On the average least negative Hecke eigenvalue

Jackie Voros

University of Bristol PIMS Collaborative Research Group

November 2024

We use the following notation

 $M_k(N)$ Modular forms of weight k level N

We use the following notation

 $M_k(N)$ Modular forms of weight k level N $S_k(N)$ Cuspforms of weight k level N

$M_k(N)$	Modular forms of weight k level N
$S_k(N)$	Cuspforms of weight k level N
$S_k^{\text{new}}(N)$	Primitive forms of weight k level N

Modular forms of weight k level N
Cuspforms of weight k level N
Primitive forms of weight k level N
Newforms of weight k and level N

$M_k(N)$	Modular forms of weight k level N
$S_k(N)$	Cuspforms of weight k level N
$S_k^{\text{new}}(N)$	Primitive forms of weight k level N
$H_k^*(N)$	Newforms of weight k and level N
$T_n = T_n(N, k)$	n^{th} Hecke operator acting on $S_k^{\text{new}}(N)$

We use the following notation

$M_k(N)$	Modular forms of weight k level N
$S_k(N)$	Cuspforms of weight k level N
$S_k^{\text{new}}(N)$	Primitive forms of weight k level N
$H_k^*(N)$	Newforms of weight k and level N
$T_n = T_n(N, k)$	n^{th} Hecke operator acting on $S_k^{\text{new}}(N)$

 $f \in H_k^*(N)$ is a primitive, holomorphic Hecke eigenform:

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz), \quad e(z) = e^{2\pi i z}, \ \lambda_f(1) = 1$$

That is, for all $n \ge 1$,

$$n^{-(k-1)/2}T_nf=\lambda_f(n)f$$

Theorem (Knopp, Kohnen, Pribitkin 2003)

 $\lambda_f(n)$ changes sign infinitely often.

Theorem (Knopp, Kohnen, Pribitkin 2003)

 $\lambda_f(n)$ changes sign infinitely often.

- ightharpoonup L(s, f) is entire, Landau's lemma
- Rankin-Selberg theory

Theorem (Knopp, Kohnen, Pribitkin 2003)

 $\lambda_f(n)$ changes sign infinitely often.

- ightharpoonup L(s, f) is entire, Landau's lemma
- Rankin-Selberg theory

Theorem (Kowalski, Lau, Sound., Wu 2011; Matomäki 2012)

The signs of the $\lambda_f(n)$ uniquely determine the eigenform.

Theorem (Knopp, Kohnen, Pribitkin 2003)

 $\lambda_f(n)$ changes sign infinitely often.

- ightharpoonup L(s, f) is entire, Landau's lemma
- Rankin-Selberg theory

Theorem (Kowalski, Lau, Sound., Wu 2011; Matomäki 2012)

The signs of the $\lambda_f(n)$ uniquely determine the eigenform.

▶ If $\lambda_{f_1}(p)\lambda_{f_2}(p) > 0 \ \forall \ p \in \mathcal{P} \setminus \mathcal{E}$, \mathcal{E} any subset of primes with analytic density $\leq 6/25$, then $f_1 = f_2$.

Theorem (Matomäki 2012, following KSIKLSW...)

Let n_f denote the least n such that $\lambda_f(n) < 0$. Then,

$$n_f \ll Q^{3/8}$$

$$(Q=k^2N)$$

Theorem (Matomäki 2012, following KSIKLSW...)

Let n_f denote the least n such that $\lambda_f(n) < 0$. Then,

$$n_f \ll Q^{3/8}$$

$$(Q=k^2N)$$

$$\sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n) \ll Q^{1/4+\varepsilon} x^{1/2+\varepsilon}$$

Theorem (Matomäki 2012, following KSIKLSW...)

Let n_f denote the least n such that $\lambda_f(n) < 0$. Then,

$$n_f \ll Q^{3/8}$$

$$(Q=k^2N)$$

$$\sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n) \ll Q^{1/4+\varepsilon} x^{1/2+\varepsilon}$$

▶ If $\lambda_f(n) > 0$ for $n \le y$, one can construct a contradiction if y is too large.

