On the average least negative Hecke eigenvalue

Jackie Voros

University of Bristol 35th Automorphic Forms Workshop

May 2023

Jackie Voros	(University of Bristol)	
--------------	-------------------------	--

→ ∃ →

Definition

An integer a is a quadratic residue modulo p if there exists some integer x such that $x^2 \equiv a \pmod{p}$.

Definition

An integer a is a quadratic residue modulo p if there exists some integer x such that $x^2 \equiv a \pmod{p}$.

Definition

The Legendre symbol is defined as follows. For an odd prime p and an integer a,

$$\left(\frac{a}{p}\right) = \begin{cases} 1, \text{ if } a \text{ is a quadratic residue,} \\ -1, \text{ if } a \text{ is a quadratic non-residue,} \\ 0, \text{ if } a \text{ is a multiple of p.} \end{cases}$$

 $\left(\frac{\cdot}{p}\right)$

 $\left(\frac{\cdot}{p}\right)$

• It is totally multiplicative

	Jackie Voros (University of Bristol)	Average negative Hecke eigenvalue	May 2023	3/16
--	--------------------------------------	-----------------------------------	----------	------

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣○

 $\left(\frac{\cdot}{p}\right)$

- It is totally multiplicative
- It has period p

Image: A matched by the second sec

→ ∃ →

$$\left(\frac{\cdot}{p}\right)$$

- It is totally multiplicative
- It has period p
- It obeys the law of quadratic reciprocity

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

∃ →

$$\left(\frac{\cdot}{p}\right)$$

- It is totally multiplicative
- It has period p
- It obeys the law of quadratic reciprocity

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Trivially, 0 and 1 will always be quadratic residues.

Question For each prime p, when is $\left(\frac{\cdot}{p}\right)$ first negative? Jackie Voros (University of Bristol) Average negative Hecke eigenvalue May 2023 3/16

< 4 (月) ▶ < (日)

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

• (Gauss, 1801) If $p\equiv 1 \pmod{8}$ then $n_2(p) < 2\sqrt{p}+1$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

• (Gauss, 1801) If $p\equiv 1 \pmod{8}$ then $n_2(p) < 2\sqrt{p}+1$

• (Vinogradov, 1917) $n_2(p) \ll \sqrt{p} \text{log} p$, improved to $\ll p^{1/2\sqrt{e}} \log^2 p$

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

- (Gauss, 1801) If $p \equiv 1 \pmod{8}$ then $n_2(p) < 2\sqrt{p} + 1$
- (Vinogradov, 1917) $n_2(p) \ll \sqrt{p} \mathrm{log} p$, improved to $\ll p^{1/2\sqrt{e}} \log^2 p$
- (Burgess, 1957) $n_2(p) \ll_{\varepsilon} p^{(1/4\sqrt{e})+\varepsilon}$

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

- (Gauss, 1801) If $p \equiv 1 \pmod{8}$ then $n_2(p) < 2\sqrt{p} + 1$
- (Vinogradov, 1917) $n_2(p) \ll \sqrt{p} \mathrm{log} p$, improved to $\ll p^{1/2\sqrt{e}} \log^2 p$
- (Burgess, 1957) $n_2(p) \ll_{\varepsilon} p^{(1/4\sqrt{e})+\varepsilon}$
- (Linnik, 1942) Conversely, $\#\{p \le x : n_2(p) > x^{\varepsilon}\} \ll_{\varepsilon} 1$ for all x

Question

What is an upper bound on $n_2(p)$ on [1, p-1] for large p?

- (Gauss, 1801) If $p \equiv 1 \pmod{8}$ then $n_2(p) < 2\sqrt{p} + 1$
- (Vinogradov, 1917) $n_2(p) \ll \sqrt{p} \log p$, improved to $\ll p^{1/2\sqrt{e}} \log^2 p$
- (Burgess, 1957) $n_2(p) \ll_{\varepsilon} p^{(1/4\sqrt{e})+\varepsilon}$
- (Linnik, 1942) Conversely, $\#\{p \le x : n_2(p) > x^{\varepsilon}\} \ll_{\varepsilon} 1$ for all x

Consider instead the average case behaviour.

