, f(x)) ≤
C for uniform C. Define F : Cusp(X, {H(P )}) → Cusp(X, {H′(P )})
by letting F |X = idX , and for p ∈ H(P ) ⊂ Cusp(X, {H(P )}) with
dH(P )(p, γx(m)) ≤ C for some x ∈ P ∩ H(P ), let F (p) = γ′f(x)(m).

Here {γx}x∈P∩H(P ), {γ′x}x∈P∩H′(P ) are the two families of geodesic rays
of the construction.



16 JOHN M. MACKAY AND ALESSANDRO SISTO

Then F : Cusp(X, {H(P )})→ Cusp(X, {H′(P )}) is a quasi-isometry;
in particular, Cusp(X, {H(P )}) is Gromov hyperbolic if and only if
Cusp(X, {H′(P )}) is.

Proof. We first show F is coarsely Lipschitz. Suppose we have p, q ∈
Cusp(X, {H(P )}) connected by a geodesic γ = [p, q]. We wish to
estimate dCusp(X,{H′(P )})(F (p), F (q)) from above by building a curve
γ′ ⊂ Cusp(X, {H′(P )}) from F (p) to F (q).

Let γ1, . . . , γn be the closed essentially disjoint subgeodesics of γ
which have length(γi) ≥ 1, each lie in some H(Pi), and have endpoints
in H(Pi) ∩ Pi. The length condition ensures n ≤ length([p, q]). If
p ∈ H(P0) for some P0 let γ0 be the subsegment of γ from p to the
first time it meets X, otherwise let γ0 = {p}. Likewise if q ∈ H(Pn+1)
for some Pn+1 let γn+1 be the last subsegment joining X to q, else let
γn+1 = {q}.

For each i = 1, . . . , n, replace γi by a curve γ′i in X∪H′(Pi) consisting
of bounded length segments in X joining the endpoints of γi to nearby
points in H′(Pi)∩X, and a geodesic in H′(Pi) joining those points. By
Definition 3.4(4) applied to H(Pi) and H′(Pi), we have length(γ′i) ≤
length(γi) + C1 for some constant C1.

If p ∈ H(P0), then let x ∈ P0∩H(P0) be given with dH(P0)(p, γx(m)) ≤
C for some m ≥ 0. Write F (p) = γ′f(x)(m) as hypothesised. Suppose

γ0 joins p to some z ∈ P0 ∩H(P0), so

length(γ0) ≈C 2 log(dP0(x, z)e
−m + 1) +m.

Now

dH′(P0)(F (p), F (z)) = dH′(P0)(γ
′
f(z)(m), z)

≈C 2 log
(
dP0(f(x), z)e−m + 1

)
+m ≈ length(γ0)

since dP0(f(x), x) ≤ C. So we can replace γ0 by a curve γ′0 joining
F (p) to z with length(γ′0) ≤ length(γ0) + C1, possibly increasing C1.
Do likewise with γn+1.

The rest of the curve γ \
⋃
γi consists of points of X and (countably

many) non-trivial short paths in different horoballs H(P ). By Defini-
tion 3.4(3), any path [x, y] ⊂ H(P ) with endpoints in H(P ) ∩ X and
dH(x, y) ≤ 1 can be replaced by a path in X with the same endpoints
of length ≤ L length([x, y]), where L ≥ 1.

Thus we have found a curve γ′ joining F (p) to F (q) with

length(γ′) ≤
n+1∑
i=0

length(γ′i) + length
(
γ′ \

⋃
γ′i

)
≤

n+1∑
i=0

(length(γi) + C1) + L length
(
γ \
⋃

γi

)
≤ L length(γ) + (n+ 2)C1 ≤ (L+ C1) length(γ) + 2C1
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as desired.
If we define G : Cusp(X, {H′(P )}) → Cusp(X, {H(P )}) in a simi-

lar way to F , it also will be coarsely Lipschitz, and G ◦ F and F ◦ G
are a bounded distance to the identity, since by hyperbolicity and Def-
inition 3.4(4) of H(P ), if x, y ∈ P ∩ H(P ) have dP (x, y) ≈ 0 then
dH(P )(γx(m), γy(m)) ≈ 0. So F is a quasi-isometry. �

Remark 3.11. A very similar argument, replacing this time each
γi by a path in X, allows us to show that the inclusion ι : X →
Cusp(X, {H(P )}) is τ -uniformly proper, with τ(t) = 2 log(t + 1) − C
for some C.

3.3. Visual metrics. Let Y be a proper, geodesic, Gromov hyperbolic
space, with fixed basepoint o ∈ Y . One equivalent definition of the
boundary ∂∞Y is as the set of equivalence classes of geodesic rays
γ : [0,∞) → Y , with γ(0) = o, where two rays are equivalent if they
are at finite Hausdorff distance from each other. Let (a|b) = (a|b)o
denote the Gromov product on ∂∞Y with respect to o. Up to an
additive error, (a|b) equals the infimal distance from o to some (any)
geodesic line from a to b, which exists since we assume Y is proper.

A metric ρ on ∂∞Y is a visual metric with visual parameter ε > 0
if there exists C0 > 0 so that 1

C0
e−ε(a|b) ≤ ρ(a, b) ≤ C0e

−ε(a|b) for all
a, b ∈ ∂∞Y . Boundaries of cusped spaces will always be endowed with
a visual metric.

Any two visual metrics ρ, ρ′ on ∂∞Y are snowflake equivalent : there
exists λ ≥ 1 and α > 0 so that ρ′ �λ ρα (in fact α is the ratio of their
visual parameters).

Suppose thatX is hyperbolic relative to a collection of subsets P , and
let Cusp(X,P) be a cusped space. Endow ∂∞Cusp(X,P) with a visual
metric ρ with parameter ε > 0. For each P ∈ P we have a horoball
with a unique limit point aP ∈ ∂∞Cusp(X,P). We let rP = e−εd(o,P )

and call it the radius of the “shadow” of P in ∂∞Cusp(X,P). (It is
the approximate size of the set of limit points of all geodesic rays from
o that pass close to P .) This makes

(∂∞Cusp(X,P), ρ, {(aP , rP )}P∈P)

a shadow decorated metric space (see Definition 2.4).
For results on the geometric properties of ∂∞Cusp(X,P), see [MS20].

3.4. Quasi-centres. We make frequent use of the notion of a ‘quasi-
centre’.

Definition 3.12. Suppose Y is a δY –Gromov-hyperbolic geodesic space
and x, y, z ∈ Y ∪ ∂∞Y are distinct. Then a quasi-centre for x, y, z is
a point p ∈ Y which lies within 2δY of geodesics joining x to y, y to z,
and z to y.

We record three elementary properties of quasi-centres.
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Lemma 3.13 (Quasi-centres exist and are coarsely unique). If Y is
δY -hyperbolic and proper (to ensure existence of bi-infinite geodesics
between boundary points), any distinct x, y, z ∈ Y ∪ ∂∞Y have a quasi-
centre p. Moreover, there exists C so that if a point q ∈ Y lies within
a distance A of geodesics [x, y], [y, z] and [z, x], then d(q, p) ≤ C + A.

Proof. Consider p ∈ [x, y] as p moves from x to y; at a point where
p switches from being 2δY -close to [x, z] to being 2δY -close to [z, y],
p is a quasi-centre. For the last claim, consider a tree approximation
f : V → T where V is the union of x, y, z, p, q and the geodesics between
them, T is a tree, and f is a rough isometry, that is a quasi-isometry
with only additive errors. Let b ∈ T be the unique point on geodesics
[f(x), f(y)], [f(y), f(z)] and [f(z), f(x)]. Then f(p) is within C of b,
and f(q) is within C+A of b for some C independent of x, y, z, q, A. �

Lemma 3.14 (Quasi-centres preserved by quasi-isometries). Let Y, Y ′

be Gromov hyperbolic and proper, and let f : Y → Y ′ be a quasi-
isometric embedding. Then there exists C so that if p is a quasi-centre
of x, y, z ∈ Y ∪ ∂∞Y , then f(p) is at most C from a quasi-centre of
f(x), f(y), f(z). (Here f denotes the extension of f to f : Y ∪ ∂∞Y →
Y ′ ∪ ∂∞Y ′.)

Proof. Since p is within 2δY from geodesics between x, y, z, we have f(p)
is within bounded distance of quasi-geodesics between f(x), f(y), f(z);
by the Morse lemma these are bounded Hausdorff distance from geo-
desics with the same endpoints. The distance estimate follows from
Lemma 3.13. �

Lemma 3.15 (Quasi-centres and boundary distances). Suppose we
have a proper Gromov hyperbolic space Y with basepoint o and a visual
metric ρ with parameter ε. There exists C so that for any distinct
a, b ∈ ∂∞X, and quasi-centre s of o, a, b, we have

d(o, s) ≈C
−1

ε
log ρ(a, b).

Proof. Both sides of the equation are ≈ (a|b)o. �

3.5. Separation of horoballs. We now characterise the shadow dec-
orations which arise from disjoint horoballs; both directions of this
characterisation are needed in the proof of Theorem 1.5.

Recall that the Busemann function on a hyperbolic space Y corre-
sponding to a ∈ ∂∞Y, o ∈ Y is the function βa(·, o) : Y → R defined
by

βa(x, o) = sup
γ

(
lim sup
t→∞

(d(γ(t), x)− t)
)
,

where the supremum is taken over all geodesic rays γ : [0,∞) → Y
from o to a.
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Remark 3.16. Suppose Y = H2 is the upper half-plane model, with
a =∞ the point at infinity, and o = (0, 1). The geodesic ray from o to
a is γ(t) = (0, et). Given x = (x1, x2) and t ≥ log x2, the vertical path
from x to (x1, e

t) has length t − log x2, and the horizontal path from
(x1, e

t) to (0, et) has length |x1|e−t, so

t− log x2 ≤ d(γ(t), x) ≤ t− log x2 + |x1|e−t,
thus βa(x, o) = − log x2. Therefore for any a ∈ ∂∞H2, o ∈ H2 a set
of the form {y ∈ Y : βa(y, o) ≤ C} defines a (classical) horoball, and
likewise for Y = Hn.

For a space X hyperbolic relative to a collection of subsets P , Defi-
nition 3.4(4) gives that for P ∈ P and x ∈ P , βaP (x, o) ≈ − log d(o, P ).

Lemma 3.17. If a space X is hyperbolic relative to a collection of
subsets P and Z = ∂∞Cusp(X,P) is a boundary with visual metric ρ
and the shadow decoration {(aP , rP )}P∈P described in Subsection 2.2,
then there exists C so that for all P 6= Q ∈ P,

(3.18) ρ(aP , aQ) �C
√
rP rQ.

Conversely, suppose Y is Gromov hyperbolic with basepoint o and
boundary Z = ∂∞Y having visual metric ρ with parameter ε. Suppose
further that {(aP , rP )}P∈P is any (abstract) shadow decoration on Z
that satisfies (3.18) for some C. Then there exists t0 so that for any
t ≥ t0 the horoballs defined by

HP,t =
{
y ∈ Y : βaP (y, o) ≤ −t+

1

ε
log rP

}
, P ∈ P

are pairwise separated by a distance ≥ 2(t− t0).

Proof. First, suppose P 6= Q ∈ P , so by construction the horoballs
H(P ),H(Q) ⊂ X are essentially disjoint (being combinatorial horoballs
attached to distinct peripheral cosets). Let p ∈ [o, aP ), q ∈ [o, aQ) be
points with rP = e−εd(o,p), rQ = e−εd(o,q), so they are roughly the closest
points to o in H(P ),H(Q) respectively. Suppose rQ ≤ rP .

If [o, aQ) passes throughH(P ) then the geodesics [o, aP ), [o, aQ) branch
in H(P ) and d(o, q) & d(o, p) + 2 ((aP |aQ)− d(o, p)) (see Figure 1).
Thus (aP |aQ) . 1

2
(d(o, p) + d(o, q)) and (3.18) follows.

If [o, aQ) does not pass through H(P ) then (aP |aQ) . d(o, p) and
moreover 0 ≤ d(p, q) ≈ (d(o, p) − (aP |aQ)) + (d(o, q) − (aP |aQ)) so
(aP |aQ) . 1

2
(d(o, p) + d(o, q)) and (3.18) follows.

For the converse, it suffices to find t0 so that the horoballs are pair-
wise disjoint, since in that case for any t ≥ t0, as βaP (·, o) is 1-Lipschitz
d(HP,t, Y \HP,t0) ≥ t − t0, and likewise for HQ,t, HQ,t0 . Considering a
geodesic from HP,t to HQ,t we have d(HP,t, HQ,t) ≥ 2(t− t0).

Suppose for some t0 we can find P,Q ∈ P so that HP,t0 ∩HQ,t0 6= ∅.
By the quasiconvexity of the horoballs, there must be a point z along
the geodesic (aP , aQ) almost in the horoballs, i.e., with βaP (z, o) .



20 JOHN M. MACKAY AND ALESSANDRO SISTO

P

o

∂∞(X,P)
aP

q

d(o, P )

(aP |aQ)

(aP |aQ)− d(o, p)

H(P )

aQ

p

Figure 1. Disjoint horoballs

−t0 + 1
ε

log rP and βaQ(z, o) . −t0 + 1
ε

log rQ. Let y ∈ (aP , aQ) be a
quasi-centre for o, aP , aQ; without loss of generality, aP , z, y, aQ appear
in this order. Then βaP (z, o) ≈ −d(o, y) − d(y, z) and βaQ(z, o) ≈
−d(o, y) + d(y, z) so by (3.18)

−2(aP |aQ) ≈ −2d(o, y) ≈ βaP (z, o) + βaQ(z, o)

. −2t0 +
1

ε
(log rP + log rQ) . −2t0 − 2(aP |aQ),

thus t0 . 0. So choosing t0 large enough we have a contradiction. �

3.6. Uniform perfectness and visual completeness. When study-
ing quasisymmetric maps it is useful to have, near any point, points of
approximately any possible distance away.