If we assume GRH then,

$$n_f \ll (\log Q)^2$$
.

If we assume GRH then,

$$n_f \ll (\log Q)^2$$
.

There are similarities with Dirichlet characters χ mod q, in particular, when $\chi=\left(\frac{\cdot}{p}\right)$ the Legendre symbol.

If we assume GRH then,

$$n_f \ll (\log Q)^2$$
.

There are similarities with Dirichlet characters χ mod q, in particular, when $\chi = \left(\frac{\cdot}{p}\right)$ the Legendre symbol. Let $n_2(p)$ be the least n such that $\left(\frac{n}{p}\right) = -1$. Assuming GRH,

$$n_2(p) \ll (\log p)^2$$

If we assume GRH then,

$$n_f \ll (\log Q)^2$$
.

There are similarities with Dirichlet characters χ mod q, in particular, when $\chi=\left(\frac{\cdot}{p}\right)$ the Legendre symbol. Let $n_2(p)$ be the least n such that $\left(\frac{n}{p}\right)=-1$. Assuming GRH,

$$n_2(p) \ll (\log p)^2$$

Question

$$n_f \Leftrightarrow n_2(p)$$

If we assume GRH then,

$$n_f \ll (\log Q)^2$$
.

There are similarities with Dirichlet characters χ mod q, in particular, when $\chi=\left(\frac{\cdot}{p}\right)$ the Legendre symbol. Let $n_2(p)$ be the least n such that $\left(\frac{n}{p}\right)=-1$. Assuming GRH,

$$n_2(p) \ll (\log p)^2$$

Question

$$n_f \Leftrightarrow \stackrel{?}{\sim} n_2(p)$$

Note that $\lambda_f(n)$ are multiplicative, while $\left(\frac{\cdot}{p}\right)$ is totally multiplicative. Consider p_f , the least prime p such that $\lambda_f(p) < 0$.

Consider the average least quadratic non-residue modulo p.

Consider the average least quadratic non-residue modulo p.

Theorem (Erdős 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{i=1}^\infty\frac{p_i}{2^i}.$$

Consider the average least quadratic non-residue modulo p.

Theorem (Erdős 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{i=1}^\infty\frac{p_i}{2^i}.$$

We can see this from quadratic reciprocity.

Consider the average least quadratic non-residue modulo p.

Theorem (Erdős 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{i=1}^\infty\frac{p_i}{2^i}.$$

We can see this from quadratic reciprocity.

$$\#\{n$$

6/33

Consider the average least quadratic non-residue modulo p.

Theorem (Erdős 1961)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}\sum_{p\leq x}n_2(p)=\sum_{i=1}^\infty\frac{p_i}{2^i}.$$

We can see this from quadratic reciprocity.

$$\#\{n$$

So we may say,

$$\mathbb{P}(n_2(p) = p_i) = \mathbb{P}\left(\left(\frac{p_1}{p}\right) = +1\right) \times ... \times \mathbb{P}\left(\left(\frac{p_i}{p}\right) = -1\right) = \frac{1}{2^i}$$

Analogous results

- \triangleright (Elliott, 1967) Average least k^{th} -power non-residue modulo p
- ▶ (Burgess–Elliott, 1968) Average least primitive root modulo *p*
- ▶ (Pollack, 2012) Average least quadratic non-residue modulo m
- ▶ (Pollack, 2012) Average least character non-residue
- ► (Martin–Pollack, 2013) Average least non-split prime in the quadratic field of conductor *p*
- ▶ (Martin–Pollack, 2013) Average least inert prime in a quadratic field
- \blacktriangleright (Martin–Pollack, 2013) Average least non-split prime over all cubic extensions of $\mathbb Q$

Least prime negative Hecke eigenvalue

Analogously, we have,

$$|\lambda_f(n)| \le \tau(n) \implies \exists \ \theta_f(p) \in [0,\pi] \text{ s.t. } \lambda_f(p) = 2\cos\theta_f(p)$$