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

э

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

First, we note that $n_2(p)$ must be prime.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

First, we note that $n_2(p)$ must be prime.

We know there are (p+1)/2 residues (including 0) and (p-1)/2 non-residues.

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

First, we note that $n_2(p)$ must be prime.

We know there are (p+1)/2 residues (including 0) and (p-1)/2 non-residues.

Let us assume any prime in [1,p-1] independently has 50-50 chance of being a quadratic residue.

(人間) トイヨト イヨト ニヨ

5/16

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

First, we note that $n_2(p)$ must be prime.

We know there are (p+1)/2 residues (including 0) and (p-1)/2non-residues.

Let us assume any prime in [1,p-1] independently has 50-50 chance of being a quadratic residue.

Then $n_2(p) = p_k$ with probability 2^{-k} where p_k denotes the k^{th} prime.

Question

What is the average value for $n_2(p)$ for any prime? Or, what is,

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)?$$

First, we note that $n_2(p)$ must be prime.

We know there are (p+1)/2 residues (including 0) and (p-1)/2 non-residues.

Let us assume any prime in [1,p-1] independently has 50-50 chance of being a quadratic residue.

Then $n_2(p) = p_k$ with probability 2^{-k} where p_k denotes the k^{th} prime. So on average we should have,

$$\sum_{k=1}^{\infty} p_k 2^{-k}.$$

Erdős's Theorem

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

イロト イボト イヨト イヨト

э

Erdős's Theorem

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

The two main steps to his proof are:

Jackie Voros (University of Bristol)	Average negative Hecke eigenvalue	May 2023	6/16
--------------------------------------	-----------------------------------	----------	------

◆ロト ◆御 と ◆ ヨ と ◆ ヨ と ○ ヨ

Erdős's Theorem

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

The two main steps to his proof are:

() He uses quadratic reciprocity to deal with fixed x

→ ∃ →

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

The two main steps to his proof are:

- **(**) He uses quadratic reciprocity to deal with fixed x
- He uses Linnik's ideas of the large sieve to show n₂(p) does not get too large.

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

The two main steps to his proof are:

- **(**) He uses quadratic reciprocity to deal with fixed x
- He uses Linnik's ideas of the large sieve to show n₂(p) does not get too large.

This result is finite, equalling approximately 3.6746...

Theorem (Erdős, 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{k=1}^{\infty}\frac{p_k}{2^k}.$$

The two main steps to his proof are:

- **(**) He uses quadratic reciprocity to deal with fixed x
- He uses Linnik's ideas of the large sieve to show n₂(p) does not get too large.

This result is finite, equalling approximately 3.6746...

This result has been extended in many directions such as modulo general m, for k^{th} powers modulo p, for general Dirichlet character, etc.

Jackie Voros (University of Bristol)	Average negative Hecke eigenvalue	May 2023	7/16
--------------------------------------	-----------------------------------	----------	------

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

It turns out there is an analgous problem concerning Hecke eigenvalues.

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_k(\Gamma_0(N))$, which we denote as $S_k(N)$. Then f has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \quad a_n \in \mathbb{C}.$$

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_k(\Gamma_0(N))$, which we denote as $S_k(N)$. Then f has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \quad a_n \in \mathbb{C}.$$

 $S_k(N)$ splits into two orthogonal subgroups w.r.t. the Petersson inner product,

$$S_k(N) = S_k^{\mathsf{new}}(N) \oplus S_k^{\mathsf{old}}(N).$$

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_k(\Gamma_0(N))$, which we denote as $S_k(N)$. Then f has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \quad a_n \in \mathbb{C}.$$

