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Introduction

Definition

An integer a is a quadratic residue modulo p if there exists some integer x
such that x2 ≡ a (mod p).

Euler’s Criterion

For p an odd prime and a an integer coprime to p we have,

a
p−1
2 ≡

{
1 (mod p) if a is a quadratic residue modulo p,

−1 (mod p) if a is a quadratic non-residue modulo p.

Trivially, 0 and 1 will always be quadratic residues.
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Introduction

Definition

The Legendre symbol is defined as follows. For an odd prime p and an
integer a,

(
a

p

)
=


1, if a is a quadratic residue,

−1, if a is a quadratic non-residue,

0, if a is a multiple of p.

It is totally multiplicative

It has period p

It obeys the law of quadratic reciprocity(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2
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History and motivation

Let n2(p) denote the least integer n such that n is a quadratic non-residue

modulo p. Or equivalently, the least n such that
(
n
p

)
= −1. By

convention we set n2(2) = 1.

Question

What is an upper bound on n2(p) on [1, p − 1] for large p?

(Gauss, 1801) If p ≡ 1 (mod 8) then n2(p) < 2
√
p + 1

(Vinogradoff, 1917) n2(p) ≪
√
plogp, improved to ≪ p1/2

√
e log2 p

(Burgess, 1957) n2(p) ≪ε p
(1/4

√
e)+ε

(Linnik, 1942) Conversely, #{p ≤ x : n2(p) > xε} ≪ε 1 for all x
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√
e)+ε

(Linnik, 1942) Conversely, #{p ≤ x : n2(p) > xε} ≪ε 1 for all x

This is a hard problem!
Easier problem: average case behaviour.
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Heuristic view

Easier question

What is the average value for n2(p) for any prime? Or, what is,

lim
x→∞

1

π(x)

∑
p≤x

n2(p)?

First, we note that n2(p) must be prime.
We know there are (p + 1)/2 residues (including 0) and (p − 1)/2
non-residues.
Let us assume any integer in [1,p-1] has a 50-50 chance of being a
quadratic residue.
Then n2(p) = pk with probability 2−k where pk denotes the kth prime.
So we should have,

∞∑
k=1

pk2
−k .
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Erdős’s Theorem

Theorem (Erdős, 1961)

lim
x→∞

1

π(x)

∑
p≤x

n2(p) =
∞∑
k=1

pk
2k

.

The two main steps to his proof are:

1 He uses quadratic reciprocity to deal with fixed x

2 He uses Linnik’s ideas of the large sieve to show n2(p) does not get
too large.
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pk
2k

.

The two main steps to his proof are:

1 He uses quadratic reciprocity to deal with fixed x

2 He uses Linnik’s ideas of the large sieve to show n2(p) does not get
too large.

This result is finite, equalling approximately 3.6746...
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Extensions

Erdős’s result has been extended in many directions.

For p ≡ 1 mod k , let nk(p) be the least integer that is not a kth power
modulo p. For other primes, nk(p) = 0.

Theorem (Elliot, 1967)

lim
x→∞

1

π(x)

∑
p≤x

nk(p) = Ck

Let g(p) denote the least primitive root modulo p.

Theorem (Burgess, Elliot, 1968)

1

π(x)

∑
p≤x

g(p) ≪ (log x)2(log log x)4.

This was sharpened by Elliot and Murata under GRH, and with an
additional hypothesis, shown to be finite.
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Extensions

For a positive integer m, let n2(m) be the least integer n relatively prime
to m that is a quadratic non-residue modulo m.

Theorem (Pollack, 2012)

lim
x→∞

1

x

∑
m≤x

n2(m) =
∞∑
k=1

pk − 1

p1 · ... · pk−1
.

For a non-principal Dirichlet character χ, let nχ denote the least integer n
such that χ(n) /∈ {0, 1}. Order them by fundamental discriminant, D, so(
D
·
)
is the associated Kronecker symbol.

Theorem (Pollack, 2012)

lim
x→∞

( ∑
|D|<x

1
)−1( ∑

|D|<x

n(D
· )

)
= Θ ≈ 4.9809...

This result was further extended to all non-principal characters.
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Analogous results

We can view the following problems as almost identical the problems we
have just seen.

Pollack, along with Martin, investigated the following.

The average least non-split prime in the quadratic field of conductor
p, where p is an odd prime.

▶ p splits in Q(
√
a) if and only if a is a quadratic residue modulo p.

The average least inert prime, taken over all quadratic fields and
ordered by discriminant.

The average least non-split prime taken over cyclic cubic extensions of
prime conductor.

The average least non-split prime taken over all cubic extensions of Q.
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Greg Martin and Paul Pollack. “The average least character non-residue
and further variations on a theme of Erdős” (2013)
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Modular forms

Our final variation on this theme involves Hecke eigenvalues.

A modular form is a function on the complex upper half plane satisfying
certain holomorphic and transformation conditions. The weight, k , and
the level, N, are associated integers of a modular form.

f (z)|kγ = (cz + d)−k f (γz), γ =

(
a b
c d

)
∈ SL2(Z), γz =

az + b

cz + d

Principal congruence subgroup

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod N

}
Congruence subgroup

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
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Modular forms

All modular forms necessarily admit a Fourier expansion,

f (z) =
∞∑
n=0

ane
2πinz , an ∈ C.

A cusp form is a modular form whose Fourier expansion has a0 = 0.
Sk(Γ0(N)) denotes the set of cusp forms of weight k and level N under
Γ0(N).

Sk(Γ0(N)) = Sold
k (Γ0(N))⊕ Snew

k (Γ0(N))

A Hecke operator is a linear operator, Tn for each n, that acts on modular
forms. An eigenform is a modular form that is an eigenvector for all Tn.
The eigenvalues are its Fourier coefficients.

Tn(f ) = anf
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Newforms

Then a newform is in Snew
k (Γ0(N)) and it is a cuspform, it is normalised

and it is a Hecke eigenform. It has Fourier expansion,

f (z) =
∞∑
n=1

λf (n)n
(k−1)/2e(nz), e(nz) = e2πinz .

λf (n) is multiplicative

λf (p)
2 = 1 + λf (p

2)

|λf (n)| ≤ τ(n), the divisor function
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Possible analogous result?

Question

When is the first sign change in λf (p) for prime p?

We have the following result. Let (εp) be a sequence of signs.

Theorem (Kowalski, Lau, Soundararajan, Wu, 2010)

Let N = Γ0(N). For any ε > 0, ε < 1/2, there exists c > 0 such that,

1

|Snew
k (N)|

|{f ∈ Snew
k (N) : λf (p) has sign εp for p ≤ z}| ≥

(
1

2
− ε

)π(z)

.

For z = c
√

(log kN)(log log kN), for kN large enough.
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Thank you for listening!
Any questions?

Jackie Voros (University of Bristol) Average least quadratic non-residue June 2022 14 / 14


