On the average least prime negative Hecke eigenvalue

Jackie Voros
University of Bristol
ArStAFANT
June 2023

Motivation

Definition

An integer a is a quadratic residue modulo p if there exists some integer x such that $x^{2} \equiv a(\bmod p)$.

Motivation

Definition

An integer a is a quadratic residue modulo p if there exists some integer x such that $x^{2} \equiv a(\bmod p)$.

Definition

The Legendre symbol is defined as follows. For an odd prime p and an integer a,

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{l}
1, \text { if } a \text { is a quadratic residue } \\
-1, \text { if } a \text { is a quadratic non-residue, } \\
0, \text { if } a \text { is a multiple of } \mathrm{p}
\end{array}\right.
$$

Motivation

$$
\left(\frac{\bar{\circ}}{}\right)
$$

Motivation

$$
\left(\frac{\cdot}{p}\right)
$$

- It is totally multiplicative

Motivation

$$
\left(\frac{\cdot}{p}\right)
$$

- It is totally multiplicative
- It has period p

Motivation

$$
\left(\frac{\cdot}{p}\right)
$$

- It is totally multiplicative
- It has period p
- It obeys the law of quadratic reciprocity

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Motivation

$$
\left(\frac{\cdot}{p}\right)
$$

- It is totally multiplicative
- It has period p
- It obeys the law of quadratic reciprocity

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

Trivially, 0 and 1 will always be quadratic residues.

Question

For each prime p, when is $(\dot{\bar{p}})$ first negative?

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Question

What is an upper bound on $n_{2}(p)$ on $[1, p-1]$ for large p ?

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Question

What is an upper bound on $n_{2}(p)$ on $[1, p-1]$ for large p ?

- (Burgess, 1957) $n_{2}(p) \ll_{\varepsilon} p^{(1 / 4 \sqrt{e})+\varepsilon}$

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Question

What is an upper bound on $n_{2}(p)$ on $[1, p-1]$ for large p ?

- (Burgess, 1957) $n_{2}(p) \ll_{\varepsilon} p^{(1 / 4 \sqrt{e})+\varepsilon}$
- (Linnik, 1942) Conversely, $\#\left\{p \leq x: n_{2}(p)>x^{\varepsilon}\right\}<_{\varepsilon} 1$ for all x

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Question

What is an upper bound on $n_{2}(p)$ on $[1, p-1]$ for large p ?

- (Burgess, 1957) $n_{2}(p) \ll_{\varepsilon} p^{(1 / 4 \sqrt{e})+\varepsilon}$
- (Linnik, 1942) Conversely, $\#\left\{p \leq x: n_{2}(p)>x^{\varepsilon}\right\} \nless_{\varepsilon} 1$ for all x Consider instead the average case behaviour.

Motivation

Let $n_{2}(p)$ denote the least integer n such that n is a quadratic non-residue modulo p. Or equivalently, the least n such that $\left(\frac{n}{p}\right)=-1$.

Question

What is an upper bound on $n_{2}(p)$ on $[1, p-1]$ for large p ?

- (Burgess, 1957) $n_{2}(p) \ll_{\varepsilon} p^{(1 / 4 \sqrt{e})+\varepsilon}$
- (Linnik, 1942) Conversely, $\#\left\{p \leq x: n_{2}(p)>x^{\varepsilon}\right\}<_{\varepsilon} 1$ for all x Consider instead the average case behaviour.

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

The two main steps to his proof are:

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

The two main steps to his proof are:
(1) He uses quadratic reciprocity to deal with fixed x

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

The two main steps to his proof are:
(1) He uses quadratic reciprocity to deal with fixed x
(2) He uses Linnik's ideas of the large sieve to show $n_{2}(p)$ does not get too large.

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}}
$$

The two main steps to his proof are:
(1) He uses quadratic reciprocity to deal with fixed x
(2) He uses Linnik's ideas of the large sieve to show $n_{2}(p)$ does not get too large.
This result is finite, equalling approximately $3.6746 \ldots$

Erdős's Theorem

Theorem (Erdős, 1961)

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{2}(p)=\sum_{k=1}^{\infty} \frac{p_{k}}{2^{k}} .
$$

The two main steps to his proof are:
(1) He uses quadratic reciprocity to deal with fixed x
(2) He uses Linnik's ideas of the large sieve to show $n_{2}(p)$ does not get too large.
This result is finite, equalling approximately $3.6746 \ldots$
This result has been extended in many directions such as modulo general m, for $k^{\text {th }}$ powers modulo p, for general Dirichlet character, etc.