Least prime negative Hecke eigenvalue

Analogously, we have,

$$|\lambda_f(n)| \leq \tau(n) \implies \exists \ \theta_f(p) \in [0,\pi] \text{ s.t. } \lambda_f(p) = 2\cos\theta_f(p)$$

Theorem (Sato-Tate Conjecture) (B-L, G, H, T 2011)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}|\{p\leq x:\theta_f(p)\in[\alpha,\beta],p\nmid N\}|=\int_{\alpha}^{\beta}\mathrm{d}\mu_{ST}$$

for $[\alpha, \beta] \subseteq [0, \pi]$, where $\mu_{ST} = \frac{2}{\pi} \sin^2 \theta d\theta$.

Least prime negative Hecke eigenvalue

Analogously, we have,

$$|\lambda_f(n)| \le \tau(n) \implies \exists \ \theta_f(p) \in [0,\pi] \text{ s.t. } \lambda_f(p) = 2\cos\theta_f(p)$$

Theorem (Sato-Tate Conjecture) (B-L, G, H, T 2011)

$$\lim_{x\to\infty}\frac{1}{\pi(x)}|\{p\leq x:\theta_f(p)\in[\alpha,\beta],p\nmid N\}|=\int_{\alpha}^{\beta}\mathrm{d}\mu_{ST}$$

for $[\alpha, \beta] \subseteq [0, \pi]$, where $\mu_{ST} = \frac{2}{\pi} \sin^2 \theta d\theta$.

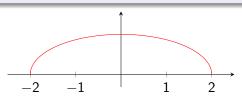


Figure: Distribution of $\lambda_f(p)$ as $p \to \infty$

Average least negative prime Hecke eigenvalue

Theorem (V.)

Assuming GRH we have,

$$\lim_{k+N\to\infty}\frac{1}{|H_k^*(N)|}\sum_{f\in H_k^*(N)}p_f=\sum_{i=1}^\infty\frac{p_i}{2^i}.$$

For N square-free, k even.

Current best unconditional bound on p_f :

Theorem (Thorner 2021)

$$p_f \ll \frac{(kN)^{c(4\log(2e))}}{\log(kN)}$$

The implied constant and c are 'large'.

Current best unconditional bound on p_f :

Theorem (Thorner 2021)

$$p_f \ll \frac{(kN)^{c(4\log(2e))}}{\log(kN)}$$

The implied constant and c are 'large'.

Newton, Thorne 2021) Sym^m $f \Leftrightarrow \rho$ (cuspidal rep of $GL_{m+1}(\mathbb{A})$) for all $m \geq 1$.

Current best unconditional bound on p_f :

Theorem (Thorner 2021)

$$p_f \ll \frac{(kN)^{c(4\log(2e))}}{\log(kN)}$$

The implied constant and c are 'large'.

- Newton, Thorne 2021) $\operatorname{Sym}^m f \Leftrightarrow \rho$ (cuspidal rep of $GL_{m+1}(\mathbb{A})$) for all $m \geq 1$.
- Zero-free regions of L(s, Sym^mf).

Current best unconditional bound on p_f :

Theorem (Thorner 2021)

$$p_f \ll \frac{(kN)^{c(4\log(2e))}}{\log(kN)}$$

The implied constant and c are 'large'.

- ▶ (Newton, Thorne 2021) $\operatorname{Sym}^m f \iff \rho$ (cuspidal rep of $GL_{m+1}(\mathbb{A})$) for all m > 1.
- ▶ Zero-free regions of $L(s, Sym^m f)$.

Assuming GRH $L(s, \operatorname{Sym}^m f)$ for each $m \ge 1$ we have,

$$p_f \ll (\log Q)^2$$
.

 n_f

The analogy is a little different for n_f

The analogy is a little different for n_f

 \bullet n_f can also be a prime power

The analogy is a little different for n_f

- n_f can also be a prime power
- Signs of $\lambda_f(p^n)$ are dependent on the signs at lower powers.

The analogy is a little different for n_f

- n_f can also be a prime power
- Signs of $\lambda_f(p^n)$ are dependent on the signs at lower powers.