Definition 3.19. A metric space (Z, ρ) is uniformly perfect if for some
λ > 1, for any z ∈ Z and 0 < r ≤ diamZ we have that B(z, r) \
B(z, r/λ) 6= ∅.

An easy observation is that

Lemma 3.20. (Z, ρ) is uniformly perfect if and only if there exists λ ≥
1 so that for any B(z, r) ⊂ Z, r ≤ diam(Z), we have diamB(z, r) �λ r.

For cusped spaces, there is the following related characterisation.

Definition 3.21. Suppose a space X is hyperbolic relative to P. We
will say that X is visually complete if for some (hence, any) w ∈
Cusp(X,P) there exists C ≥ 0 so that for any x ∈ Cusp(X,P) there
exist geodesic rays [w, a), [w, b), for some distinct a, b ∈ ∂∞Cusp(X,P),
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so that x is within distance C of [w, a), [w, b) and some bi-infinite
geodesic from a to b.

Recall that Cusp(X,P) is visual if for some (hence any) basepoint
w there exists C ≥ 0 so that every point x ∈ Cusp(X,P) is within
distance C from some infinite geodesic ray from w.

Lemma 3.22. Suppose a space X is hyperbolic relative to P. Then X
is visually complete if and only if Cusp(X,P) is visual and ∂∞Cusp(X,P)
is uniformly perfect.

Proof. We may assume that o is the basepoint of Cusp(X,P), and that
the visual metric on Z = ∂∞Cusp(X,P) satisfies ρ(a, b) � e−ε(a|b).

If X is visually complete, Cusp(X,P) is certainly visual. Let t be
a constant to be determined. Given a ∈ ∂∞Cusp(X,P) and r ≤
diam(Z), let x be a point on [o, a) at distance −1

ε
log(r) + t from o;

this is always possible for t ≥ 1
ε

log(diam(Z)). Then by visual com-
pleteness there exist b, c ∈ ∂∞Cusp(X,P) so that (b|a) and (c|a) are
& t− 1

ε
log(r) and (b|c) ≈ t− 1

ε
log(r). Therefore ρ(a, b) and ρ(a, c) are

� e−εtr. We now fix t large enough to ensure that b, c ∈ B(a, r). Since
ρ(b, c) � e−εtr we have diamB(a, r) �λ r for λ independent of a, r as
desired.

Conversely, given x ∈ Cusp(X,P), find a geodesic ray [o, a) within
C of x. By uniform perfectness, there exists b ∈ ∂∞Cusp(X,P) with
ρ(a, b) � e−εdCusp(o,x) thus (a|b) ≈ dCusp(o, x) and so a, b satisfy the
desired condition. �

Relatively hyperbolic groups are always visually complete, and hence
have uniformly perfect boundaries (for the latter fact and a variation
on visual completeness, see also [HH20, Proposition 6.3]).

Proposition 3.23. Let G be a group hyperbolic relative to its proper,
infinite subgroups H1, . . . , Hn. Then if G is not virtually cyclic it is
visually complete.

Proof. We will show that there existsD so that for any x ∈ Cusp(G, {Hi})
there exist three geodesic rays γi towards ai ∈ ∂∞(G, {Hi}) emanating
from x so that (ai|aj)x ≤ D for any i 6= j. To check visual complete-
ness for given o, x, observe that for (at least) two of the rays as above,
say γ1, γ2, we have (a1|o)x, (a2|o)x ≤ D′, for a suitable D′. Setting
a1 = a, a2 = b, visual completeness easily follows from the fact that
concatenating geodesics in a hyperbolic space yields a quasi-geodesic
with constants only depending on the hyperbolicity constant and the
Gromov product at the concatenation point.

The rays can be chosen as follows. If n = 0 then, as is well known,
as G is not virtually cyclic the boundary at infinity has at least three
points, and we can move the quasi-centre of these three points to a
bounded distance from any x using the action of G.
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If n ≥ 1 then for x ∈ G, we can take 3 rays towards the points at
infinity of distinct horoballs each within uniformly bounded distance
of x.

For x = (g,m) in a graph horoball H(P ), for convenience we de-
scribe 3 quasi-geodesic rays instead of 3 geodesic rays, and they are
the following:

• a ray {g}× [m,∞) towards the point at infinity of the horoball,
• the concatenation of a geodesic from (g,m) to g and a ray from
g towards the point at infinity of some horoball H(P ′) 6= H(P )
within uniformly bounded distance of g, and
• the concatenation of a horizontal geodesic of length l with 1 ≤
l ≤ e connecting (g,m) to, say, (g′,m), a geodesic from (g′,m)
to g′ and a ray from g′ towards the point at infinity of some
horoball H(P ′′) 6= H(P ),H(P ′) within uniformly bounded dis-
tance of g′. �

3.7. Uniform perfectness and shadow decorations. There are
consequences of uniform perfectness for shadow decorated spaces. In
the proof of Theorem 2.9, we use the lower bound in the following
proposition to get polynomial distortion of the extension of the bound-
ary map to the inside.

Proposition 3.24. If (Z, ρ,B), (Z ′, ρ′,B′) are shadow decorated metric
spaces, and (Z, ρ) is bounded and uniformly perfect, then any shadow-
respecting quasisymmetric embedding h : Z → Z ′ will have the expo-
nents λa, (a, r) ∈ B, uniformly bounded away from zero and infinity.

Proof. The uniform perfectness and boundedness of Z implies h is bi-
Hölder [TV80, Theorem 3.14]: there exists α ≥ 1 so that for all x, y ∈
Z,

ρ(x, y)α � ρ′(h(x), h(y)) � ρ(x, y)1/α.

Take (a, r) ∈ B, with corresponding (a′, r′) ∈ B′. By (uniform)
perfectness there exists a sequence (bi) in Z \ {a} with bi → a. Ap-
plying Definition 2.6(3) with b = bi, c = a for all large i we have
ρ′(h(bi), h(a)) � r′r−λaρ(bi, a)λa , so

ρ(bi, a)α � r′r−λaρ(bi, a)λa � ρ(bi, a)1/α.

Letting i→∞, we deduce that α ≥ λa ≥ 1/α. �

The following proposition shows that shadow-respecting quasisym-
metric embeddings between uniformly perfect, shadow decorated spaces
form a category, motivating the definition of such maps. The only
places we use this proposition are in the statement of Theorem 2.9 and
its application to Corollary 1.3 (if h is a shadow-respecting quasisym-

metry then so is h−1 and ĥ ◦ h−1 ≈ ĥ ◦ ĥ−1). Therefore, as the proof is
somewhat tedious, we suggest the reader skips it on a first reading.
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Proposition 3.25. Let (Zi, ρi,Bi) for i = 1, 2, 3 be uniformly perfect,
shadow decorated metric spaces.

If hi : Zi → Zi+1 are shadow-respecting quasisymmetric embeddings
for i = 1, 2, then h2 ◦ h1 : Z1 → Z3 is a shadow-respecting qua-
sisymmetric embedding, quantitatively. The identity map is a shadow-
respecting quasisymmetric embedding, so uniformly perfect shadow dec-
orated spaces and shadow-respecting quasisymmetric embeddings form
a category.

If h : Z1 → Z2 is a shadow-respecting quasisymmetric embedding
that is a quasisymmetry, then h−1 : Z2 → Z1 is a shadow-respecting
quasisymmetry.

Proof. We first show h2 ◦ h1 is shadow-respecting. If hi is an ηi-
quasisymmetric embedding for i = 1, 2 then h2 ◦ h1 is an η2 ◦ η1-
quasisymmetric embedding.

(1,2) Given (a1, r1) ∈ B1, there exists (a2, r2) ∈ B2 and (a3, r3) ∈ B3

with h1(a1) = a2 and h2(a2) = a3. By uniform perfectness, there
exists p, q ∈ Z2 with ρ2(p, a2) ≤ r2 ≤ ρ2(q, a2) � ρ2(p, a2). For (1), if
ρ1(a1, b) ≤ r1, then ρ2(a2, h1(b)) � r2 � ρ2(a2, p), so by quasisymmetry
and (1) for h2,

ρ3(a3, h2h1(b)) � ρ3(a3, h2(p)) � r3.

Likewise for (2), if ρ1(a1, b) ≥ r1, then ρ2(a2, h1(b)) � r2 � ρ2(a2, q), so
by quasisymmetry and (2) for h2,

ρ3(a3, h2h1(b)) � ρ3(a3, h2(q)) � r3.

If (a3, r3) ∈ B3 has no (a1, r1) ∈ B1 with h2h1(a1) = a3, then either
a3 /∈ h2(Z2) so ρ3(a3, h2h1(Z1)) ≥ ρ3(a3, h2(Z2)) � r3, or a3 = h2(a2)
for some (a2, r2) ∈ B2 but a2 /∈ h1(Z1), in which case ρ2(a2, h1(Z1)) �
r2, which again implies ρ3(a3, h2h1(Z1)) � r2.

(3) For (ai, ri) ∈ Bi, i = 1, 2, 3 as in (1), suppose b, c ∈ Z1 satisfy

(3.26)
ρ1(a1, b)

2

r1

≤ ρ1(b, c) ≤ ρ1(a1, b) ≤ r1.

If

(3.27)
ρ2(a2, h1(b))2

r2

≤ ρ2(h1(b), h1(c)) ≤ ρ2(a2, h1(b)) ≤ r2

we are done, since
(3.28)

ρ3(h2h1(b), h2h1(c))

r3

�
(
ρ2(h1(b), h1(c))

r2

)λa2
�
(
ρ1(b, c)

r1

)λa1λa2
.

So it remains to consider when (3.27) fails.
We claim that if ρ1(a1, b) � r1 we are done. Indeed, if ρ1(a1, b) � r1

we can find e ∈ Z1 with ρ1(a1, e) ≥ r1 and ρ1(a1, e) � r1 � ρ1(a1, b), so
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by (1,2) and quasisymmetry we have

ρ2(a2, h1(e)) � r2 � ρ2(a2, h1(b)) � ρ2(a2, h1(e)),

thus ρ2(a2, h1(b)) � r2. Moreover, ρ1(a1, b) � r1 and (3.26) imply that
ρ1(b, c) � ρ1(a1, b) so by quasisymmetry,

ρ2(h1(b), h1(c)) � ρ2(a2, h1(b)) � r2.

The same argument applied to h2 then gives that ρ3(h2h1(b), h2h1(c)) �
ρ3(a3, h2h1(b)) � r3. So both ρ3(h2h1(b), h2h1(c))/r3 and ρ1(b, c)/r1 are
� 1 giving (3.28), proving the claim that ρ1(a1, b) � r1 suffices.

Thus if ρ2(a2, h1(b)) > r2 by (1) we have ρ1(a1, b) � r1 and by
the claim we are done. So suppose ρ2(a2, h1(b)) ≤ r2. In particular,
applying (3) to h1(b), a2 and b, a1 we have

ρ3(h2h1(b), a3)

r3

�
(
ρ2(h1(b), a2)

r2

)λa2
�
(
ρ1(b, a1)

r1

)λa1λa2
.

Assume from now on that ρ2(a2, h1(b)) ≤ r2.
If ρ2(h1(b), h1(c)) > ρ2(a2, h1(b)) then by quasisymmetry and (3.26)

we have ρ2(h1(b), h1(c)) � ρ2(a2, h1(b)). Thus by uniform perfect-
ness there exists e ∈ Z2 so that ρ2(h1(b), h1(c)) � ρ2(h1(b), e) ≤
ρ2(a2, h1(b)). If ρ2(a2, h1(b))2/r2 > ρ2(h1(b), e) then ρ2(a2, h1(b))/r2 �
1 and again the claim above implies we are done. So by quasisymmetry
and (3) applied to h1(b), e and b, c we have

ρ3(h2h1(b), h2h1(c))

r3

� ρ3(h2h1(b), h2(e))

r3

�
(
ρ2(h1(b), e)

r2

)λa2
�
(
ρ2(h1(b), h1(c))

r2

)λa2
�
(
ρ1(b, c)

r1

)λa1λa2
.

(3.29)

Assume from now on that ρ2(h1(b), h1(c)) ≤ ρ2(a2, h1(b)).
Finally, if ρ2(h1(b), h1(c)) < ρ2(h1(b), a2)2/r2 then since by (3.26)

ρ2(h1(b), h1(c))

r2

�
(
ρ1(b, c)

r1

)λa1
≥
(
ρ1(a1, b)

r1

)2λa1

�
(
ρ2(a2, h1(b))

r2

)2

we have ρ2(h1(b), h1(c)) � ρ2(a2, h1(b))2/r2. So again we can find
e ∈ Z2 with ρ2(h1(b), e) � ρ2(h1(b), h1(c)) and ρ2(a2, h1(b))2/r2 ≤
ρ2(h1(b), e) ≤ ρ2(a2, h1(b)) ≤ r2, and a similar argument to (3.29)
shows (3.28) holds. This completes the proof of property (3) for h2h1.

Now suppose h : Z1 → Z2 is a shadow-respecting quasisymmetric
embedding that is a quasisymmetry. As is standard, if h is an η-
quasisymmetry, then h−1 is a η′-quasisymmetry, where we set η′(t) =
1/η−1(1/t). It remains to check (1,2,3).

(1,2) For (a1, r1) ∈ B1, (a2, r2) ∈ B2 with h(a1) = a2, by uniform
perfectness pick p, q ∈ Z1 with ρ1(p, a1) ≤ r1 ≤ ρ1(q, a1) and ρ1(p, a1) �
ρ1(q, a1). Then (1,2) for h and quasisymmetry give

ρ2(a2, h(q)) � ρ2(a2, h(p)) � r2 � ρ2(a2, h(q)).
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To see (1) for h−1, given b ∈ Z2, if ρ2(a2, b) ≤ r2 then ρ2(a2, b) �
ρ2(a2, h(q)) so by the quasisymmetry of h−1 we have ρ1(a1, h

−1(b)) �
ρ1(a1, q) � r1 as desired. A similar proof gives (2).

