Newform congruences of local origin

Presented by Jackie Voros

25th January 2023

Presented	by J	ackie '	Voros
-----------	------	---------	-------

Newform congruences of local origin

A B A A B A 25th January 2023

< 行

Consider the discriminant function

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} \qquad q = e^{2\pi i z}$$

Presented by Jackie Voros	Newform congruences of local origin	25th January 2023	2/10
	4	· [] · · · 문 · · 문 · · 문	*) Q (*

Consider the discriminant function

$$\begin{split} \Delta(z) &= q \prod_{n \ge 1} (1 - q^n)^{24} \qquad q = e^{2\pi i z} \\ &= \sum_{n \ge 1} \tau(n) q^n \\ &= q - 24q^2 + 252q^3 - 1472q^4 + \dots \end{split}$$

イロト イポト イヨト イヨト

э

Consider the discriminant function

$$\begin{split} \Delta(z) &= q \prod_{n \ge 1} (1 - q^n)^{24} \qquad q = e^{2\pi i z} \\ &= \sum_{n \ge 1} \tau(n) q^n \\ &= q - 24q^2 + 252q^3 - 1472q^4 + \dots \end{split}$$

 Δ is a weight 12 cusp form. That is, it is a weight 12 modular form with no constant term.

$$\Delta(z) \in S_{12}(SL_2(\mathbb{Z}))$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$\Delta(z) = \sum_{n \ge 1} \tau(n)q^n = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

Presented by Jackie Voros	Newform congruences of local origin	25th	Janua	ry 2023		3 / 10
	4		비 문 💌	지 문 전	- 20	*) Q (*

$$\Delta(z) = \sum_{n \ge 1} \tau(n)q^n = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

Compare the coefficients $\tau(n)$ with $\sigma_{11}(n) = \sum_{d|n} d^{11}$.

$$\Delta(z) = \sum_{n \ge 1} \tau(n)q^n = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

Compare the coefficients $\tau(n)$ with $\sigma_{11}(n) = \sum_{d|n} d^{11}$.

n	1	2	3	4	5	6
au(n)	1	-24	252	-1472	4830	-6048
$\sigma_{11}(n)$	1	2049	177148	4196353	48828126	362976252

イロト 不得 トイヨト イヨト

3

$$\Delta(z) = \sum_{n \ge 1} \tau(n)q^n = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

Compare the coefficients $\tau(n)$ with $\sigma_{11}(n) = \sum_{d|n} d^{11}$.

n	1	2	3	4	5	6
au(n)	1	-24	252	-1472	4830	-6048
$\sigma_{11}(n)$	1	2049	177148	4196353	48828126	362976252
$ au(n) \mod 691$	1	667	252	601	684	171
$\sigma_{11}(n) \mod 691$	1	667	252	601	684	171

Ramanujan congruence

Normalised weight k Eisenstein series are of the form

$$E_k(z) = \frac{B_k}{2k} + \sum_{n \ge 1} \sigma_{k-1} q^n$$

Presented by Jackie Voros	Newform congruences of local origin	25th January 2023	4 / 10
	4	· · · (레) · · · 코 · · · 코 · · · 코 ·	*) Q (*

Normalised weight k Eisenstein series are of the form

$$E_k(z) = \frac{B_k}{2k} + \sum_{n \ge 1} \sigma_{k-1} q^n$$

And we have that $691|B_{12}$, so if we consider $E_{12} \mod 691$, the constant term vanishes hence E_{12} is a cusp form mod 691.

< □ > < □ > < □ > < □ > < □ > < □ >

Normalised weight k Eisenstein series are of the form

$$E_k(z) = \frac{B_k}{2k} + \sum_{n \ge 1} \sigma_{k-1} q^n$$

And we have that $691|B_{12}$, so if we consider $E_{12} \mod 691$, the constant term vanishes hence E_{12} is a cusp form mod 691. By the dimension formula, there is only one cusp form of weight 12. So E_{12} and Δ are the same cusp form modulo 691

$$E_{12} \equiv \Delta \pmod{691}$$

as q-expansions.

• There exists $[a] \in Cl(\mathbb{Q}(\zeta_{691}))[691]$ with

$$\sigma \cdot [a] = \chi_{691}(\sigma)^{-11}[a]$$
 for all $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$

Where $\chi_{691} : Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to F^*_{691}$ is the mod 691 cyclotomic character.

< □ > < □ > < □ > < □ > < □ > < □ >

• There exists $[a] \in Cl(\mathbb{Q}(\zeta_{691}))[691]$ with

$$\sigma \cdot [a] = \chi_{691}(\sigma)^{-11}[a]$$
 for all $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$

Where $\chi_{691} : Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to F_{691}^*$ is the mod 691 cyclotomic character.