 $S_k(N)$ splits into two orthogonal subgroups w.r.t. the Petersson inner product,

$$S_k(N) = S_k^{\mathsf{new}}(N) \oplus S_k^{\mathsf{old}}(N).$$

Then $f \in S_k^{\text{new}}(N)$ is a **newform** if it is normalised and a Hecke eigenform. The space of newforms is finitely generated. We denote a finite generating set as $\mathbf{H}_k^*(\mathbf{N})$.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

(日)

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

• $\lambda_f(n)$ are eigenvalues for the Hecke operator T_n

イロト 不得 トイヨト イヨト

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

λ_f(n) are eigenvalues for the Hecke operator T_n
λ_f(n) is multiplicative

(日)

э

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

- $\lambda_f(n)$ are eigenvalues for the Hecke operator T_n
- $\lambda_f(n)$ is multiplicative
- $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$

Newforms

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

- $\lambda_f(n)$ are eigenvalues for the Hecke operator T_n
- $\lambda_f(n)$ is multiplicative
- $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$
- $|\lambda_f(n)| \leq \tau(n)$, the divisor function

Newforms

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

- $\lambda_f(n)$ are eigenvalues for the Hecke operator T_n
- $\lambda_f(n)$ is multiplicative
- $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$
- $|\lambda_f(n)| \leq \tau(n)$, the divisor function
 - For prime *p*, we have $|\lambda_f(p)| \leq 2$

Newforms

A newform $f \in H_k^*(N)$ has the Fourier expansion,

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(nz) = e^{2\pi i n z}.$$

- $\lambda_f(n)$ are eigenvalues for the Hecke operator T_n
- $\lambda_f(n)$ is multiplicative
- $\lambda_f(p)^2 = 1 + \lambda_f(p^2)$
- $|\lambda_f(n)| \leq \tau(n)$, the divisor function
 - For prime p, we have $|\lambda_f(p)| \leq 2$

So we may associate an angle $\theta_f(p) \in [0, \pi]$ such that,

$$\lambda_f(p) = 2\cos(\theta_f(p))$$

Analogous question

Let $f \in H_k^*(N)$, and $\lambda_f(n)$ be the n^{th} Fourier coefficient of f.

Question

When on average is the first sign change of $\lambda_f(p)$ for prime $p, p \nmid N$?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let $f \in H_k^*(N)$, and $\lambda_f(n)$ be the n^{th} Fourier coefficient of f.

Question

When on average is the first sign change of $\lambda_f(p)$ for prime $p, p \nmid N$?

Let p_f denote the first prime such that $\lambda_f(p_f) < 0$.

Theorem (V. soon)

Let N be prime, and $k \ge 2$ be even and fixed. Then,

$$\lim_{N\to\infty}\frac{1}{|H_k^*(N)|}\sum_{f\in H_k^*(N)}p_f=\sum_{i=1}^\infty\frac{p_i}{2^i}$$

Where p_i denotes the i^{th} prime.

イロト イヨト イヨト 一座

Let n_f be the least integer such that $\lambda_f(n_f) < 0$.

イロト イポト イヨト イヨト

э

Let n_f be the least integer such that $\lambda_f(n_f) < 0$. Current results on n_f in terms of the conductor $Q = k^2 N$.

• (Standard methods) The signs of $\lambda_f(n)$ change infinitely often

Let n_f be the least integer such that $\lambda_f(n_f) < 0$. Current results on n_f in terms of the conductor $Q = k^2 N$.

- (Standard methods) The signs of $\lambda_f(n)$ change infinitely often
- (Kohnen and Sengupta, 2006) $n_f \ll kN \exp\left(c\sqrt{\log N}/\log\log 3N\right)\log^{27}k$
- (Iwaniec, Kohnen and Sengupta, 2007) $n_f \ll Q^{29/60}$
- (Kowalski, Lau, Sound., Wu 2010) $n_f \ll Q^{9/20}$
- (Matomaki, 2012) $n_f \ll Q^{3/8}$

Evidence

Recall
$$\lambda_f(p) = 2\cos(heta_f(p))$$
 for some $heta_f(p) \in [0,\pi]$.