(3) Suppose ρ2(a2, h(b))2/r2 ≤ ρ2(h(b), h(c)) ≤ ρ2(a2, h(b)) ≤ r2. If
ρ1(a1, b)

2/r1 ≤ ρ1(b, c) ≤ ρ1(a1, b) ≤ r1 then by (3) for h we have

(3.30)
ρ1(b, c)

r1

�
(
ρ2(h(b), h(c))

r2

)1/λa1

.

If r1 � ρ1(a1, b), then we have r2 � ρ2(a2, h(b)) ≤ r2, so ρ2(h(b), h(c)) �
r2 � ρ2(a2, h(b)), and by quasisymmetry ρ1(b, c) � ρ1(a1, b) and again
(3.30) holds with both sides � 1 so we are done.

Assume from now on that ρ1(a1, b) ≤ r1 so by (3) applied to b, a1 we
have ρ2(h(b), a2)/r2 � (ρ1(b, a1)/r1)λa1 .

If ρ1(b, c) > ρ1(a1, b) then by quasisymmetry ρ1(b, c) � ρ1(a1, b) and
ρ2(h(b), h(c)) � ρ2(a2, h(b)), so

ρ1(b, c)

r1

� ρ1(b, a1)

r1

�
(
ρ2(h(b), a2)

r2

)1/λa1

�
(
ρ2(h(b), h(c))

r2

)1/λa1

.

Finally, suppose ρ1(b, c) < ρ1(a1, b)
2/r1. By uniform perfectness we can

find e ∈ Z1 with ρ1(b, a1)2/r1 ≤ ρ1(b, e) ≤ ρ1(b, a1) and ρ1(b, a1)2/r1 �
ρ1(b, e), unless ρ1(b, a1) � r1 which as we have seen suffices to give
(3.30). Since ρ1(b, c) < ρ1(b, e), quasisymmetry and (3) for h applied
to b, e gives:

(
ρ2(h(b), a2)

r2

)2

≤ ρ2(h(b), h(c))

r2

� ρ2(h(b), h(e))

r2

�
(
ρ1(b, e)

r1

)λa1
�
(
ρ1(b, a1)

r1

)2λa1

�
(
ρ2(h(b), a2)

r2

)2

.

(3.31)

Thus all � are �, and ρ2(h(b), h(c)) � ρ2(h(b), h(e)), which by qua-
sisymmetry gives ρ1(b, c) � ρ1(b, e). Then (3.31) implies (3.30) and we
are done. �

3.8. Transient sets. We consider again a space X hyperbolic relative
to a collection of subsets P .

Let µ,R be constants and α a geodesic in X. Denote by deepµ,R(α)
the set of points p of α that belong to some subgeodesic [x, y] of α
with endpoints in Nµ(P ) for some P ∈ P and so that d(p, x), d(p, y) >
R. Denote by transµ,R(α) = α\deepµ,R(α) the set of transient points
[Hru10, Definition 8.9], [Sis12, Definition 3.9].

We collect the following properties of transient and deep sets from
[Hru10, Sis12, Sis13], using as well results in [DS05] which are however
not phrased in terms of these notions.

Lemma 3.32. Suppose a space X is hyperbolic relative to P. For each
P ∈ P denote by πP : X → P a coarse closest point projection, i.e.
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a function so that d(x, πP (x)) ≤ d(x, P ) + 1. There exist µ,R,D, t, C
with the following properties: For all x, y, z ∈ X,

(1) [Relative Rips condition] We have

transµ,R[x, y] ⊆ ND(transµ,R[x, z] ∪ transµ,R[z, y]).

(2) deepµ,R[x, y] is contained in a disjoint union of subgeodesics of
[x, y] each contained in Ntµ(P ) for some P ∈ P and called a
deep component along P . Moreover, any geodesic connecting
points of NL(P ), L ≥ 1 is contained in NtL(P ).

(3) The endpoints of the deep component of [x, y] along P ∈ P (if
it exists) are C-close to πP (x), πP (y).

(4) If for some P ∈ P we have d(πP (x), πP (y)) > C, then [x, y] has
a deep component along P of length at least d(πP (x), πP (y))−C.

Proof. (1) For groups, this follows combining [Hru10, Proposition 8.13]
and [Osi06, Theorem 3.26], while for general spaces this is [Sis12,
Proposition 4.6(3)], see also [DS05, Corollary 4.27].

(2) This follows from uniform quasiconvexity of peripheral sets [DS05,
Lemma 4.15] and the fact that neighbourhoods of distinct peripheral
sets have bounded intersection [DS05, Theorem 4.1(α1)], see [Sis12,
Proposition 5.7(1)].

(3) By [Sis13, Lemma 1.13(1)] a geodesic from x to y that has points
near P must travel from x, enter Nµ(P ) near πP (x) and leave Nµ(P )
near πP (y).

(4) By [Sis13, Lemma 1.15(1)] if d(πP (x), πP (y)) is large enough, any
geodesic from x to y must pass close to πP (x) and πP (y), which implies
the existence of a suitable deep component. �

Convention 3.33. When we refer to transient points without explicit
mention of the constants we always imply a choice of constants as in
the lemma.

4. Subexponential distortion and (relative) hyperbolicity

The main goal of this section is to prove the following.

Theorem 4.1. Let f : X → Y be a subexponentially distorted embed-
ding, and suppose that Y is hyperbolic relative to a collection of subsets
P. Then there exists ρ0 ≥ 0 so that for all ρ ≥ ρ0 we have that X is
hyperbolic relative to {f−1(Nρ(P ))}P∈P .

As we will see at the end of this section, this statement about rel-
ative hyperbolicity of metric spaces implies the group case stated in
Corollary 1.4. It also gives one part of Theorem 1.5.

Corollary 4.2. Let Y be a truncated real hyperbolic space, that is, Hn

with a family of open disjoint horoballs removed, endowed with its path
metric. If a group G admits a subexponentially distorted embedding
into Y then G is hyperbolic relative to virtually nilpotent subgroups.
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Proof. Recall that [Dru09, Theorem 1.5] says that if a group G has a
Cayley graph which is, as a space, hyperbolic relative to some collection
of subsets P then G is also hyperbolic relative to a collection of sub-
groups, each of which is contained in a uniform neighbourhood of one
of the subsets in P . (Recall that Druţu’s terminology of being ‘asymp-
totically tree-graded’ is equivalent to being relatively hyperbolic.)

Thus by Theorem 4.1 we get that G is hyperbolic relative to sub-
groups each of which admits a uniformly proper embedding into some
(polynomially growing) horospheres of the truncated space. In partic-
ular, each peripheral subgroup has (at most) polynomial growth, and
is therefore virtually nilpotent [Gro81, vdDW84]. �

4.1. Uniformly proper maps into hyperbolic spaces. Towards
proving Theorem 4.1, we begin with two essentially standard facts.

Lemma 4.3. Suppose Y ′ is a geodesic metric space. Then any uni-
formly proper, coarsely Lipschitz and coarsely surjective map f : Y →
Y ′ is a quasi-isometry, quantitatively.

A proof of this may be found, for example, in [DK18, Lemma 8.29].
This has the following well-known consequence (cf. [Kap01, Proposition
2.6]), which we include as a warm-up to Proposition 4.6.

Proposition 4.4. Suppose Y and Y ′ are geodesic metric spaces, with
Y ′ Gromov hyperbolic. If f : Y → Y ′ is a subexponentially distorted
map, then f is a quasi-isometric embedding.

Proof. It suffices to show that f restricted to any geodesic [p, q] ⊂ Y is a
quasi-isometric embedding, quantitatively. By the definition of subex-
ponential distortion (Definition 2.1), f is coarsely Lipschitz with some
constant C1, and there exists τ : [0,∞)→ R with limt→∞ τ(t)/ log(t) =
∞ and for any x, y ∈ X,

τ(dY (x, y)) ≤ dY ′(f(x), f(y)).

We now follow the proof of [BH99, Theorem III.H.1.7] to show that
the Hausdorff distance between f([p, q]) and a geodesic [f(p), f(q)] ⊂
Y ′ is at most R, for some R depending only on C1, τ and the hyper-
bolicity constant δY ′ of Y ′. Let c : [0, b] → Y ′, where b = dY (p, q), be
the composition of the unit-speed parametrisation of [p, q] ⊂ Y and f .
For each interval I in [0, 1], [1, 2], . . . , [bbc, b], replace c|I with a geodesic
segment in Y ′ with the same endpoints, to find a continuous rectifiable
path c′ : [0, b]→ Y ′. This path c′ satisfies dY ′(c(t), c

′(t)) ≤ C2 for all t,
and is τ ′-uniformly proper for τ ′(t) = τ(t)−C2, where C2 is a constant
which only depends on C1 and τ . Moreover, for any s, t ∈ [0, b], we
have the length bound l(c′|[s,t]) ≤ C2|s− t|.

Suppose x0 ∈ [f(p), f(q)] is a point which maximises dY ′(x, im(c′))
for x ∈ [f(p), f(q)], and let D be this maximal distance. Let y ∈
[f(p), x0] ⊂ [f(p), f(q)] be the point at distance 2D from x (if dY ′(f(p), x0) <
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2D, set y = f(p)), and choose z ∈ [x0, f(q)] likewise. Now choose points
y′ = c′(s), z′ = c′(t) with dY ′(y, y

′), dY ′(z, z
′) ≤ D.

Let γ be the path obtained concatenating a geodesic [y, y′], the path
c′|[s,t] and a geodesic [z′, z]. This path has length l(γ) ≤ 2D+l(c′|[s,t]) ≤
2D + C2|s− t|. Observe that

τ ′(|s− t|) ≤ dY ′(y
′, z′) ≤ dY ′(y

′, y) + dY ′(y, z) + dY ′(z, z
′) ≤ 6D,

while

C2|s− t| ≥ l(c′|[s,t]) ≥ dY ′(y
′, z′) ≥ 2D.

By [BH99, Proposition III.H.1.6] we have

D − 1 ≤ δY ′| log2 l(γ)|.

So for large D (and hence large |s− t|) these bounds combine to get

τ ′(|s− t|) ≤ 6D ≤ 7(D − 1) ≤ 7δY ′ log2(2C2|s− t|)

which implies that D is bounded by some D0 depending only on τ ′, C2

and δY ′ .
To bound the Hausdorff distance between f([p, q]) and [f(p), f(q)],

it remains to show that c′ lies in a D1-neighbourhood of [f(p), f(q)] for
some D1. Suppose that some x = c′(u) satisfies dY ′(x, [f(p), f(q)]) >
D0. Every point in [f(p), f(q)] is within a distance of D0 from c′, so
by connectedness there exists a point w ∈ [f(p), f(q)] and values s < u
and t > u so that dY ′(w, c

′(s)), dY ′(w, c
′(t)) ≤ D0.

Therefore, dY ′(c
′(s), c′(t)) ≤ 2D0, and so by uniform properness |s−

t| ≤ C3 for some C3 depending only on D0 and τ ′. Because s < u < t,
we have |s− u| ≤ C3 also, thus the distance between x and [f(p), f(q)]
is at most

dY ′(x,w) ≤ dY ′(x, c
′(s)) + dY ′(c

′(s), w) ≤ C2|u− s|+D0 ≤ C2C3 +D0;

setting D1 = C2C3 +D0, we are done.
Since c′ and [f(p), f(q)] are at Hausdorff distance at most D1, we

can adjust the values c′ by at most D1 to find c′′ : [0, dY (p, q)] →
[f(p), f(q)]. This map is uniformly proper and coarsely Lipschitz.
Since it maps endpoints to endpoints it is coarsely surjective, so by
Lemma 4.3 it is a quasi-isometry, quantitatively. Because c′′ is within
finite distance of c, f |[x,y] is also a quasi-isometry, quantitatively. �

4.2. Transient points are close to image paths. We fix the nota-
tion of Theorem 4.1 from now on. In particular, Y denotes a fixed rel-
atively hyperbolic space with fixed constants for transient/deep points
as in Lemma 3.32.

The basic observation that we will use to prove Theorem 4.1 is con-
tained in the following lemma.

Lemma 4.5. For every L there exists a constant K with the following
property. Let γ be a geodesic in Y and let α : ([a, b] ⊆ R) → Y be
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a coarsely L-Lipschitz path with the same endpoints x, y as γ. Then
every transient point p ∈ γ satisfies d(p, α) ≤ K log(|b− a|+ 1) +K.

The proof is a minor variation on that of [BH99, Proposition III.H.1.6]:
α splits into two subpaths with domain half the size of that of α and
one can consider the triangle with endpoints the “middle” point of α
and the endpoints of γ, apply the relative Rips condition, and then
repeat. The details are left to the reader.

In this subsection we improve the simple bound one obtains by ap-
plying Lemma 4.5 to images in Y of quasi-geodesics in X. The idea is
to reapply the lemma to subpaths.

Proposition 4.6. Let γ be a geodesic in Y and let α be the image
of a subexponentially distorted coarsely Lipschitz map [0, T ]→ Y with
the same endpoints as γ. Then every transient point p ∈ γ satisfies
d(p, α) ≤ E, where E is a constant depending only on the distortion of
α and on Y .

Proof. Let p ∈ γ be “the worst” transient point, meaning one max-
imising the distance from α. Set η = d(p, α). We can assume η ≥ 1.
Also, we assume that α is minimal in the sense that for any transient
point p′ on a geodesic with endpoints on α there is a point q′ on α with
d(p′, q′) ≤ η + 1. Let x± be the endpoints of γ.

Because α is subexponentially distorted, there exists τ : [0,∞)→ R
so that for all s, t ∈ [0, T ] we have τ(|s − t|) ≤ d(α(s), α(t)) ≤ L|s −
t|+ L, where τ(t)/ log t→∞ as t→∞.