Analogous problem

Analogous problem

It turns out there is an analgous problem concerning Hecke eigenvalues.

Analogous problem

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_{k}\left(\Gamma_{0}(N)\right)$, which we denote as $S_{k}(N)$. Then f has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \quad a_{n} \in \mathbb{C}
$$

Analogous problem

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_{k}\left(\Gamma_{0}(N)\right)$, which we denote as $S_{k}(N)$. Then f has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \quad a_{n} \in \mathbb{C}
$$

$S_{k}(N)$ splits into two orthogonal subgroups w.r.t. the Petersson inner product,

$$
S_{k}(N)=S_{k}^{\text {new }}(N) \oplus S_{k}^{\text {old }}(N)
$$

Analogous problem

It turns out there is an analgous problem concerning Hecke eigenvalues. Take $f \in S_{k}\left(\Gamma_{0}(N)\right)$, which we denote as $S_{k}(N)$. Then f has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \quad a_{n} \in \mathbb{C}
$$

$S_{k}(N)$ splits into two orthogonal subgroups w.r.t. the Petersson inner product,

$$
S_{k}(N)=S_{k}^{\text {new }}(N) \oplus S_{k}^{\text {old }}(N)
$$

Then $f \in S_{k}^{\text {new }}(N)$ is a newform if it is normalised and a Hecke eigenform. The space of newforms is finitely generated. We denote a finite generating set as $\mathbf{H}_{\mathbf{k}}^{*}(\mathbf{N})$.

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}
- $\lambda_{f}(n)$ is multiplicative

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}
- $\lambda_{f}(n)$ is multiplicative
- $\lambda_{f}(p)^{2}=1+\lambda_{f}\left(p^{2}\right)$

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}
- $\lambda_{f}(n)$ is multiplicative
- $\lambda_{f}(p)^{2}=1+\lambda_{f}\left(p^{2}\right)$
- $\left|\lambda_{f}(n)\right| \leq \tau(n)$, the divisor function

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}
- $\lambda_{f}(n)$ is multiplicative
- $\lambda_{f}(p)^{2}=1+\lambda_{f}\left(p^{2}\right)$
- $\left|\lambda_{f}(n)\right| \leq \tau(n)$, the divisor function
- For prime p, we have $\left|\lambda_{f}(p)\right| \leq 2$

Newforms

A newform $f \in H_{k}^{*}(N)$ has the Fourier expansion,

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e(n z), \quad e(n z)=e^{2 \pi i n z}
$$

- $\lambda_{f}(n)$ are eigenvalues for the Hecke operator T_{n}
- $\lambda_{f}(n)$ is multiplicative
- $\lambda_{f}(p)^{2}=1+\lambda_{f}\left(p^{2}\right)$
- $\left|\lambda_{f}(n)\right| \leq \tau(n)$, the divisor function
- For prime p, we have $\left|\lambda_{f}(p)\right| \leq 2$

So we may associate an angle $\theta_{f}(p) \in[0, \pi]$ such that,

$$
\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)
$$

Analogous question

Let $f \in H_{k}^{*}(N)$, and $\lambda_{f}(n)$ be the $n^{\text {th }}$ Fourier coefficeint of f.

Question

When on average is the first sign change of $\lambda_{f}(p)$ for prime $p, p \nmid N$?

Analogous question

Let $f \in H_{k}^{*}(N)$, and $\lambda_{f}(n)$ be the $n^{\text {th }}$ Fourier coefficeint of f.

Question

When on average is the first sign change of $\lambda_{f}(p)$ for prime $p, p \nmid N$?
Let p_{f} denote the first prime such that $\lambda_{f}\left(p_{f}\right)<0$.
Theorem (V. soon)
Let N be prime, and $k \geq 2$ be even and fixed. Then,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|H_{k}^{*}(N)\right|} \sum_{f \in H_{k}^{*}(N)} p_{f}=\sum_{i=1}^{\infty} \frac{p_{i}}{2^{i}}
$$

Where p_{i} denotes the $i^{\text {th }}$ prime.

Evidence

Let n_{f} be the least integer such that $\lambda_{f}\left(n_{f}\right)<0$.