The Sato-Tate conjecture

For $f \in H_k^*(N)$, the associated $\theta_f(p)$ are equidistributed with respect to the Sato-Tate measure,

$$\mu_{ST} = \frac{2}{\pi} \sin^2 \theta \mathrm{d}\theta.$$

Proved 2011, Barnet-Lamb, Geraghty, Harris, Taylor, ...

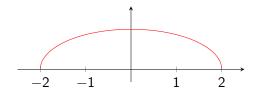


Figure: Distribution of $\lambda_f(p)$

			= 79404
Jackie Voros (University of Bristol)	Average negative Hecke eigenvalue	May 2023	11 / 16

Theorem (V. soon)

Let N be prime, and $k \ge 2$ be even and fixed. Then,

$$\lim_{N \to \infty} \frac{1}{|H_k^*(N)|} \sum_{f \in H_k^*(N)} p_f = \sum_{i=1}^{\infty} \frac{p_i}{2^i}$$

Where p_i denotes the i^{th} prime.

Theorem (V. soon)

Let N be prime, and $k \ge 2$ be even and fixed. Then,

$$\lim_{N\to\infty}\frac{1}{|H_k^*(N)|}\sum_{f\in H_k^*(N)}p_f=\sum_{i=1}^{\infty}\frac{p_i}{2^i}$$

Where p_i denotes the i^{th} prime.

Split the sum into two parts,

$$\sum_{\substack{f\in H_k^*(N)\\p_f\leq z}}p_f=\sum_{\substack{f\in H_k^*(N)\\p_f>z}}p_f+\sum_{\substack{f\in H_k^*(N)\\p_f>z}}p_f.$$

 $z = c\sqrt{(\log kN)(\log \log kN)}.$

Recall $\lambda_f(p) = 2\cos(\theta_f(p))$ for some $\theta_f(p) \in [0, \pi]$. For the first sum we use the Sato-Tate distribution of the $\theta_f(p)$.

イロト 不得 トイヨト イヨト

э

Recall $\lambda_f(p) = 2\cos(\theta_f(p))$ for some $\theta_f(p) \in [0, \pi]$. For the first sum we use the Sato-Tate distribution of the $\theta_f(p)$. The *z*-product of Chebyshev functions,

$$X_n(heta) = rac{\sin((n+1) heta)}{\sin heta} \quad heta \in [0,\pi].$$

form an orthnoromal basis of $L^2([0, \pi]^z, \mu_{ST}^{\otimes z})$.

Recall $\lambda_f(p) = 2\cos(\theta_f(p))$ for some $\theta_f(p) \in [0, \pi]$. For the first sum we use the Sato-Tate distribution of the $\theta_f(p)$. The *z*-product of Chebyshev functions,

$$X_n(heta) = rac{\sin((n+1) heta)}{\sin heta} \quad heta \in [0,\pi].$$

form an orthnoromal basis of $L^2([0, \pi]^z, \mu_{ST}^{\otimes z})$. By Hecke multiplicity,

$$\prod_{\substack{p \leq z \\ (p,N)=1}} X_{n_p}(\theta_f(p)) = \lambda_f \Big(\prod_{\substack{p \leq z \\ (p,N)=1}} p^{n_p}\Big).$$

イロト 不得 トイラト イラト 二日

Recall $\lambda_f(p) = 2\cos(\theta_f(p))$ for some $\theta_f(p) \in [0, \pi]$. For the first sum we use the Sato-Tate distribution of the $\theta_f(p)$. The *z*-product of Chebyshev functions,

$$X_n(heta) = rac{\sin((n+1) heta)}{\sin heta} \quad heta \in [0,\pi].$$

form an orthnoromal basis of $L^2([0,\pi]^z,\mu_{ST}^{\otimes z})$. By Hecke multiplicity,

$$\prod_{\substack{p \leq z \\ p,N \rangle = 1}} X_{n_p}(\theta_f(p)) = \lambda_f \Big(\prod_{\substack{p \leq z \\ (p,N) = 1}} p^{n_p} \Big).$$

Then we can show,

$$\sum_{f \in H_k^*(N)} \omega_f \prod_{\substack{p \leq z \\ (p,N)=1}} Y_p(\theta_f(p)) = 0 + \text{error.}$$

Where ω_f is a suitable weight, $Y_p(\theta) = \sum_{j=1}^s y_p(j) X_j(\theta)$.