We will consider two cases (the second one of which is irrelevant
to the special case of Theorem 4.1 for Y hyperbolic). The constant
M ≥ 1 is a large enough constant, depending on Y,P , τ, L only, to
allow us enough “space” for the arguments in Case 2 to go through.

Case 1. There exist transient points p± ∈ γ respectively preceding
and following p so that d(p, p±) ∈ [min{d(x±, p), 10η},Mη].

In this case we choose q± on α at distance at most η + 1 from p±

(choose q± = p± if p± = x±). Consider the path β obtained concate-
nating in the suitable order geodesics from p± to q± and a subpath of
α between q− and q+.

Suppose q± = α(t±). Assuming γ is at least 20η-long, at least one of
p−, p+ is at distance at least 10η from p. This combines with the fact
that α is coarsely L-Lipschitz to give that

L|t+ − t−|+ L ≥ d(q−, q+) ≥ 10η − 2(η + 1) ≥ 6η,

so for large η we have |t+− t−| ≥ (5/L)η. On the other hand, certainly
d(p, β) ≥ η, and we can apply Lemma 4.5 to β to see that
(4.7)
η ≤ d(p, β) ≤ K log(|t+− t−|+ 2η+ 2+ 1) +K ≤ K log(|t+− t−|) +K ′,
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for constants K,K ′. Using the distortion bound on α and the estimate
d(p−, p+) ≤ 2Mη, we have

τ(|t+ − t−|) ≤ d(q−, q+) ≤ d(p−, p+) + 2η + 2 ≤ 6Mη.

Our hypothesis on τ gives that log |t+ − t−| ≤ oη→∞(1)τ(|t+ − t−|),
where oη→∞(1) is a function that goes to zero as η (and hence |t+−t−|)
go to infinity. Combined with (4.7) this gives

η ≤ Koη→∞(1)τ(|t+ − t−|) +K ′ ≤ 6MKηoη→∞(1) +K ′,

which in turn implies that η is bounded depending only on required
data.

Case 2. γ contains a deep component along, say, P ∈ P on one side
of p with one endpoint at distance > Mη from p and the other one at
distance < 10η from p.

Suppose that the deep component in the statement lies before p.
We would like to reduce to Case 1 by suitably changing α and γ. As
πP is coarsely Lipschitz there exists x′ ∈ α so that d(p, πP (x′)) ∈
[Mη/4,Mη/2] (in fact, the values of πP along α vary between πP (x−)
and πP (x+), and the latter coarsely coincides with πP (p), which in turn
coarsely coincides with p). Choose q ∈ α so that d(p, q) ≤ η + 1. Any
geodesic [x′, q] contains a transient point p− close to πP (x′), and p− is
within distance η+ 1 from some x ∈ α (recall that we chose a minimal
α).

Also, any geodesic γ′ from p− to the final point of γ contains some
transient point p′ close to p. Notice that the hypotheses of Case 1 are
now satisfied by p and γ′ “on one side” of p′. Up to possibly reapplying
the argument above to “the other side” of γ′ to obtain a new geodesic
γ′′ and point p′′ on it, we end up in the situation of Case 1. �

4.3. Morse lemma for transient sets. As seen in Proposition 4.4,
the image of a subexponentially distorting map from an interval into a
hyperbolic space lies within a bounded Hausdorff distance of a geodesic
with the same endpoints. The following proposition shows an analogous
property for the transient sets of geodesics. We will not need this to
prove Theorem 4.1 (but we will use it later). The proof builds on
Proposition 4.6. Recall Definition 2.2 for the notion of a map coarsely
respecting peripherals.

Proposition 4.8. Suppose f : X → X ′ is a subexponentially dis-
torting map between relatively hyperbolic spaces (X,P), (X ′,P ′) that
coarsely respects peripherals, and fixed deep/transient set constants as
in Lemma 3.32. Then for any x, y ∈ X, we have that f(trans(x, y))
and trans(f(x), f(y)) ⊂ X ′ are at Hausdorff distance ≤ C, where C
is independent of x, y ∈ X, and depends only on the data of relative
hyperbolicity, subexponential distortion, coarsely respecting peripherals
and deep/transient constants.
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We require the following estimate on projections.

Lemma 4.9. Suppose we are in the situation of Proposition 4.8. Then
there exists D with the following property: for each x ∈ X and P ∈
P, we have d(f(πP (x)), πP ′(f(x))) ≤ D, where P ′ ∈ P ′ is given by
Definition 2.2(1).

Proof. Denote y = πP (x), and consider a geodesic [x, y]. Then f ◦ [x, y]
connects f(x) to f(y), and the latter lies in the C-neighbourhood of P ′,
where C is as in the definition of f coarsely respecting peripherals. For
later purposes, we increase C so that Lemma 3.32 applies with constant
C. Suppose by contradiction that we have d(f(y), πP ′(f(x))) > D,
where D is a sufficiently large constant to be determined below (we
note the order of choice of constants is C,E,C ′, D). Whenever D > C,
any geodesic [f(x), f(y)] contains a transient point C-close to πP ′(f(x))
by Lemma 3.32-(3)-(4). In particular, f ◦ [x, y] contains a point f(z)
which is (E + C)-close to πP ′(f(x)), where E is as in Proposition 4.6.
Note that f(z) is (D − E − C)-far from f(y).

Now, since f coarsely respects peripherals we have f−1(NE+C(P ′)) ⊆
NC′(P ), for some C ′. Therefore, we have that z lies in the neighbour-
hood NC′(P ), and since f is uniformly proper, for D sufficiently large
we have d(z, y) ≥ C ′+3. But then we see that d(x, πP (z)) < d(x, y)−1,
which contradicts y = πP (x). �

Proof of Proposition 4.8. The argument is a variation on the proof of
Proposition 4.4.

Given x, y ∈ X, fix geodesics [x, y] ⊂ X and [f(x), f(y)] ⊂ X ′.
Let α = f([x, y]); then α is a subexponentially-distorted, coarse Lip-
schitz ‘quasi’-geodesic. By Proposition 4.6 every transient point of
[f(x), f(y)] lies at distance of at most E from α.

Let Π : trans(f(x), f(y)) → α be a map which displaces each point
by at most E. Suppose [p−, p+] is a (maximal) connected interval of
trans(f(x), f(y)). We claim that [p−, p+] and α[Π(p−),Π(p+)] are at
bounded Hausdorff distance from each other, where α[Π(p−),Π(p+)]
denotes the subpath of α from Π(p−) to Π(p+). Indeed, the same
argument as in the proof of Proposition 4.4 shows that as we follow
z along [p−, p+], the point Π(z) has to follow α along α[Π(p−),Π(p+)]
only omitting subpaths of controlled size.

What happens as we cross large deep components of [f(x), f(y)]?
Suppose [q−, q+] is a connected component of deep(f(x), f(y)) of length
≥ N , where N is sufficiently large as determined below. Let x−, x+ ∈
[x, y] be points with f(x±) = Π(q±). Since f is coarsely Lipschitz, we
have d(x−, x+) ≥ cN −C1; here all constants c, C1, C2, . . . are indepen-
dent of N .

By the definition of deep components, q− and q+ lie C2-close to a
peripheral set P ′ ∈ P ′. Since f coarsely respects peripherals, x−, x+ lie
C3-close to a peripheral set P ∈ P , and as d(x−, x+) is large P and P ′
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uniquely correspond to each other in Definition 2.2. By Lemma 4.9 and
Lemma 3.32(3) we have that d(f(πP (x)), q−) and d(f(πP (y)), q+) are at
most C4, so the uniform properness of f gives d(πP (x), x−), d(πP (y), x+) ≤
C5. Therefore d(πP (x), πP (y)) ≥ cN−C1−2C5, so for sufficiently large
N we can apply Lemma 3.32(4) to [x−, x+] to find that [x−, x+] is within
Hausdorff distance C6 of a (the) deep component of [x, y] along P .

By Lemma 3.32(2), [x−, x+] lies in the C7-neighbourhood of P . Again,
since f coarsely respects peripherals, f([x−, x+]) lies in the C8-neigh-
bourhood of P ′.

So, follow z along [f(x), f(y)], and consider f−1◦Π(z) ∈ [x, y]: as we
go along components of trans(f(x), f(y)) we have a coarsely Lipschitz
map, while if we jump over a large deep component of [f(x), f(y)] we
jump over a corresponding deep component of [x, y]. This shows that
f(trans(x, y)) is contained in a bounded neighbourhood of trans(f(x), f(y)).

It remains to check the converse inclusion. Suppose [w−, w+] is a
deep component in [x, y] along P ∈ P of length ≥ N ′, where N ′

is sufficiently large to be determined, and P has not already been
considered above, i.e. P does not correspond to a P ′ ∈ P ′ with a
long deep component in [f(x), f(y)]. Then since [x, y] is connected,
[w−, w+] coarsely lies in the image of f−1 ◦ Π, in particular in the
image of trans(f(x), f(y)). So we have points y± ∈ [f(x), f(y)] with
d(y±, f(w±)) ≤ E. By Lemma 3.32(3) we have d(w−, πP (x)) ≤ C and
d(w+, πP (y)) ≤ C. Thus by Lemma 4.9 we have

d(πP ′(f(x)), πP ′(f(y))) ≈2D d(f(πP (x)), f(πP (y)))

≥ τ(d(w−, w+)− 2C) ≥ τ(N ′ − 2C),

where τ is the uniform properness function of f . Provided N ′ is large
enough that τ(N ′ − 2C)− 2D ≥ N , we have a contradiction.

Thus, trans(f(x), f(y)) is contained in a bounded neighbourhood of
the image of [x, y] under f , omitting large deep components of [x, y],
which in turn lies within finite Hausdorff distance from f(trans(x, y)).

�

4.4. Proof of Theorem 4.1. We are now ready to prove Theorem
4.1.

It will be convenient to use the following equivalent characterisation
of relative hyperbolicity. We note that it might be possible to use the
cusped space characterisation of relative hyperbolicity directly, but this
runs into issues with controlling geodesics in Cusp(X,P) in terms of
paths in X without knowing yet that X is relatively hyperbolic. Recall
that being ‘asymptotically tree-graded’ with respect to a collection of
subsets P is equivalent to being hyperbolic relative to P (in the sense
of Definition 3.8).

Theorem 4.10 ([Dru09, Theorem 1.7]). A geodesic metric space X is
hyperbolic relative to a collection of subsets P if and only if
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• for each K there exists B so that diam(NK(P )∩NK(Q)) ≤ B for
each distinct P,Q ∈ P,
• there exists ε ∈ (0, 1/2) and M ≥ 0 so that for each P ∈ P and

x, y ∈ X with x, y ∈ Nεd(x,y)(P ) any geodesic from x to y intersects
NM(P ),
• for every c ≥ 0 there exist σ, δ so that every triangle with continu-

ous (1, c)-quasi-geodesic edges γ1, γ2, γ3 satisfies either
(1) there exists a ball of radius δ intersecting all sides of the triangle,

or
(2) there exists P ∈ P with Nσ(P ) intersecting all sides of the

triangle and the entrance (resp. exit) points xi (resp. yi) of the sides γi
in (from) Nσ(P ) satisfy d(yi, xi+1) ≤ δ.

Proof of Theorem 4.1. We have a subexponentially distorting embed-
ding f : X → Y into a space Y hyperbolic relative to a collection of
subsets P . We fix constants as in Lemma 3.32 for Y .

We will use a variation of the third property in Theorem 4.10 for Y .

Lemma 4.11. For a geodesic space Y hyperbolic relative to a collection
of subsets P, there exists δ0 so that the following holds. For any geodesic
triangle in Y either

(1′) there exists a ball of radius δ0 intersecting the transient sets of
all sides, or

(2′) there exists P ∈ P so that all sides have deep components along
P .

Proof. Consider a geodesic triangle with sides γi = [pi, pi+1], i = 0, 1, 2
modulo 3. By Lemma 3.32(1), every transient point along γ0 is D-close
to a transient point on either γ1 or γ2, and hence one of the following
holds.

(a) There are two transient points x1, x2 on γ0 within distance 10C
and so that d(xi, trans(γi)) ≤ D (here C is given by Lemma 3.32). In
this case, (1′) holds.

(b) There is a deep component [x1, x2] of γ0, say along P , of length
at least 10C so that d(xi, trans(γi)) ≤ D. By Lemma 3.32(3) x1 is
C-close to πP (p1) and x2 is C-close to πP (p0). Since πP (p2) cannot be
C-close to both πP (p0) and πP (p1), without loss of generality, γ1 has
a deep component along P as well, by Lemma 3.32(4). If γ2 does as
well, we are in case (2′), so suppose that it does not. Then πP (p2) is
C-close to πP (p0). In particular, x2 is close to πP (p0), which is close
to πP (p2), which is close to a transient point of γ1. So, x2 is within
uniformly bounded distance from the transient sets of both γ1 and γ2,
and hence (1′) holds. �

For X, we first prove the third item in the equivalent definition of
relative hyperbolicity given by Theorem 4.10, since this is the part of
the proof where ρ0 gets chosen.
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Suppose we have p0, p1, p2 ∈ X and γi is a (1, c)-quasi-geodesic con-
necting pi to pi+1 (modulo 3) for i = 0, 1, 2, and consider a geodesic
triangle in Y with vertices f(p1), f(p2), f(p3). If such triangle is as in
Lemma 4.11(1′) then by the lemma and Proposition 4.6, we see that
each f(γi) intersects a specified ball of radius δ0 + E, which easily
implies that a ball of some radius δ meets each γi.