• Other Eisenstein series congruences prove the Herbrand-Ribet theorem

 $\operatorname{ord}_p(B_k) > 0 \iff \exists \text{ element in } \chi_p^{1-k} \text{ eigenspace of } Cl(\mathbb{Q}(\zeta_p))[p].$

イロト 不得 トイヨト イヨト

- How do we find the congruences? (Can we find conditions on primes to find congruences?)
- Can this be generalised for higher levels and non-trivial character?
- Does anything change if the modular forms are newforms?

- How do we find the congruences? (Can we find conditions on primes to find congruences?)
- Can this be generalised for higher levels and non-trivial character?
- Does anything change if the modular forms are newforms?

Yes, all these questions are answered.

Now we look at modular forms of weight k and level N with Dirichlet character $\chi:(\mathbb{Z}/N\mathbb{Z})^\times\to\mathbb{C}^\times$

 $M_k(\Gamma_0(N),\chi)$

where,

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}$$

イロト イポト イヨト イヨト

э

Now we look at modular forms of weight k and level N with Dirichlet character $\chi:(\mathbb{Z}/N\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$

 $M_k(\Gamma_0(N),\chi)$

where,

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\}$$

And further we consider newforms

- They are 'new' at level N (cannot be mapped to by a lower level modular form)
- Normalised $f = \sum_{n \ge 0} a_n(f)q^n$, $a_1(f) = 1$
- Eigenforms eigenvectors for all Hecke operators T_p with $p \nmid N$

Then for Dirichlet characters ψ , φ with $\psi \varphi = \chi$ we have generalised Eisenstein series of weight k and level N, where N is the conductor of χ .

$$E_k^{\psi,\varphi}(z) = \frac{1}{2}\delta(\psi)L(1-k,\psi^{-1}\varphi) + \sum_{n=1}^{\infty}\sigma_{k-1}^{\psi,\varphi}(n)q^n$$

With generalised power divisor series

$$\sigma_{k-1}^{\psi,\varphi}(n) = \sum_{d|n,d>0} \psi(n/d)\varphi(d)d^{k-1}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Then for Dirichlet characters ψ , φ with $\psi \varphi = \chi$ we have generalised Eisenstein series of weight k and level N, where N is the conductor of χ .

$$E_k^{\psi,\varphi}(z) = \frac{1}{2}\delta(\psi)L(1-k,\psi^{-1}\varphi) + \sum_{n=1}^{\infty}\sigma_{k-1}^{\psi,\varphi}(n)q^n$$

With generalised power divisor series

$$\sigma_{k-1}^{\psi,\varphi}(n) = \sum_{d \mid n,d > 0} \psi(n/d)\varphi(d)d^{k-1}$$

We say the generlised Eisenstein series is new at level \boldsymbol{N} if

conductor of $\psi \times \text{ conductor of } \varphi = N$

・ロン ・雪と ・ヨン・

Theorem (??)

Let $E_k^{\psi,\varphi}$ be new at level N with N square-free. Let p be a prime such that (N,p) = 1 and let $\overline{\chi}$ be the lift of $\chi = \psi\varphi$ to modulus pN. Let l > k + 1, $l \nmid 6pN$ be a prime of $\mathbb{Z}[\psi,\varphi]$ and let λ be a prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\varphi)$ generated by the Fourier coefficients of f.

(4) (日本)

Theorem (??)

Let $E_k^{\psi,\varphi}$ be new at level N with N square-free. Let p be a prime such that (N,p) = 1 and let $\overline{\chi}$ be the lift of $\chi = \psi\varphi$ to modulus pN. Let l > k + 1, $l \nmid 6pN$ be a prime of $\mathbb{Z}[\psi,\varphi]$ and let λ be a prime above l in the ring of integers of the extension of $\mathbb{Q}(\psi,\varphi)$ generated by the Fourier coefficients of f.

There exists a newform $f \in S_k(\Gamma_0(Np), \overline{\chi})$ with

$$a_q(f) \equiv a_q(E_k^{\psi,\varphi}) \pmod{\lambda}$$

for all primes $q \nmid pNl$ if and only if

•
$$\operatorname{ord}_l(L(1-k,\psi^{-1}\varphi)(\psi(p)-\varphi(p)p^k)) > 0$$

• $l|(\psi(p) - \varphi(p)^k)(\psi(p) - \varphi(p)p^{k-2})$

9/10

Thank you for listening

Presented by Jackie Voros	Presented	l by Ja	ckie V	oros
---------------------------	-----------	---------	--------	------

Newform congruences of local origin

25th January 2023

< □ > < 同 > < 回 > < 回 > < 回 >

э