This means we can say,

$$\frac{|f \in H_k^*(N) : \lambda_f(p) \ge 0, p \le z, p \nmid N|}{|H_k^*(N)|} \to \left(\frac{1}{2}\right)^{\omega(z)} \quad k, N \to \infty.$$

For finite z, where $\omega(z) = \#\{p \text{ prime} : p \leq z, p \nmid N\}.$

Jackie Voros (University of Bristol) Average negative Hecke eigenvalue	May 2023	14 / 16
--	----------	---------

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

This means we can say,

$$\frac{|f \in H_k^*(N) : \lambda_f(p) \ge 0, p \le z, p \nmid N|}{|H_k^*(N)|} \to \left(\frac{1}{2}\right)^{\omega(z)} \quad k, N \to \infty.$$

For finite z, where $\omega(z) = \#\{p \text{ prime} : p \leq z, p \nmid N\}.$

$$\sum_{\substack{f \in H_k^*(N) \\ p_f \leq z}} p_f = |H_k^*(N)| \sum_{i=1}^{\infty} \frac{p_i}{2^i} + o(|H_k^*(N)|),$$

provided z grows slow enough, hence the choice of z:

$$z = c\sqrt{(\log kN)(\log \log kN)}$$

Jackie Voros (University of Bristol)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

For the second sum we use several large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\{b_p\}_p$ a sequence of real numbers indexed by primes,

$$\sum_{f} \left| \sum_{P$$

uniformly for, $j \ge 1$, even k, $2 \le P < Q \le 2P$, $N \ge 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

For the second sum we use several large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\{b_p\}_p$ a sequence of real numbers indexed by primes,

$$\sum_{f} \left| \sum_{P$$

uniformly for, $j \ge 1$, even k, $2 \le P < Q \le 2P$, $N \ge 1$

Using this, one can show the set of newforms with $\varepsilon_p \lambda_f(p) > 0$, for (ε_p) a sequence of signs and $p \in [P, 2P]$, is negligible.

For the second sum we use several large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\{b_p\}_p$ a sequence of real numbers indexed by primes,

$$\sum_{f} \left| \sum_{P$$

uniformly for, $j \ge 1$, even k, $2 \le P < Q \le 2P$, $N \ge 1$

Using this, one can show the set of newforms with $\varepsilon_p \lambda_f(p) > 0$, for (ε_p) a sequence of signs and $p \in [P, 2P]$, is negligible. The requirement of prime N arises from the need to be flexible with the interval [P, 2P].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

For the second sum we use several large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\{b_p\}_p$ a sequence of real numbers indexed by primes,

$$\sum_{f} \left| \sum_{P$$

uniformly for, $j \ge 1$, even k, $2 \le P < Q \le 2P$, $N \ge 1$

Using this, one can show the set of newforms with $\varepsilon_p \lambda_f(p) > 0$, for (ε_p) a sequence of signs and $p \in [P, 2P]$, is negligible.

The requirement of prime N arises from the need to be flexible with the interval [P, 2P].

The dependence on k is from the bound $\langle f, f \rangle \ll_k N(\log N)^3$, used in a different large sieve variant.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

Thank you for listening! Any questions?

Jackie Voros (University of Bristol)	Average negative Hecke eigenvalue	May 2023	16 / 16
--------------------------------------	-----------------------------------	----------	---------

メロト メポト メヨト メヨト 二日