If the triangle is as in Lemma 4.11(2′), we show that (2) holds for the
γi. Since all sides have deep components along P , and the endpoints
of a deep component are transient points, in view of Proposition 4.6
we see that each γi intersects Q = f−1(Nρ(P )), for any ρ ≥ ρ0 where
ρ0 is chosen suitably large. For later purposes, we assume ρ0 ≥ C +
E with C from Lemma 3.32 and E from Proposition 4.6. Let now
xi, yi be the entrance/exit points with respect to Q as in the statement
of (2) (setting σ = 0). We will prove that d(f(xi), πP (f(pi))) can
be uniformly bounded by, say, K, and similarly for yi. This easily
implies that d(yi, xi+1) is uniformly bounded, as required. Suppose
that d(f(xi), πP (f(pi))) is large and take a subpath γ′i of γi with final
point xi. Increasing K, we can assume d(πP (f(xi)), πP (f(pi))) ≥ C (if
f(xi) is far from πP (f(pi)) then so is its projection, since f(xi) is close
to P ). In particular, πP (f(pi)) is (C +E)-close to some point in f(γ′i),
necessarily different from f(xi) if K > C + E, because πP (f(pi)) is
C-close to a transient point on [f(pi), f(xi)] and such transient point
is E-close to f(γ′i) by Proposition 4.6. This contradicts the fact that xi
is the entrance point in f−1(Nρ(P )). This concludes the proof of the
third property of Theorem 4.10.

The first item of Theorem 4.10 easily follows from the fact that the
analogous property holds in Y and the uniform properness of f .

Let us now show the second property in Theorem 4.10. First of
all, we claim that there exists K with the following property. Let
Q = f−1(Nρ(P )) for some P ∈ P and let x ∈ X. Then for any x ∈ Q
that satisfies d(x, x) ≤ d(x,Q) + 1, we have d(f(x), πP (f(x))) ≤ K.

Let us first argue that the claim implies the second property, for
ε = 1/3 and a suitable M . In fact, let Q = f−1(Nρ(P )) for some
P ∈ P and let x, y satisfy x, y ∈ Nd(x,y)/3(P ). We can also assume that
d(x, y) is large enough so that

d(f(x), f(y)) ≥ τ(d(x, y)) ≥ τ
(

1
3
d(x, y)− 2

)
> 2K + C,

where τ is the uniform properness function of f . In this case by the
claim we have d(πP (f(x)), πP (f(y))) > C, which in view of Proposition
4.6 and Lemma 3.32 implies that f([x, y]) passes (C + E)-close to P ,
whence we get the second property.

Let us now prove the claim. If the claim did not hold, then any
geodesic from f(x) to f(x) would have a transient point C-close to
πP (f(x)), and hence f([x, x]) would contain a point f(p) that is (C +
E)-close to P . Thus d(f(p), f(x)) ≥ K − (C + E) so as f is coarse
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Lipschitz d(p, x) ≥ φ(K), for some diverging (linear) function φ(K).
Also, d(p,Q) ≤ C ′, for some C ′. But then

d(x,Q) ≤ d(x, p) + C ′ ≤ d(x, x) + (C ′ − φ(K)),

which for K large enough contradicts the choice of x. �

4.5. Truncated hyperbolic spaces. We now show our main appli-
cation of Theorem 4.1. Namely, assuming Theorem 2.9, we now prove
Theorem 1.5: a finitely generated group is hyperbolic relative to virtu-
ally nilpotent groups if and only if it admits a polynomially distorted
embedding into some truncated real hyperbolic space, if and only if it
admits a subexponentially distorted embedding into some such space.

Proof of Theorem 1.5. If G is a finitely generated group and G admits
a subexponentially distorted embedding into some truncated real hy-
perbolic space, then by Corollary 4.2 G is hyperbolic relative to some
collection of virtually nilpotent subgroups.

Conversely, suppose G is hyperbolic relative to virtually nilpotent
subgroups H1, . . . , Hn. It remains to construct a polynomially distorted
embedding into some truncated real hyperbolic space. Let X be the
Cayley graph of G and P = {gHi} the collection of left cosets of each
Hi, let Cusp(X,P) be the corresponding cusped space with basepoint
o, and endow Z = ∂∞Cusp(X,P) with a visual metric ρ̃ with parameter
2ε > 0.

By [MS20, Proposition 4.5] (Z, ρ̃) is a doubling metric space (see
the citation for details), so by Assouad’s embedding theorem [Ass83]
(Z, ρ̃1/2) admits a bi-Lipschitz embedding into some RN , and hence (as
it is bounded) into SN .

So we may assume that there is a bi-Lipschitz embedding h : (Z, ρ)→
SN , where ρ = ρ̃1/2 is a visual metric on Z = ∂∞Cusp(X,P) with
parameter ε. Let B = {(aP , rP = e−εd(o,P ))}P∈P be the usual shadow
decoration on Z. By Lemma 3.17, ρ(aP , aQ) � √rP rQ uniformly for
all P 6= Q ∈ P .

Recall that SN = ∂∞HN+1, and the Euclidean metric ρ′ on SN is a
visual metric with parameter 1 and any fixed basepoint o′. For P ∈
P , let a′P = h(aP ). Since h is bi-Lipschitz, there exists C so that
ρ′(a′P , a

′
Q) �C

√
rP rQ for all P 6= Q ∈ P . Apply Lemma 3.17 to find t0

so that the horoballs

HP =
{
y ∈ HN+1 : βa′P (y, o′) ≤ −t0 + log rP

}
, P ∈ P

are separated in HN+1 by a distance greater than 1. Let X ′ = HN+1 \⋃
P∈P int(HP ) (viewing P now as an abstract index set), and con-

sider {HP}P∈P as a uniformly admissible set of horoballs for X ′ (see
Proposition 3.6), so then Cusp(X ′, {HP}) = HN+1. We give SN =
∂∞Cusp(X ′, {HP}) the standard shadow structure B′ = {(a′P , r′P )}P∈P
by setting r′P = e−dHN+1 (o′,HP ).
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By the definition of HP , r′P � rP uniformly. So if ρ(aP , b) ≤ rP for
some P ∈ P , b ∈ Z, then

ρ′(a′P , h(b)) � ρ(aP , b) ≤ rP � r′P .

Likewise if ρ(aP , b) ≥ r then ρ′(a′P , h(b)) � r′P , and h maps {aP}
bijectively to {a′P}, so properties (1) and (2) of Definition 2.6 hold.
Property (3) holds easily with each λaP = 1 as h is bi-Lipschitz and
each r′P � rP . Thus h is shadow-respecting as a map from ∂∞(X,P)→
∂∞Cusp(X ′, {HP}).

We have (Z, ρ,B) = ∂∞(X,P) is visually complete by Lemma 3.23,
as is Cusp(X ′, {HP}) = HN+1. Therefore Theorem 2.9 gives a polyno-
mially distorted embedding from X (the Cayley graph of G) to X ′ (a
truncated hyperbolic space). Theorem 1.5 is proved. �

4.6. Relative quasiconvexity. Finally, we apply the metric relative
hyperbolicity result of Theorem 4.1 in the case of groups.

Corollary 1.4 Let G be hyperbolic relative to {Hi}. If H is a subex-
ponentially distorted subgroup of G then H is relatively quasiconvex in
G, and so H is hyperbolic relative to subgroups {Kj} each of which is
the intersection of a conjugate (in G) of some Hi with H.

Proof. We will use the characterisation (QC − 3) of relative quasicon-
vexity from [Hru10], and more specifically we will show that there is a
constant C so that, given a geodesic γ in Cusp(G, {Hi}) with endpoints
in H, we have that γ ∩G is contained in the C-neighbourhood of H.

By Theorem 1.5, H is (as a metric space) relatively hyperbolic, and
it is readily seen that the inclusion map coarsely respects peripherals.
Therefore, Proposition 4.8 implies that, given a geodesic in G with
endpoints in H, its transient set lies in a controlled neighbourhood of
H. Now, trans(x, y) coarsely coincides (in Cusp(G, {Hi})) with the in-
tersection with G of a geodesic [x, y] from x to y in Cusp(G, {Hi}) by
[Hru10, Propositions 7.9 and 8.13]. Therefore, we see that the afore-
mentioned characterisation applies.

Having shown H is relatively quasiconvex, the corollary follows from
[Hru10, Theorem 9.1]. �

5. Extending quasi-isometries to the boundary

In this section, we prove Theorem 2.8. We fix relatively hyperbolic
spaces (X,P) and (X ′,P ′), and a map f : X → X ′ which is a snowflake
on peripherals. As hypothesised in Theorem 2.8, throughout this sec-
tion we assume that each P ∈ P is unbounded.

5.1. Extending to cusped spaces. Our first goal is to extend f
to a quasi-isometric embedding fCusp : Cusp(X,P) → Cusp(X ′,P ′)
between their cusped spaces.
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First we observe that a rough λ-snowflake map between graphs (i.e.
a map with (5.2) holding) extends to a rough λ-similarity between the
corresponding horoballs (i.e. a map with (5.3) holding).

Lemma 5.1. Suppose P and P ′ are coarsely connected metric spaces
and f : P → P ′ satisfies

(5.2)
1

C
dP (x, y)λ − C ≤ dP ′(f(x), f(y)) ≤ CdP (x, y)λ + C.

Consider admissible horoballs H(P ) and H(P ′) with corresponding geo-
desic rays {γx}x∈P∩H(P ) and {γ′x}x∈P ′∩H(P ′). Define a map f̄ : H(P )→
H(P ′) by setting f̄(p) = γ′x′(λm) where for each p ∈ H(P ) we choose
x ∈ P ∩ H(P ) and m ≥ 0 with dH(P )(p, γx(m)) ≤ C, and x′ ∈ P ′ with
dP ′(f(x), x′) ≤ C. Then f̄ is a quasi-isometry, in fact it is a rough
λ-similarity: there exists C ′ so that for all p, q ∈ H(P ),

(5.3) dH(P ′)(f̄(p), f̄(q)) ≈C′ λ dH(P )(p, q)

Proof. By hyperbolicity and Definition 3.4(2) the map f̄ is coarsely
onto. For p, q ∈ H(P ), suppose we have dH(P )(p, γx(m)) ≤ C and
dH(P )(q, γy(n)) ≤ C with f̄(p) = γ′x′(λm), f̄(q) = γ′y′(λn), dP ′(f(x), x′) ≤
C and dP ′(f(y), y′) ≤ C. Then by Definition 3.4(4) we see that

dH(P ′)(f̄(p), f̄(q)) ≈ 2 log
(
dP ′(x

′, y′)e−max{λm,λn} + 1
)

+
∣∣λm− λn∣∣

≈ 2 log
(
dP (x, y)λe−λmax{m,n} + 1

)
+ λ|m− n|

≈ λ
(

2 log
(
dP (x, y)e−max{m,n} + 1

)
+ |m− n|

)
≈ λ dH(P )

(
p, q
)
. �

We now build fCusp.

Construction 5.4. Since f : X → X ′ coarsely respects peripherals,
there exists C > 0 so that for all P ∈ P there exists P ′ ∈ P ′ with
f(P ) ⊂ NC(P ′). (Since f(P ) is unbounded, the choice of P ′ is unique.)
So after adjusting f by a bounded distance, we have a rough snowflake
map from P to P ′. We then use Lemma 5.1 to define a map fCusp

from H(P ) ⊂ Cusp(X,P) to H(P ′) ⊂ Cusp(X ′,P ′). These extensions
combine to define fCusp : Cusp(X,P)→ Cusp(X ′,P ′).

Proposition 5.5. Let (X,P), (X ′,P ′), f : X → X ′ be given by Theo-
rem 2.8. Then fCusp as given by Construction 5.4 is a quasi-isometric
embedding.

Towards proving the proposition, we start with the following.

Lemma 5.6. Under the assumptions of Proposition 5.5, fCusp is uni-
formly proper.

Proof. We know that f is uniformly proper, and fCusp restricted to the
horoballs is uniformly proper, so fCusp is also uniformly proper.
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In slightly more detail, suppose dCusp(X′,P ′)(fCusp(x), fCusp(y)) ≤ C
for some x, y ∈ X and large C.

From the definition of fCusp, if fCusp maps points into a horoball
H(P ′), P ′ ∈ P ′, then these points come from a horoball H(P ), P ∈ P .
The choice of P is unique: for any such P , we have that f(P ) is
unbounded and contained in a neighbourhood of P ′, so f−1(NC′(P

′))
is also unbounded for suitable C ′. Since f coarsely respects peripherals,
f−1(NC′(P

′)) is contained in a neighbourhood of P , and therefore the
choice of P is unique.

If fCusp(x) is in a horoball P ′ ∈ P ′, and d(fCusp(x), ∂P ′) ≥ 2C, then
fCusp(x) and fCusp(y) both lie within the image of a single horoball
H(P ), P ∈ P . Since fCusp restricted to H(P ) is uniformly proper by
Lemma 5.1, dCusp(X,P)(x, y) is bounded by a uniform constant depend-
ing on C.

So we are reduced to the case that fCusp(x), fCusp(y) lie within 2C
of X ′ ⊂ Cusp(X ′,P ′), and so x and y both lie within C ′ of X ⊂
Cusp(X,P), for suitable C ′. Since X is uniformly distorted inside
Cusp(X,P) (Remark 3.11) we have that fCusp restricted to X is uni-
formly proper, and so dCusp(X,P)(x, y) is uniformly bounded depending
on C. �

Proof of Proposition 5.5. Since f is coarsely Lipschitz and each horoball
extension is coarsely Lipschitz, fCusp is coarsely Lipschitz.

We begin by considering points x, y ∈ X, with the goal of showing
that fCusp is a quasi-isometry (with uniform constants) when restricted
to any geodesic [x, y] ⊂ Cusp(X,P). We will use that trans(x, y)
coarsely coincides (in Cusp(X,P)) with the geodesic [x, y] from x to
y in Cusp(X,P) intersected with X ⊂ Cusp(X,P); for groups this
follows from [Hru10, Propositions 7.9 and 8.13] and for general space
from [Sis12, Proposition 4.9].

By Proposition 4.8 the image of trans(x, y) under f coarsely coincides
with trans(f(x), f(y)) ⊂ X ′. So fCusp(trans(x, y)) is contained in a
neighbourhood of a geodesic [f(x), f(y)] ⊂ Cusp(X ′,P ′), again by the
relation between geodesics in X ′ and Cusp(X ′,P ′) explained above.