What is the relationship between $\theta_f(p)$ and $\lambda_f(p^n)$?

The analogy is a little different for n_f

- n_f can also be a prime power
- Signs of $\lambda_f(p^n)$ are dependent on the signs at lower powers.

What is the relationship between $\theta_f(p)$ and $\lambda_f(p^n)$?

Multiplicativity through Chebyshev polynomials

$$X_n(\theta_f(p)) = \lambda_f(p^n)$$

where

$$X_n(\theta) = \frac{\sin((n+1)\theta)}{\sin \theta}, \quad \theta \in [0,\pi].$$

The analogy is a little different for n_f

- *n_f* can also be a prime power
- Signs of $\lambda_f(p^n)$ are dependent on the signs at lower powers.

What is the relationship between $\theta_f(p)$ and $\lambda_f(p^n)$?

Multiplicativity through Chebyshev polynomials

$$X_n(\theta_f(p)) = \lambda_f(p^n)$$

where

$$X_n(\theta) = \frac{\sin((n+1)\theta)}{\sin \theta}, \quad \theta \in [0,\pi].$$

So if $\lambda_f(p^n) > 0$ then $\sin((n+1)\theta_f(p)) > 0$.

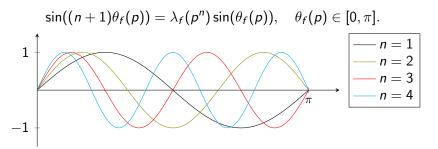


Figure: $sin((n+1)\theta)$

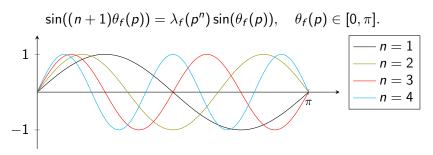


Figure: $sin((n+1)\theta)$

$$\lambda_f(p^n) > 0 \implies \theta_f(p) \in A_n \text{ where,}$$

$$A_n = \begin{cases} \left(0, \frac{\pi}{n+1}\right) \bigcup \left(\frac{2\pi}{n+1}, \frac{3\pi}{n+1}\right) \bigcup ... \bigcup \left(\frac{n\pi}{n+1}, \pi\right), n \text{ even} \\ \left(0, \frac{\pi}{n+1}\right) \bigcup \left(\frac{2\pi}{n+1}, \frac{3\pi}{n+1}\right) \bigcup ... \bigcup \left(\frac{(n-1)\pi}{n+1}, \frac{n\pi}{n+1}\right), n \text{ odd.} \end{cases}$$

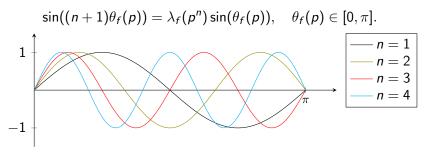


Figure:
$$sin((n+1)\theta)$$

$$\lambda_f(p^n) > 0 \implies \theta_f(p) \in A_n \text{ where,}$$

$$A_n = \begin{cases} \left(0, \frac{\pi}{n+1}\right) \bigcup \left(\frac{2\pi}{n+1}, \frac{3\pi}{n+1}\right) \bigcup ... \bigcup \left(\frac{n\pi}{n+1}, \pi\right), n \text{ even} \\ \left(0, \frac{\pi}{n+1}\right) \bigcup \left(\frac{2\pi}{n+1}, \frac{3\pi}{n+1}\right) \bigcup ... \bigcup \left(\frac{(n-1)\pi}{n+1}, \frac{n\pi}{n+1}\right), n \text{ odd.} \end{cases}$$

And $\lambda_f(p^n) < 0 \implies \theta_f(p) \in A_n^c$

- ◆□▶ ◆圖▶ ◆團▶ ◆團▶ □ ●

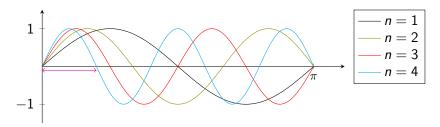


Figure: $sin((n+1)\theta)$

Then
$$\lambda_f(p^n)>0$$
 for $n=1,...,a\implies \theta_f(p)\in \bigcap_{n=1}^a A_n=\left(0,\frac{\pi}{a+1}\right)$