Evidence

Let n_{f} be the least integer such that $\lambda_{f}\left(n_{f}\right)<0$. Current results on n_{f} in terms of the conductor $Q=k^{2} N$.

- (Standard methods) The signs of $\lambda_{f}(n)$ change infinitely often

Evidence

Let n_{f} be the least integer such that $\lambda_{f}\left(n_{f}\right)<0$.
Current results on n_{f} in terms of the conductor $Q=k^{2} N$.

- (Standard methods) The signs of $\lambda_{f}(n)$ change infinitely often
- (Kohnen and Sengupta, 2006) $n_{f} \ll k N \exp (c \sqrt{\log N / \log \log 3 N}) \log ^{27} k$
- (Iwaniec, Kohnen and Sengupta, 2007) $n_{f} \ll Q^{29 / 60}$
- (Kowalski, Lau, Sound., Wu 2010) $n_{f} \ll Q^{9 / 20}$
- (Matomaki, 2012) $n_{f} \ll Q^{3 / 8}$

Evidence

Recall $\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)$ for some $\theta_{f}(p) \in[0, \pi]$.
The Sato-Tate conjecture
For $f \in H_{k}^{*}(N)$, the associated $\theta_{f}(p)$ are equidistributed with respect to the Sato-Tate measure,

$$
\mu_{S T}=\frac{2}{\pi} \sin ^{2} \theta \mathrm{~d} \theta .
$$

Proved 2011, Barnet-Lamb, Geraghty, Harris, Taylor, ...

Figure: Distribution of $\lambda_{f}(p)$

Sketch proof

Theorem (V. soon)
Let N be prime, and $k \geq 2$ be even and fixed. Then,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|H_{k}^{*}(N)\right|} \sum_{f \in H_{k}^{*}(N)} p_{f}=\sum_{i=1}^{\infty} \frac{p_{i}}{2^{i}}
$$

Where p_{i} denotes the $i^{\text {th }}$ prime.

Sketch proof

Theorem (V. soon)
Let N be prime, and $k \geq 2$ be even and fixed. Then,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|H_{k}^{*}(N)\right|} \sum_{f \in H_{k}^{*}(N)} p_{f}=\sum_{i=1}^{\infty} \frac{p_{i}}{2^{i}}
$$

Where p_{i} denotes the $i^{\text {th }}$ prime.
Split the sum into two parts,

$$
\sum_{f \in H_{k}^{*}(N)} p_{f}=\sum_{\substack{f \in H_{k}^{*}(N) \\ p_{f} \leq z}} p_{f}+\sum_{\substack{f \in H_{k}^{*}(N) \\ p_{f}>z}} p_{f}
$$

$z=c \sqrt{(\log k N)(\log \log k N)}$.

Sketch proof

Recall $\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)$ for some $\theta_{f}(p) \in[0, \pi]$.
For the first sum we use the Sato-Tate distribution of the $\theta_{f}(p)$.

Sketch proof

Recall $\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)$ for some $\theta_{f}(p) \in[0, \pi]$.
For the first sum we use the Sato-Tate distribution of the $\theta_{f}(p)$. The z-product of Chebyshev functions,

$$
X_{n}(\theta)=\frac{\sin ((n+1) \theta)}{\sin \theta} \quad \theta \in[0, \pi]
$$

form an orthnoromal basis of $L^{2}\left([0, \pi]^{z}, \mu_{S T}^{\otimes z}\right)$.

Sketch proof

Recall $\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)$ for some $\theta_{f}(p) \in[0, \pi]$.
For the first sum we use the Sato-Tate distribution of the $\theta_{f}(p)$.
The z-product of Chebyshev functions,

$$
X_{n}(\theta)=\frac{\sin ((n+1) \theta)}{\sin \theta} \quad \theta \in[0, \pi]
$$

form an orthnoromal basis of $L^{2}\left([0, \pi]^{z}, \mu_{S T}^{\otimes z}\right)$. By Hecke multiplicity,

$$
\prod_{\substack{p \leq z \\(p, N)=1}} X_{n_{p}}\left(\theta_{f}(p)\right)=\lambda_{f}\left(\prod_{\substack{p \leq z \\(p, N)=1}} p^{n_{p}}\right) .
$$