On the other hand, by Construction 5.4 any maximal subgeodesic
α of [x, y] contained in a horoball is mapped to a quasi-geodesic in
the corresponding horoball in Cusp(X ′,P ′) with endpoints close to
[f(x), f(y)]. In particular f(α) lies close to [f(x), f(y)].

Combined, we get that f([x, y]) lies in a uniformly bounded neigh-
bourhood of [f(x), f(y)]. We can then think of a perturbation of
fCusp|[x,y] as a map g : [x, y] → [f(x), f(y)]. This map g is coarsely
surjective, since the endpoints of [f(x), f(y)] are in the image and f
is coarsely Lipschitz. Because fCusp is uniformly proper (Lemma 5.6),
g is also uniformly proper. So by Lemma 4.3 g is a quasi-isometric
embedding, quantitatively.
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Thus fCusp is a quasi-isometry when restricted to any [x, y] ⊂ Cusp(X,P)
for arbitrary x, y ∈ X ⊂ Cusp(X,P), with uniform constants.

If we have, say, x ∈ X and y ∈ Cusp(X,P) \ X, then y ∈ H(P )
for some P ∈ P . The geodesic [x, y] passes within bounded distance
of πP (x) ∈ P by Lemma 3.32(3); let z ∈ H(P ) be the last point of
[x, y] ∩X. Again, dX(πP (x), z) is uniformly bounded.

Choose some z′ ∈ P∩H(P ) so that d(y, γz′) ≤ C where {γx}x∈P∩H(P )

are the geodesic rays in the horoball (Definition 3.4). Let γ be the
geodesic segment [x, y] ∩ H(P ) from z to y, and let w ∈ H(P ) be a
quasi-centre of z, y, aP . By the construction of the horoballs, up to
bounded distances γ follows γz from z to w, then follows γz′ from w
back to y.

Thus y lies close to a geodesic from z to z′. By the hyperbolicity of
Cusp(X,P), there is a constant C1 so that if d(y, z) ≥ C1 then both z
and y are within bounded distance of a geodesic [x, z′] ⊂ Cusp(X,P).
As both x and z′ are inX ⊂ Cusp(X,P), the first case considered above
shows that fCusp restricted to [x, z′] is a quasi-isometry, and hence so
is fCusp restricted to [x, y].

If y is within C1 from z, then fCusp restricted to [x, y] is within
bounded distance of fCusp restricted to [x, z] which again is a quasi-
isometry by the argument of the first case.

Similar arguments apply to show that fCusp|[x,y] is a quasi-isometry
when x and y lie in different horoballs in Cusp(X,P). If x and y lie in
the same horoball, the conclusion follows from Lemma 5.1. �

5.2. Extending to boundaries. Having extended f to a quasi-isometric
embedding fCusp : Cusp(X,P)→ Cusp(X ′,P ′), we now show that the
boundary map is controlled.

Recall that Z = ∂∞(X,P) comes with a shadow decoration: ρ is a
visual metric on ∂∞(X,P), with visual parameter ε and constant C,
and B = {(aP , rP )}P∈P is the collection of balls with for each P ∈ P ,
aP ∈ ∂∞(X,P) is the boundary point corresponding to some (any)
geodesic ray {γx}x∈P∩H(P ) in the horoball H(P ) ⊂ Cusp(X,P), and we

set rP = e−εdCusp(X,P)(o,P ) ∈ (0,∞).
Likewise, ∂∞(X ′,P ′) comes with the analogous data ρ′, ε′, C ′,B′ =
{(aP ′ , rP ′)}P ′∈P ′ . It makes sense to ask whether ∂∞fCusp is shadow-
respecting with respect to these shadow decorations, and that is what
we show in the following proposition.

Proposition 5.7. Let (X,P), (X ′,P ′), f : X → X ′ be given by Theo-
rem 2.8, and fCusp by Construction 5.4. Then the induced map ∂∞fCusp :
∂∞(X,P)→ ∂∞(X ′,P ′) is a shadow-respecting quasisymmetric embed-
ding, quantitatively. If f is a quasi-isometry, then ∂∞fCusp asymptoti-

cally ε′

ε
-snowflakes, where as above ε, ε′ are the visual parameters of the

metrics on ∂∞(X,P), ∂∞(X ′,P ′).
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Proof. Since fCusp is a quasi-isometric embedding (Proposition 5.5)
by [BS00, Theorem 6.5(2)], fCusp extends to a (power) quasisymmet-
ric embedding ∂∞fCusp : ∂∞(X,P) → ∂∞(X ′,P ′). We may assume
fCusp(o) = o′, by allowing our constants to depend on d′(fCusp(o), o′);
changing the basepoint in the image space introduces controlled multi-
plicative errors in ρ′ and rP ′ . We prove the properties of Definition 2.6
in turn.

Claim (1):
First note that for any horoball H(P ) ⊂ Cusp(X,P), fCusp is defined

to send geodesic rays {γx} in H(P ) to geodesic rays {γ′x′} in a horoball
H(P ′) ⊂ Cusp(X ′,P ′), therefore ∂∞fCusp maps aP to aP ′ .

For simplicity, we write d = dCusp(X,P), and likewise d′ = dCusp(X′,P ′).
Assume we have (aP , rP ) ∈ B and b ∈ ∂∞(X,P) = ∂∞Cusp(X,P),

with ρ(aP , b) ≤ rP . Let p be a quasi-centre of o, aP , b and let x be
a closest point of P to o. Let b′ = ∂∞fCusp(b), p′ = fCusp(p) and
x′ = fCusp(x) = f(x).

Let P ′ ∈ P ′ be the peripheral space corresponding to f(P ), with
aP ′ ∈ ∂∞(X,P) the limit point of H(P ′) ⊂ Cusp(X ′,P ′). Since f(P )
is in a bounded neighbourhood of P ′, x′ = f(x) is close to P ′ and by
the Morse lemma also close to [o′, aP ′), thus as H(P ′) is quasiconvex,
x′ is bounded distance from a closest point in P ′ to o′.

Since ρ(aP , b) ≤ rP , we have d(o, p) ≈ (aP |b) & d(o, x). Since
p, x are both close to a geodesic [o, aP ), which is mapped by fCusp

within bounded distance of [o′, aP ′), we have d′(o′, p′) & d′(o′, x′). By
Lemma 3.14 p′ is approximately a quasi-centre for o′, aP ′ , b

′. Thus
(aP ′ |b′) ≈ d′(o′, p′) & d′(o′, x′) ≈ d′(o′, P ′) so ρ′(aP ′ , b

′) � rP ′ as de-
sired.

Claim (2):
Suppose ρ(aP , b) ≥ rP for some (aP , rP ) ∈ B, b ∈ ∂∞(X,P). Then

the argument of Claim (1) applies, except this time the quasi-centre p
of o, aP , b has d(o, p) ≈ (aP |b) . d(o, x) and so (aP ′ |b′) ≈ d′(o′, p′) .
d′(o′, x′) ≈ d′(o′, P ′) and ρ′(aP ′ , b

′) � rP ′ .
Before completing the proof of (2), we state a useful lemma.

Lemma 5.8. Suppose X is a geodesic metric space hyperbolic relative
to P and ∂∞(X,P) has a metric with visual parameter ε. Suppose we
have P ∈ P and b ∈ ∂∞Cusp(X,P) with b 6= aP . Let p denote a quasi-
centre of o, aP , b, and let x ∈ P ⊂ Cusp(X,P) denote the closest point
in P to o.

There exists C > 0 so that if ρ(b, aP ) ≤ rP/C, we have d(o, p) ≥
d(o, x), any geodesic [o, b) must intersect P , and

ρ(aP , b) � rP · e−εd(x,q)/2,

where q is the last point in P on [o, b).
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Proof. Since log ρ(b, aP ) ≈ −ε(b|aP ) and log rP ≈ −εd(o, P ) = −εd(o, x),
for any C ′ any C sufficiently large will have (b|aP ) ≥ d(o, x) + C ′.
Since (b|aP ) ≈ d(o, p), choosing C ′ large enough ensures that d(o, p) ≥
d(o, x).

Denote by βaP (·, o) the Busemann function corresponding to aP and
o. As P is approximately a level set of βaP (·, o), if q is the last point in a
geodesic [o, b) to meet P then we have βaP (q, o) ≈ βaP (x, o) ≈ −d(o, x).
On the other hand, using that p is the quasi-centre of o, aP , b, we have
βaP (q, o) ≈ d(q, p)− d(p, x)− d(x, o).

Combined, these show that d(p, q) ≈ d(p, x). Since p approximately
lies on a geodesic from x to q, we have d(p, x) ≈ d(q, x)/2.

Applying this to log ρ(b, aP ) ≈ −ε(b|aP ), we have (b|aP ) ≈ d(o, p) ≈
d(o, x) + d(x, p) ≈ d(o, x) + d(q, x)/2, and the conclusion follows since
−εd(o, x) ≈ log rP . �

Suppose now we have b ∈ ∂∞Cusp(X,P), and P ′ ∈ P ′ with aP ′ /∈
h(Z). Let p′ be a quasi-centre of o′, aP ′ , b

′ = ∂∞fCusp(b), and let x′ be
a closest point in P ′ to o′. Then, in view of Lemma 5.8, we have either
ρ′(aP ′ , b

′) ≥ rP ′/C, proving (2), or ρ′(aP ′ , b
′) � rP ′e

−ε′d′(x′,q′)/2, where
q′ is the last point in a geodesic [o′, b′) to meet P ′.

Suppose that the latter holds. Since [o′, b′) and fCusp([o, b)) are
at bounded Hausdorff distance, there exist x, q ∈ Cusp(X,P) with
d′(fCusp(x), x′) and d′(fCusp(q), q′) uniformly bounded. Since fCusp sends
points far in horoballs in Cusp(X,P) far into horoballs in Cusp(X,P),
and x′, q′ ∈ X ′ ⊂ Cusp(X ′,P ′), we may assume that x and q lie in
X ⊂ Cusp(X,P) by moving them a bounded distance.

Thus for a suitable C ′, by Lemma 5.8,

diam (f(X) ∩NC′(P
′)) & d′(x′, q′) ≈ 2

ε′
log

(
rP ′

ρ′(aP ′ , b′)

)
.

If, by contradiction, rP ′/ρ
′(aP ′ , b

′) > A for some large A then by the
uniform properness and coarsely respecting peripherals properties of
fCusp and f there exists P ∈ P with x, q ∈ f−1(NC′(P

′)) ⊂ NC′′(P ).
In the definition of fCusp, we extend f by mapping H(P ) to some

H(P̂ ′), P̂ ′ ∈ P ′. But as x′, q′ are in a bounded neighbourhood of P̂ ′

also, by hyperbolicity we have P̂ ′ = P ′ assuming A is large enough.
This is a contradiction, so ρ′(aP ′ , b

′) ≥ rP ′/A.

Claim (3):
Suppose, as hypothesised, that we have (a, r) = (aP , rP ) ∈ B and

points b, c ∈ ∂∞Cusp(X,P) so that(
ρ(a, b)

r

)
ρ(a, b) ≤ ρ(b, c) ≤ ρ(a, b) ≤ r.

This implies that

(5.9) 2(a|b)− d(o, P ) & (b|c) & (a|b) & d(o, P ).
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Let x ∈ Cusp(X,P) be the closest point to o of P . Let xb, xc be the
last points of [o, b), [o, c) to meet P . Let pa,b be a quasi-centre of o, a, b,
and likewise for other pairs of points.

By Lemma 5.8 and (5.9) we have that

d(xb, o) & d(pb,c, o) & d(pa,b, o) & d(o, P ).

Let a′, b′, c′, etc., be the images under fCusp of the corresponding
points in Cusp(X ′,P ′) ∪ ∂∞Cusp(X ′,P ′). By Lemma 3.14 we have
that p′a,b, the image of pa,b, is within bounded distance of the quasi-
centre of o′, a′, b′, and likewise for the other quasi-centres.

Moreover, x is characterised up to bounded distance as the point of
intersection of P and [o, a). Since fCusp maps [o, a) within bounded
Hausdorff distance of [o′, a′), and also P close to P ′, we have that
x′ = fCusp(x) is within bounded distance the intersection of P ′ and
[o′, a′), and thus of the closest point to o′ in P ′. Similarly, since xb is
the final point of intersection of P and [o, b), it is sent to roughly the
final point of intersection of P ′ and [o′, b′).

Putting this together, we have two cases for the configuration of a
tree approximating o, a, b, c: in case (i) we have that [o, c) breaks off
from [o, a) after pa,b, while in case (ii) we have that [o, c) breaks off
from [o, b) after pa,b but before xb. See Figure 2.

P

o

∂∞(X,P)

pa,b

a

b

x

xb

c (i)

≈ pb,c

c (ii)

xc

pb,c

Figure 2. Configurations of a, b, c

In case (i) we have pa,b ≈ pb,c, and so (a|b) ≈ (b|c), thus

1

−ε
log

ρ(b, c)

r
≈ (b|c)− d(o, P ) ≈ 1

2
d(x, xb),

while since this configuration is preserved in the image we also have

1

−ε′
log

ρ′(b′, c′)

r′
≈ (b′|c′)− d(o′, P ′) ≈ 1

2
d′(x′, x′b).
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Now since f is a snowflake on peripherals, there exists λP so that f
restricted to P is a rough λP -snowflake map. This means that

dX′(x
′, x′b) u dX(x, xb)

λP .

(Recall that the notation A uλ,µ B means A/λ − µ ≤ B ≤ λA +
µ.) However, distances in Cusp(X,P),Cusp(X ′,P ′) for points in the
boundary of horoballs are approximately double the logarithm of the
corresponding distances in X,X ′. Thus

d′(x′, x′b) ≈ λPd(x, xb).