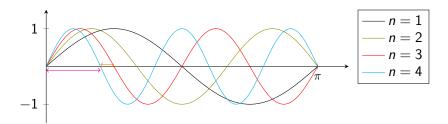


Figure: $sin((n+1)\theta)$

Then
$$\lambda_f(p^n) > 0$$
 for $n = 1, ..., a \implies \theta_f(p) \in \bigcap_{n=1}^a A_n = \left(0, \frac{\pi}{a+1}\right)$
If $n_f = p^n \implies \lambda_f(p^i) > 0$ for $i < n$ and $\lambda_f(p^n) < 0$
 $\implies \theta_f(p) \in \left(\bigcap_{i=1}^{n-1} A_i\right) \cap A_n^c = \left(\frac{\pi}{n+1}, \frac{\pi}{n}\right)$

A few key points

A few key points

• Intervals for $\theta_f(p)$ are no longer the same for positive or negative $\lambda_f(p^n)$

A few key points

- Intervals for $\theta_f(p)$ are no longer the same for positive or negative $\lambda_f(p^n)$
- Intervals for $\theta_f(p)$ depend on the power of p, which depends on p and n_f .

A few key points

- Intervals for $\theta_f(p)$ are no longer the same for positive or negative $\lambda_f(p^n)$
- Intervals for $\theta_f(p)$ depend on the power of p, which depends on p and n_f .

We need a distribution that is more sensitive to different p.

A few key points

- Intervals for $\theta_f(p)$ are no longer the same for positive or negative $\lambda_f(p^n)$ • Intervals for $\theta_f(p)$ depend on the power of p, which depends on p and
- Intervals for $\theta_f(p)$ depend on the power of p, which depends on p and n_f .

We need a distribution that is more sensitive to different p.

Theorem (Serre 1997)

For a fixed prime p we have,

$$\lim_{k+N\to\infty}\frac{1}{|H_k^*(N)|}|\{f\in H_k^*(N):\theta_f(p)\in [\alpha,\beta]\}|=\int_{\alpha}^{\beta}\mathsf{d}\mu_p$$

where $p \nmid N$, $[\alpha, \beta] \subset [0, \pi]$ and where,

$$\mu_p = \frac{2}{\pi} \left(1 + \frac{1}{p} \right) \frac{\sin^2 \theta}{(1 - p^{-1})^2 + \frac{4}{p} \sin^2 \theta} \mathrm{d}\theta$$

p-adic Plancherel measure

$$\mu_{p} = \frac{2}{\pi} \left(1 + \frac{1}{p} \right) \frac{\sin^{2} \theta}{(1 - p^{-1})^{2} + \frac{4}{p} \sin^{2} \theta} d\theta$$

$$p = 2$$

$$p = 3$$

$$p = 5$$

$$p = 53$$

$$p = 53$$

$$p = 53$$

$$p = 53$$

Figure: Distribution of $\lambda_f(p)$ as $k, N \to \infty$

Average n_f

Theorem (V.)

$$\lim_{k+N\to\infty} \frac{1}{|H_k^*(N)|} \sum_{f\in H_k^*(N)} n_f = \sum_{i\geq 1} \sum_{n\geq 1} p_i^n \prod_{j=1}^{n(p_i)} \mu_{p_j}(I_n(p_j))$$

For N prime or $\log kN$ rough, k even. We have,

$$I_n(p_j) = \begin{cases} \left[0, \frac{\pi}{a_{p_j}(p_i^n) + 1}\right] & \text{if } j \neq i, \\ \left[\frac{\pi}{n+1}, \frac{\pi}{n}\right] & \text{if } j = i. \end{cases}$$

And $a_{p_j}(p_i^n) = \lfloor n \log p_i / \log p_j \rfloor$, the greatest power such that $p_i^{a_{p_j}(p_i^n)} < p_i^n$.