Sketch proof

Recall $\lambda_{f}(p)=2 \cos \left(\theta_{f}(p)\right)$ for some $\theta_{f}(p) \in[0, \pi]$.
For the first sum we use the Sato-Tate distribution of the $\theta_{f}(p)$.
The z-product of Chebyshev functions,

$$
X_{n}(\theta)=\frac{\sin ((n+1) \theta)}{\sin \theta} \quad \theta \in[0, \pi]
$$

form an orthnoromal basis of $L^{2}\left([0, \pi]^{z}, \mu_{S T}^{\otimes z}\right)$. By Hecke multiplicity,

$$
\prod_{\substack{p \leq z \\(p, N)=1}} X_{n_{p}}\left(\theta_{f}(p)\right)=\lambda_{f}\left(\prod_{\substack{p \leq z \\(p, N)=1}} p^{n_{p}}\right) .
$$

Then we can show,

$$
\sum_{f \in H_{k}^{*}(N)} \omega_{f} \prod_{\substack{p \leq z \\(p, N)=1}} Y_{p}\left(\theta_{f}(p)\right)=0+\text { error }
$$

Where ω_{f} is a suitable weight, $Y_{p}(\theta)=\sum_{j=1}^{s} y_{p}(j) X_{j}(\theta)$.

Then for finite z,

$$
\frac{\left|f \in H_{k}^{*}(N): \varepsilon_{p} \lambda_{f}(p) \geq 0, p \leq z, p \nmid N\right|}{\left|H_{k}^{*}(N)\right|}=\frac{|A(z)|}{\left|H_{k}^{*}(N)\right|} \rightarrow \mu_{S T}([0, \pi / 2])^{\pi_{N}(z)}
$$

For $k, N \rightarrow \infty$, where $\pi_{N}(z)=\#\{p$ prime : $p \leq z, p \nmid N\},\left(\varepsilon_{p}\right)$ a sequence of signs indexed by primes.

Then for finite z,

$$
\frac{\left|f \in H_{k}^{*}(N): \varepsilon_{p} \lambda_{f}(p) \geq 0, p \leq z, p \nmid N\right|}{\left|H_{k}^{*}(N)\right|}=\frac{|A(z)|}{\left|H_{k}^{*}(N)\right|} \rightarrow \mu_{S T}([0, \pi / 2])^{\pi_{N}(z)}
$$

For $k, N \rightarrow \infty$, where $\pi_{N}(z)=\#\{p$ prime : $p \leq z, p \nmid N\},\left(\varepsilon_{p}\right)$ a sequence of signs indexed by primes.

$$
\begin{aligned}
\sum_{\substack{f \in H_{k}^{*}(N) \\
p_{f} \leq z}} p_{f} & =\sum_{p_{i} \leq z} p_{i}\left|A\left(p_{i}\right)\right| \\
& \leq\left|H_{k}^{*}(N)\right| \sum_{i=1}^{\infty} \frac{p_{i}}{2^{i}}+o\left(\left|H_{k}^{*}(N)\right|\right)
\end{aligned}
$$

provided z grows slow enough, hence the choice of z :

$$
z=c \sqrt{(\log k N)(\log \log k N)}
$$

Second sum

For the second sum we use large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\left\{b_{p}\right\}_{p}$ a sequence of real numbers indexed by primes with $\left|b_{p}\right| \leq B$, $B>0$.
$\sum_{f}\left|\sum_{P<p \leq Q} b_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j} \ll k \varphi(N)\left(\frac{384 B^{2} j}{P \log P}\right)^{j}+(k N)^{10 / 11}\left(\frac{10 B Q^{1 / 10}}{\log P}\right)^{2 j}$. uniformly for, $j \geq 1$, even $k, 2 \leq P<Q \leq 2 P, N \geq 1$

Second sum

For the second sum we use large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\left\{b_{p}\right\}_{p}$ a sequence of real numbers indexed by primes with $\left|b_{p}\right| \leq B$, $B>0$.
$\sum_{f}\left|\sum_{P<p \leq Q} b_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j} \ll k \varphi(N)\left(\frac{384 B^{2} j}{P \log P}\right)^{j}+(k N)^{10 / 11}\left(\frac{10 B Q^{1 / 10}}{\log P}\right)^{2 j}$. uniformly for, $j \geq 1$, even $k, 2 \leq P<Q \leq 2 P, N \geq 1$

Using this, one can show the set of newforms with $\varepsilon_{p} \lambda_{f}(p)>0$, for $\left(\varepsilon_{p}\right)$ a sequence of signs and $p \in[P, 2 P]$, is negligible.