Combining these results, we have

(5.10)
ρ′(b′, c′)

r′
�
(
ρ(b, c)

r

)λP ε′/ε
.

Case (ii) is similar, but here

1

−ε
log

ρ(b, c)

r
≈ (b|c)− d(o, P ) ≈ d(x, xb)− d(xb, xc)/2,

and

1

−ε′
log

ρ′(b′, c′)

r′
≈ (b′|c′)− d(o′, P ′) ≈ d′(x′, x′b)− d′(x′b, x′c)/2.

Since distances between pairs of points in a horoball are again roughly
scaled by λP , we have d′(x′, x′b)−d′(x′b, x′c)/2 ≈ λP (d(x, xb)−d(xb, xc)/2),
and so (5.10) again holds.

Finally, observe that if λP = 1, e.g. if f is a quasi-isometry, then by
(5.10) ∂∞fCusp asymptotically ε′

ε
-snowflakes. �

Before completing the proof of Theorem 2.8, we note some properties
of Definition 2.3.

Proposition 5.11. If (X,P), (X ′,P ′), (X ′′,P ′′) are relatively hyper-
bolic spaces, and f : (X,P) → (X ′,P ′) and g : (X ′,P ′) → (X ′′,P ′′)
are snowflakes on peripherals then so is the composition g◦f : (X,P)→
(X ′′,P ′′). The identity map on a relatively hyperbolic space is a snowflake
on peripherals. Therefore we have a category where objects are rel-
atively hyperbolic spaces, and morphisms are snowflake on peripheral
maps, where we consider f : X → X ′ and g : X → X ′ equivalent if we
have supx∈X dX′(f(x), g(x)) <∞.

Moreover, if f : (X,P)→ (X ′,P ′) is a snowflake on peripherals and
is coarsely onto, then a (any) coarse inverse g : (X ′,P ′) → (X,P) is
also a snowflake on peripherals.

Proof. The properties of being polynomially distorted, coarsely respect-
ing peripherals and being a snowflake on peripherals (which implies the
former two properties), are all easily seen to be preserved under com-
position.
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The only subtle point is the coarse inverse: if f : (X,P)→ (X ′,P ′)
is a snowflake on peripheral map that is coarsely surjective, then by
Lemma 4.3 f is a quasi-isometry, and so any coarse inverse will also
satisfy the snowflake on peripheral conditions (with λ = 1). �

We now conclude our study of the properties of ∂∞(·)Cusp.

Proof of Theorem 2.8. The extension of f to a quasi-isometry fCusp

is given by Proposition 5.5. That ∂∞fCusp is a shadow-respecting

quasisymmetric embedding, and asymptotically ε′

ε
-snowflakes if f is

a quasi-isometry, follows from Proposition 5.7.
It remains to check the functorial properties. For idX : (X,P) →

(X,P), the extension into horoballs satisfies (idX)Cusp = idCusp and
so ∂∞(idX)Cusp = id∂∞(X,P). Suppose f : (X,P) → (X ′,P ′) and
g : (X ′,P ′) → (X ′′,P ′′) are snowflake on peripheral maps. The con-
struction of the extensions into cusped spaces implies that gCusp ◦ fCusp

and (g ◦ f)Cusp are equal on X ⊂ Cusp(X,P). Given a peripheral set
P ∈ P , coarsely respecting peripherals implies that there is P ′ ∈ P ′
with f(P ) coarsely in P ′, and P ′′ ∈ P ′′ with g(P ′) coarsely in P ′′.
Suppose f is a rough λ-snowflake on P , and g is a rough λ′-snowflake
on P ′; consequently g ◦ f is a rough λλ′-snowflake on P . For x ∈ P ,
let γx : [0,∞) → Cusp(X,P), γ′x : [0,∞) → Cusp(X ′,P ′) and γ′′x :
[0,∞)→ Cusp(X ′′,P ′′) be unit-speed geodesic rays from x to aP , from
f(x) to aP ′ , and from g(f(x)) to aP ′′ respectively. Construction 5.4
and hyperbolicity imply that for any t ≥ 0, we have uniform bounds on
dCusp(X′,P ′)(fCusp(γx(t)), γ

′
x(λt)), on dCusp(X′′,P ′′)(gCusp(γ′x(t)), γ

′′
x(λ′t)), and

on dCusp(X′′,P ′′)((g◦f)Cusp(γx(t)), γ
′′
x(λλ′t)). Consequently, (g◦f)Cusp(x)

and gCusp ◦ fCusp(x) are at bounded distance from each other.
Being at bounded distance, the boundary extensions ∂∞(g ◦ f)Cusp

and (∂∞gCusp) ◦ (∂∞fCusp) are equal. �

6. Characterisation of boundary extensions

In this section we prove Theorem 2.9. Namely, given a shadow-
respecting η-quasisymmetric embedding h : ∂∞(X,P) → ∂∞(X ′,P ′)
between boundaries of relatively hyperbolic spaces, we construct a poly-
nomially distorted embedding ĥ : X → X ′ inducing h, and we show
various further properties of this correspondence.

We fix the notation of Theorem 2.9. As before, we choose base-
points o, o′ of Cusp(X,P),Cusp(X ′,P ′), and denote the metrics on
Cusp(X,P),Cusp(X ′,P ′) by d, d′ respectively.

6.1. Quasi-centre estimates. We now collect technical lemmas needed
for the proof of Theorem 2.9.

Lemma 6.1. Suppose a space X is hyperbolic relative to P and is
visually complete. Let o ∈ Cusp(X,P) be a basepoint. For any C ′ ≥ 0
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there exists C with the following property. Let P ∈ P, x ∈ Cusp(X,P),
and s be a quasi-centre of aP , x, o.

(1) If x ∈ NC′(H(P )), then

d(o, x)− d(o, P ) .C 2(d(o, s)− d(o, P ));

if moreover x ∈ NC′(P ) then we can replace .C by ≈C.
(2) If x ∈ Cusp(X,P) satisfies for some K that

d(o, x)− d(o, P ) .K 2(d(o, s)− d(o, P )),

then x ∈ NC+K(H(P )). Moreover, if d(o, x) − d(o, P ) ≈K
2(d(o, s)− d(o, P )) then x ∈ NC+K(P ).

Proof. (1) Any geodesic from o to x is the concatenation of a geodesic
of length approximately d(o, P ) and a geodesic coarsely contained in
H(P ). The quasiconvexity of H(P ) means that s coarsely lies in H(P ),
and considering tree approximations as in Figure 3 the conclusion fol-
lows.

P

o

∂∞(X,P)

s

aP

x

d(o, P )

d(o, s)− d(o, P )

≤ d(o, s)− d(o, P )

H(P )

Figure 3. Points in horoballs

(2) The Busemann function βaP (·, o) satisfies βaP (x, o) ≈ d(s, x) −
d(o, s) ≈ d(o, x) − 2d(o, s). We used that s is at distance coarsely
equal to (aP |x)o from o and coarsely equal to (aP |o)x from x in the
first coarse equality, and that it is close to geodesics from o to x in the
second one. Using the hypothesis with .K (the proof when we have
≈K being analogous), we get βaP (x, o) .K −d(o, P ), which implies
x ∈ NC+K(H(P )), as required. �

Lemma 6.2. Suppose a space X is hyperbolic relative to P and is
visually complete. Let o ∈ Cusp(X,P) be a basepoint. For any C ′ ≥ 0
there exists C so that for every x ∈ Cusp(X,P), there exist a, b ∈
∂∞Cusp(X,P) with the properties that
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(1) ρ(a, b) �C e−εd(o,x),
(2) x is within distance C from a quasi-centre of a, b, o,

and if x ∈ NC′(H(P )) for some P ∈ P then one can arrange that

(3) ρ(a, aP )2/rP ≤ ρ(a, b) ≤ ρ(a, aP ) ≤ rP , where rP = e−εd(o,P ) for
ε the visual parameter of ρ.

Proof. If x lies in no horoball, then as the first and second items follow
directly from visual completeness we are done.

Now suppose x ∈ NC′(H(P )) for some P ∈ P . Since horoballs are
coarsely sub-level sets of Busemann functions, we have βaP (x, o) .
−d(o, P ). We have two cases. First, let s be a quasi-centre for x, aP , o
and suppose for a large constant K1 to be determined we have

d(s, o) + 2K1 ≤ d(x, o).(6.3)

Let x′ ∈ [o, x] be chosen with d(x′, o) = d(x, o) − K1 ≥ d(s, o) + K1.
Apply visual completeness to x′ to find a, b ∈ ∂∞Cusp(X,P) so that x′

is within bounded distance from a quasi-centre for a, b, o, so (1,2) are
satisfied. By (6.3) and Lemma 6.1(1)

(6.4) d(o, s) + 2K1−d(o, P ) ≤ d(o, x)−d(o, P ) . 2(d(o, s)−d(o, P )),

so −d(o, P ) & 2K1 − d(o, s) and rP = e−εd(o,P ) � e−εd(o,s)eε2K1 . By the
choice of x′ we have ρ(a, b) �M1 e

−εd(x′,o) = e−εd(x,o)eεK1 for some M1.
By Lemma 3.15 ρ(a, aP ) �M2 e

−εd(o,s) for some M2. By (6.4),

ρ(a, aP )2

rP
� e−ε2d(o,s)

e−εd(o,P )
� e−εd(o,x).

So for some M3 we have

ρ(a, aP )2

rP
≤M3e

−εd(o,x),

1

M1

e−εd(o,x)eεK1 ≤ ρ(a, b) ≤M1e
−εd(o,x)eεK1 ≤M1e

−εd(o,s)e−εK1 ,

1

M2

e−εd(o,s) ≤ ρ(a, aP ) ≤M2e
−εd(o,s) ≤M2e

−εd(o,P )e−2εK1 , and

e−εd(o,P ) ≤ rP .

Fixing K1 so that eεK1 ≥ max{M1M3,M1M2,
√
M2} we have shown (3)

holds.
Second, if (6.3) fails, then x is within a bounded distance of [o, aP )

(depending on K1, which we now regard as a constant). For a large K2

to be determined, let x′ ∈ [o, aP ) be chosen with d(x′, o) = d(x, o) +
K2. Applying visual completeness to x′, we find a′, b′ ∈ ∂∞Cusp(X,P)
so that x′ is within bounded distance from a quasi-centre of a′, b′, o.
Since d(x′, o) ≈ (a′|b′)o & min{(a′|aP )o, (aP |b′)o}, swapping a′ and b′ if
necessary, we may assume (a′|aP )o . d(x′, o).
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Now find x′′ ∈ [o, a′) with d(x′′, o) = d(x′, o) + K3 = d(x, o) + K2 +
K3 for some large K3 to be determined. Let s′′ be a quasi-centre for
x′′, aP , o; by construction it is coarsely x′, so d(s′′, o) ≈M4 d(x′, o) and
d(x′′, o) ≈M4 d(x′, o) + K3 for some M4, so fixing K3 ≥ 2K1 + 2M4 we
have that x′′ and s′′ satisfy (6.3). Moreover,

βaP (x′′, o) ≈ −d(x′, o) + d(x′′, x′) ≈ −d(x, o)−K2 +K3

. −d(o, P )−K2 +K3,

so provided we choose K2 large enough depending on K3 we can ensure
that x′′ ∈ H(P ). Thus x′′, which is coarsely x, satisfies the hypotheses
of the first case and so we can find the desired points a, b. �

Lemma 6.5. Suppose a space X is hyperbolic relative to P and is
visually complete, and fix a basepoint o ∈ Cusp(X,P). There exists C
with the following property. If the ray from o to a ∈ ∂∞Cusp(X,P)
contains a point x ∈ H(P ), for some P ∈ P, then

ρ(aP , a) ≤ CrP e
−εd(x,X).

Proof. Using the definition of visual metric, we see that we have to
prove (a|aP ) & d(o, P ) + d(x,X). Let y, z ∈ X ∩ H(P ) be the first
and last points of the ray in H(P ). Let s be a quasi-centre for o, a, aP .
There exists m,n so that s is bounded distance to both γy(m) and γz(n)
where γy, γz are the geodesic rays to aP inH(P ) given by Definition 3.4.
(By Definition 3.4(4), m ≈ n.) Using tree approximations, we see
there exists C so that either d(x, γy(m

′)) ≤ C for some m′ ≤ m or
d(x, γz(n

′)) ≤ C for some n′ ≤ n. Suppose the former; the latter case
is analogous. Then by Definition 3.4(4) we have m′+C ≥ d(x,X) & m′

and so

(a|aP ) ≈ d(o, s) ≈ d(o, y) +m ≥ d(o, y) +m′ ≈ d(o, P ) + d(x,X). �

6.2. Embedding of cusped spaces. We return to the proof of Theo-
rem 2.9. In the remainder of this section, we denote by Ci, Ki constants
that depend on the data only (including h). The index of the Ki’s will
be reset to 1 at the end of each proof.

First of all, work of Bonk–Schramm allow us to extend h to the
cusped spaces.

Theorem 6.6 (Bonk–Schramm). Suppose (X,P), (X ′,P ′) are two vi-
sually complete relatively hyperbolic spaces, and that h : ∂∞(X,P) →
∂∞(X ′,P ′) is a quasisymmetric embedding. Then there exists a (C1, C1)-

quasi-isometric embedding f̂ : Cusp(X,P) → Cusp(X ′,P ′) so that

∂∞f̂ = h and that f̂(o) = o′.