Second sum

For the second sum we use large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\left\{b_{p}\right\}_{p}$ a sequence of real numbers indexed by primes with $\left|b_{p}\right| \leq B$, $B>0$.
$\sum_{f}\left|\sum_{P<p \leq Q} b_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j} \ll k \varphi(N)\left(\frac{384 B^{2} j}{P \log P}\right)^{j}+(k N)^{10 / 11}\left(\frac{10 B Q^{1 / 10}}{\log P}\right)^{2 j}$. uniformly for, $j \geq 1$, even $k, 2 \leq P<Q \leq 2 P, N \geq 1$

Using this, one can show the set of newforms with $\varepsilon_{p} \lambda_{f}(p)>0$, for $\left(\varepsilon_{p}\right)$ a sequence of signs and $p \in[P, 2 P]$, is negligible.
The requirement of prime N arises from the need to be flexible with the interval $[P, 2 P]$, as we want $P=z 2^{i}$ for $i=0,1, \ldots$

Second sum

For the second sum we use large sieve type inequalities.

One of the sieves (Lau, Wu) - simplified

For $\left\{b_{p}\right\}_{p}$ a sequence of real numbers indexed by primes with $\left|b_{p}\right| \leq B$, $B>0$.
$\sum_{f}\left|\sum_{P<p \leq Q} b_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j} \ll k \varphi(N)\left(\frac{384 B^{2} j}{P \log P}\right)^{j}+(k N)^{10 / 11}\left(\frac{10 B Q^{1 / 10}}{\log P}\right)^{2 j}$. uniformly for, $j \geq 1$, even $k, 2 \leq P<Q \leq 2 P, N \geq 1$

Using this, one can show the set of newforms with $\varepsilon_{p} \lambda_{f}(p)>0$, for $\left(\varepsilon_{p}\right)$ a sequence of signs and $p \in[P, 2 P]$, is negligible.
The requirement of prime N arises from the need to be flexible with the interval $[P, 2 P]$, as we want $P=z 2^{i}$ for $i=0,1, \ldots$
The dependence on k is from the bound $\langle f, f\rangle \ll_{k} N(\log N)^{3}$, used in a different large sieve variant.

Let $\mathcal{E}:=\left\{f \in H_{k}^{*}(N) \mid \varepsilon_{p} \lambda_{f}(p) \geq 0\right.$ for $\left.p \in(P \cap 2 P], p \nmid N\right\}$.

Let $\mathcal{E}:=\left\{f \in H_{k}^{*}(N) \mid \varepsilon_{p} \lambda_{f}(p) \geq 0\right.$ for $\left.p \in(P \cap 2 P], p \nmid N\right\}$. By Deligne's inequality,

$$
\sum_{f \in \mathcal{E}}\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}(p)^{2}}{p}\right|^{2 j} \leq \sum_{f \in H_{k}^{*}(N)}\left|\sum_{P<p \leq 2 P} 2 \varepsilon_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j}
$$

Let $\mathcal{E}:=\left\{f \in H_{k}^{*}(N) \mid \varepsilon_{p} \lambda_{f}(p) \geq 0\right.$ for $\left.p \in(P \cap 2 P], p \nmid N\right\}$. By Deligne's inequality,

$$
\sum_{f \in \mathcal{E}}\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}(p)^{2}}{p}\right|^{2 j} \leq \sum_{f \in H_{k}^{*}(N)}\left|\sum_{P<p \leq 2 P} 2 \varepsilon_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j}
$$

Apply the large sieve with $b_{p}=2 \varepsilon_{p}$ for $p \in(P, 2 P], p \nmid N$, and 0 otherwise.

$$
\ll k N\left(\frac{384 \times 4 \times j}{P \log P}\right)^{j}+(k N)^{10 / 11} P^{j / 2}
$$

Let $\mathcal{E}:=\left\{f \in H_{k}^{*}(N) \mid \varepsilon_{p} \lambda_{f}(p) \geq 0\right.$ for $\left.p \in(P \cap 2 P], p \nmid N\right\}$. By Deligne's inequality,

$$
\sum_{f \in \mathcal{E}}\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}(p)^{2}}{p}\right|^{2 j} \leq \sum_{f \in H_{k}^{*}(N)}\left|\sum_{P<p \leq 2 P} 2 \varepsilon_{p} \frac{\lambda_{f}(p)}{p}\right|^{2 j}
$$