Proof. By Lemma 3.22 ∂∞(X,P) = ∂∞Cusp(X,P) (and ∂∞(X ′,P ′) =
∂∞Cusp(X ′,P ′)) are uniformly perfect, hence by [TV80, Corollary
3.12] h is a “power” quasisymmetric embedding in the sense of [BS00,

§6]. Therefore there is a quasi-isometric embedding f̂ : Cusp(X,P)→
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Cusp(X ′,P ′) so that ∂∞f̂ = h by [BS00, Theorems 7.4, 8.2]. We

change f̂ by defining f̂(o) = o′; the resulting quasi-isometry constant
C1 depends only on h and the data of the spaces. �

6.3. Images of horoballs. Recall that throughout this subsection,
h : ∂∞(X,P) → ∂∞(X ′,P ′) is the shadow-respecting quasisymmet-
ric embedding of Theorem 2.9, with Cusp(X,P),Cusp(X ′,P ′) having
basepoints o, o′ and metrics d, d′. Additionally, now we fix the quasi-
isometric embedding extension f̂ : Cusp(X,P)→ Cusp(X ′,P ′) of The-
orem 6.6.

For P ∈ P , we denote by h#(P ) the element of P ′ so that h(aP ) =
ah#(P ).

Lemma 6.7. For each C there exists C2 so that for any P ∈ P and
x ∈ NC(H(P )), with λP = λaP from Definition 2.6(3), we have

d′(o′, f̂(x)) ≈C2 d
′(o′, h#(P )) +

ε

ε′
λP (d(o, x)− d(o, P )).

This lemma will only be applied with C depending only on the qua-
siconvexity of horoballs, hence C2 will depend only on the data.

Proof. Let γP be a ray from o to aP . By Lemma 6.2 there exist a, b ∈
∂∞Cusp(X,P) so that ρ(a, b) � e−εd(o,x), x is K1-close to a quasi-
centre of a, b, o, and ρ(a, aP )2/rP ≤ ρ(a, b) ≤ ρ(a, aP ) ≤ rP . Thus by
Definition 2.6(3), we have

ρ′(h(a), h(b))

rh#(P )

�K2

(
ρ(a, b)

rP

)λP
.

Hence, since quasi-centres are coarsely mapped to quasi-centres (see
Lemma 3.14) and the distance of the quasi-centre of two boundary
points and the basepoint from the basepoint controls the visual distance
(Lemma 3.15), we get

d′(o′, f̂(x)) ≈K3

−1

ε′
log ρ′(h(a), h(b))

≈K4 d
′(o′, P ′) +

ελP
ε′

(d(o, x)− d(o, P )) ,

as required. �

Corollary 6.8. There exists C3 so that for each P ∈ P we have

(1) f̂(H(P )) ⊆ NC3(H(h#(P ))),

(2) f̂(P ) ⊆ NC3(h#(P )),

(3) f̂(H(P )c) ⊆ NC3(H(h#(P )c).

Proof. If x ∈ H(P ), then by Lemma 6.1 with C ′ = 0, we have d(o, x)−
d(o, P ) .K1 2(d(o, s) − d(o, P )), where s is a quasi-centre of aP , x, o.
By Lemma 6.7 with C = 0, we have

d′(o′, f̂(x)) ≈K2 d
′(o′, h#(P )) +

ελP
ε′

(d(o, x)− d(o, P )).
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In view of Lemma 3.14, if s′ is a quasi-centre of f̂(x), ah#(P ), o
′ then

s′ coarsely coincides with f̂(s), so that again by Lemma 6.7 (with C
chosen uniformly so that s ∈ NC(H(P ))) we have

d′(o′, s′) ≈K3 d
′(o′, h#(P )) +

ελP
ε′

(d(o, s)− d(o, P )).

So,

d′(o′, f̂(x))− d′(o′, h#(P )) ≈K2

ελP
ε′

(d(o, x)− d(o, P ))

.K4

2ελP
ε′

(d(o, s)− d(o, P ))

≈2K3 2(d′(o′, s′)− d′(o′, h#(P ))).

By Lemma 6.1(2) with K = K2 + K4 + 2K3, we have that f̂(x) lies
within a distance C3 of H(h#(P )).

The second part can be proven in the same way replacing . by ≈.
Finally, if the third part did not hold (for a much larger C3 than in

(2)), then there would be x ∈ H(P )c whose image is “well-inside”
H(h#(P )). A geodesic ray from x towards aP has image a quasi-
geodesic ray with controlled constants, that starts “well-inside”H(h#(P )),
then enters NC3(h#(P )) (by (2)) and then goes to ah#(P ). Such a quasi-
geodesic ray does not exist. �

In a similar spirit to parts (1) and (2) of the previous corollary, one
also has:

Corollary 6.9. For each P ∈ P, f̂ |H(P ) is a C4-rough (ελP/ε
′)-similarity.

Proof. For x, y ∈ H(P ), the quasiconvexity of horoballs implies that a
quasi-centre s of x, y, o is also contained in (a controlled neighbourhood
of) H(P ). By hyperbolicity,

d(x, y) ≈K1 d(o, x) + d(o, y)− 2d(o, s),

and the same holds for pairs of points in Cusp(X ′,P ′).
If s′ is a quasi-centre of f̂(x), f̂(y), o′, then bearing in mind Lemma

3.14, we get from Lemma 6.7 (with C chosen so that s, s′ are in the
C-neighbourhoods of H(P ),H(P ′)):

d′(f̂(x), f̂(y)) ≈K1

(
d′(o′, f̂(x))− d′(o′, h#(P ))

)
+
(
d′(o′, f̂(y))

− d′(o′, h#(P ))
)
− 2
(
d′(o′, s′)− d′(o′, h#(P ))

)
≈K2

ελP
ε′

(d(o, x)− d(o, P )) +
ελP
ε′

(d(o, y)− d(o, P ))

− 2
ελP
ε′

(d(o, s)− d(o, P ))

≈ελPK1/ε′
ελP
ε′
d(x, y)
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as required. �

Finally, Corollary 6.8(3) can be strengthened to:

Corollary 6.10. If P ′ ∈ P ′ is so that aP ′ /∈ h(
⋃
P aP ), then f(X) ∩

H(P ′) ⊆ NC5(X
′). Moreover, f(X) ⊆ NC5(X

′).

Proof. Consider any x ∈ Cusp(X,P). Then x lies within uniformly
bounded distance from a geodesic ray from o to, say, a ∈ ∂∞Cusp(X,P).

Suppose that f̂(x) lies inside the horoball H(P ′) in Cusp(X ′,P ′) and
at distance R from X ′ ⊆ Cusp(X ′,P ′).

By Lemma 6.5, we have ρ(aP ′ , h(a)) ≤ K1rP ′e
−εR. For R large

enough, this contradicts Definition 2.6(2) which gives ρ(aP ′ , h(Z)) ≥
rP ′/C, proving the first part of the corollary.

Suppose now x ∈ X and let us show that its image lies in a controlled
neighbourhood of X ′. If we had that f̂(x) lies well inside a horoball,
say H(P ′), then the argument above would provide P ∈ P so that
h(aP ) = aP ′ . But then Corollary 6.8(3) implies that x cannot lie in
H(P )c, contradicting x ∈ X. This shows the “moreover” part. �

Announcement: We perturb f̂ up to bounded distance and assume
from now on that it maps X into X ′.

6.4. Projection terms of the distance formula. Our goal is now
to show that f̂ |X : X → X ′ has the required metric properties. In order
to do so, we will need a version of the distance formula for relatively
hyperbolic spaces, as described below. Since we will have to be careful
about distinguishing between distances in a relatively hyperbolic space
and in the corresponding cusped space, we start using the notation
dX , dCusp(X,P) and similar to emphasise the difference.

We require some notation to describe the distance formula. Sup-
pose a space Y is hyperbolic relative to Q, with a fixed cusped space
Cusp(Y,Q). For Q ∈ Q and x, y ∈ Y , we set θQ(x, y) to be the follow-
ing value. Choose any geodesic [x, y] in Cusp(Y,Q) from x to y. If [x, y]
does not intersect H(Q), then set θQ(x, y) = 0. If it does, then consider
the entrance and exit points x′, y′ ∈ Q, and let θQ(x, y) = dY (x, y). We
emphasize that the distance is taken in Y , not in Cusp(Y,Q).

Let
{{
A
}}

L
denote A if A > L, and 0 otherwise.

Theorem 6.11 (Distance formula, [Sis13, Theorem 0.1]). In the no-
tation above, there exists L0 so that for each L ≥ L0 there exist λ, µ so
that the following holds. If x, y ∈ Y then

(6.12) dY (x, y) uλ,µ

∑
Q∈Q

{{
θQ(x, y)

}}
L

+ dCusp(Y,Q)(x, y).

Returning to our study of f̂ |X : X → X ′, we will make a term-by-
term comparison of the distance formulas in X and X ′. The following
lemma will be used to compare the θ terms.
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Lemma 6.13. Under the assumptions of Theorem 2.9 with extension
f̂ |X : X → X ′ as above, there exists C6 with the following property.
Let P ∈ P. Then for each x, y ∈ X we have

θh#(P )(f̂(x), f̂(y)) uC6,C6 θP (x, y)ελP /ε
′
.

Moreover, if P ′ ∈ P ′ is so that aP ′ /∈ h(
⋃
P aP ), then for each x, y ∈ X

we have θP ′(f̂(x), f̂(y)) ≤ C6.

Proof. Consider x, y ∈ X and suppose that a geodesic [x, y] goes deep
into a horoballH(P ) for P ∈ P . Then, Corollary 6.8 (together with the

fact that f̂([x, y]) is a quasi-geodesic and hence stays close to a geodesic
with the same endpoints) implies that the entrance and exit points of

[x, y] get mapped close to the entrance and exit point of [f̂(x), f̂(y)] in

h#(P ). Moreover, if [x, y] does not go deep into H(P ) then [f̂(x), f̂(y)]
does not go deep into h#(P ) either.

Hence, the conclusion follows using that f̂ is a rough similarity on
H(P ) (Corollary 6.9) and Definition 3.4(4).

To show the “moreover” part, notice that the geodesic from f̂(x) to

f̂(y) cannot go deep into H(P ′) because of Corollary 6.10. �

Corollary 6.14. Under the assumptions of Lemma 6.13, for any P ∈
P we have ελP/ε

′ ≤ 1.

Proof. Each P ∈ P is uniformly coarsely connected, and is unbounded
since (X,P) is visually complete: were P ∈ P bounded aP would be an
isolated point. Take a quasi-geodesic ray γ : [0,∞) → P . Then using
the bounds of Lemma 6.13, taking large t > 2C6 and large N , we have

dX(γ(0), γ(Nt))ελP /ε
′ � dX′(f̂(γ(0)), f̂(γ(Nt)))

≤
N∑
i=1

dX′(f̂(γ((i− 1)t)), f̂(γ(it)))

�
N∑
i=1

dX(γ((i− 1)t), γ(it))ελP /ε
′
.

The left-hand side is� (Nt)ελP /ε
′
, and the right-hand side is� NtελP /ε

′
,

so fixing t and letting N →∞ we have ελP/ε
′ ≤ 1. �

Proof of Theorem 2.9. It is easily seen that f̂ |X is coarsely Lipschitz.
By Proposition 3.24 we have λP ≥ α > 0 for all P ∈ P , and some
α ∈ (0, 1]. In the following we use that if ri ≥ 1 and λi ≥ α for
i = 1, 2, . . . then

(6.15)
∑
i

rλii ≥
∑
i

rαi ≥

(∑
i

ri

)α

.

Using the distance formula Theorem 6.11, Lemma 6.13, and choosing
T large enough we get
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dX′(f̂(x), f̂(y)) uK1,K1

∑
P ′∈P ′

{{θP ′(f̂(x), f̂(y))}}T + dCusp(X′,P ′)(f̂(x), f̂(y))

=
∑
P∈P

{{θh#(P )(f̂(x), f̂(y))}}T + dCusp(X′,P ′)(f̂(x), f̂(y))

vK2,K2

∑
P∈P

{{θP (x, y)ελP /ε
′}}T ′ + dCusp(X,P)(x, y)

≥

(∑
P∈P

{{θP (x, y)}}T ′ + dCusp(X,P)(x, y)

)(ε/ε′) infP∈P λP

uK2,K2 dX(x, y)(ε/ε′) infP∈P λP ,

where the fourth inequality follows from (6.15). Notice that we changed

the threshold when passing from X to X ′. Thus ĥ = f̂ |X is polyno-
mially distorting, and coarsely respects peripherals by Corollary 6.8.
That ĥ is a snowflake on peripherals follows from Lemma 6.13 and
Corollary 6.14.

We have h = ∂∞(ĥ)Cusp: by construction h = ∂∞f̂ and f̂ = ĥ on X.
For any geodesic ray [o, a) ⊂ Cusp(X,P), either a = aP for some P ∈
P , in which case ∂∞(ĥ)Cusp(a) = h(a) by the construction of (ĥ)Cusp, or

a is a limit of points in X, and so again ∂∞(ĥ)Cusp(a) = ∂∞f̂(a) = h(a).

Moreover, if h asymptotically ε′

ε
-snowflakes then for all P ∈ P , λP =

ε′/ε, so the bound above shows f has at most linear distortion, i.e., f
is a quasi-isometric embedding.

Finally, we verify the uniqueness of ĥ and its functorial properties.
Since (X,P) is visually complete, any x ∈ Cusp(X,P) is bounded dis-
tance to a quasi-centre for some a, b ∈ ∂∞(X,P) and o. By Lemma 3.14
any quasi-isometry Cusp(X,P) → Cusp(X ′,P ′) which sends a, b to
h(a), h(b) must coarsely send a quasi-centre for a, b, o to a quasi-centre

for h(a), h(b), o′; in other words, f̂(x) is uniquely defined up to bounded
(Cusp(X ′,P ′)) distance. Since X ′ ⊂ Cusp(X ′,P ′) is uniformly em-

bedded, this means that ĥ = f̂ |X is uniquely defined up to bounded
distance too.

Likewise, if j : ∂∞(X ′,P ′)→ ∂∞(X ′′,P ′′) is another shadow-respecting
quasisymmetric embedding, then by this same uniqueness argument

ĵ ◦ h and ĵ ◦ ĥ are at bounded distance from each other. Finally, for
id : ∂∞(X,P) → ∂∞(X,P), by uniqueness again, îd and idX are at
bounded distance from each other. �
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