Apply the large sieve with $b_{p}=2 \varepsilon_{p}$ for $p \in(P, 2 P], p \nmid N$, and 0 otherwise.

$$
\ll k N\left(\frac{384 \times 4 \times j}{P \log P}\right)^{j}+(k N)^{10 / 11} P^{j / 2}
$$

Using $\lambda_{f}(p)^{2}=1+\lambda_{f}\left(p^{2}\right)$,

$$
L H S \geq \sum_{f \in \mathcal{E}}\left(\sum_{P<p \leq 2 P} \frac{1}{p}-\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}\left(p^{2}\right)}{p}\right|\right)^{2 j}
$$

(Note: all sums over p have the condition $p \nmid N$)

Let $\mathcal{E}^{\prime}:=\left\{f \in H_{k}^{*}(N):\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}\left(p^{2}\right)}{p}\right| \geq \frac{\delta}{2 \log P}\right\}$, where δ is from $\sum_{a<p \leq 2 a} 1 / p \geq \delta / \log a$ via standard calculations.

Let $\mathcal{E}^{\prime}:=\left\{f \in H_{k}^{*}(N):\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}\left(p^{2}\right)}{p}\right| \geq \frac{\delta}{2 \log P}\right\}$, where δ is from $\sum_{a<p \leq 2 a} 1 / p \geq \delta / \log a$ via standard calculations. Then,

$$
L H S \geq \sum_{f \in \mathcal{E} \backslash \mathcal{E}^{\prime}}\left(\sum_{\substack{P<p \leq 2 P \\ p \nmid N}} \frac{1}{p}-\frac{\delta}{2 \log P}\right)^{2 j} .
$$

Let $\mathcal{E}^{\prime}:=\left\{f \in H_{k}^{*}(N):\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}\left(p^{2}\right)}{p}\right| \geq \frac{\delta}{2 \log P}\right\}$, where δ is from $\sum_{a<p \leq 2 a} 1 / p \geq \delta / \log a$ via standard calculations. Then,

$$
L H S \geq \sum_{f \in \mathcal{E} \backslash \mathcal{E}^{\prime}}\left(\sum_{\substack{P<p \leq 2 P \\ p \nmid N}} \frac{1}{p}-\frac{\delta}{2 \log P}\right)^{2 j}
$$

We bound the inner sum,

$$
\geq \sum_{P<p \leq 2 P} \frac{1}{p}-\sum_{\substack{P<p \leq 2 P \\ p \mid N}} \frac{1}{p}-\frac{\delta}{2 \log P} \geq \frac{\delta}{2 \log P}-\frac{\omega(N)}{P} \geq \frac{\delta-2}{2 \log P} .
$$

If N is prime.

Let $\mathcal{E}^{\prime}:=\left\{f \in H_{k}^{*}(N):\left|\sum_{P<p \leq 2 P} \frac{\lambda_{f}\left(p^{2}\right)}{p}\right| \geq \frac{\delta}{2 \log P}\right\}$, where δ is from $\sum_{a<p \leq 2 a} 1 / p \geq \delta / \log a$ via standard calculations. Then,

$$
L H S \geq \sum_{f \in \mathcal{E} \backslash \mathcal{E}^{\prime}}\left(\sum_{\substack{P<p \leq 2 P \\ p \nmid N}} \frac{1}{p}-\frac{\delta}{2 \log P}\right)^{2 j}
$$

We bound the inner sum,

$$
\geq \sum_{P<p \leq 2 P} \frac{1}{p}-\sum_{\substack{P<p \leq 2 P \\ p \mid N}} \frac{1}{p}-\frac{\delta}{2 \log P} \geq \frac{\delta}{2 \log P}-\frac{\omega(N)}{P} \geq \frac{\delta-2}{2 \log P} .
$$

If N is prime. So we have,

$$
\left|\mathcal{E} \backslash \mathcal{E}^{\prime}\right| \ll k N\left(\frac{1536 j \log P}{(\delta-2)^{2} P}\right)^{j}+(k N)^{10 / 11} P^{j}
$$

Thank you for listening! Any questions?