Recall the average p_f required N square-free, and the average n_f required N prime or log kN rough.

Recall the average p_f required N square-free, and the average n_f required N prime or log kN rough.

• Neither μ_{ST} nor μ_p describe the distribution of $\theta_f(p)$ when p divides the level N.

Recall the average p_f required N square-free, and the average n_f required N prime or log kN rough.

- Neither μ_{ST} nor μ_p describe the distribution of $\theta_f(p)$ when p divides the level N.
 - However, the large sieve implies n_f is unlikely to be large thus N may have large prime factors (log kN rough).

Recall the average p_f required N square-free, and the average n_f required N prime or $\log kN$ rough.

- Neither μ_{ST} nor μ_p describe the distribution of $\theta_f(p)$ when p divides the level N.
 - \triangleright However, the large sieve implies n_f is unlikely to be large thus N may have large prime factors ($\log kN$ rough).
- Atkin-Lehner theory describes the eigenvalues at primes that divide the level.

$$\lambda_f(p)=0 \qquad \text{if } p^2|N \ \lambda_f(p)=\pm p^{-1/2} \text{ if } p|N \text{ but } p^2\nmid N$$

Recall the average p_f required N square-free, and the average n_f required N prime or log kN rough.

- Neither μ_{ST} nor μ_p describe the distribution of $\theta_f(p)$ when p divides the level N.
 - ▶ However, the large sieve implies n_f is unlikely to be large thus N may have large prime factors (log kN rough).
- Atkin-Lehner theory describes the eigenvalues at primes that divide the level.

$$\lambda_f(p) = 0$$
 if $p^2 | N$
 $\lambda_f(p) = \pm p^{-1/2}$ if $p | N$ but $p^2 \nmid N$

Furthermore, these eigenvalues are totally multiplicative.

$$\lambda_f(p^2) = \lambda_f(p)^2$$
 if $p|N$

What is the distribution of $\lambda_f(p)$ when p|N but $p^2 \nmid N$?

What is the distribution of $\lambda_f(p)$ when p|N but $p^2 \nmid N$?

Lemma

For a fixed prime p with p|N but $p^2 \nmid N$, and $\omega = \pm 1$,

$$\frac{1}{|H_k^*(N)|}|\{f \in H_k^*(N) : \lambda_f(p) = \omega p^{-1/2}\}| \sim \frac{1}{2}$$

What is the distribution of $\lambda_f(p)$ when p|N but $p^2 \nmid N$?

Lemma

For a fixed prime p with p|N but $p^2 \nmid N$, and $\omega = \pm 1$,

$$\frac{1}{|H_k^*(N)|}|\{f \in H_k^*(N) : \lambda_f(p) = \omega p^{-1/2}\}| \sim \frac{1}{2}$$

This falls from the Eichler-Selberg trace formula.

What is the distribution of $\lambda_f(p)$ when p|N but $p^2 \nmid N$?

Lemma

For a fixed prime p with p|N but $p^2 \nmid N$, and $\omega = \pm 1$,

$$\frac{1}{|H_k^*(N)|}|\{f\in H_k^*(N): \lambda_f(p)=\omega p^{-1/2}\}|\sim \frac{1}{2}$$

This falls from the Eichler-Selberg trace formula. Put simply,

$$TrT_n = A_1 + A_2 + A_3 + A_4$$

For all n > 1

The trace formula

We can see that for some prime p where p|N and $p^2 \nmid N$, and $\omega = \pm 1$,

$$Tr\left(\frac{\omega p^{-k/2+1}T_p+T_1}{2}\right)=|\{f\in H_k^*(N):\lambda_f(p)=\omega p^{-1/2}\}|$$

The trace formula

We can see that for some prime p where p|N and $p^2 \nmid N$, and $\omega = \pm 1$,

$$Tr\left(\frac{\omega p^{-k/2+1}T_p + T_1}{2}\right) = |\{f \in H_k^*(N) : \lambda_f(p) = \omega p^{-1/2}\}|$$

Via the trace formula, one can show

$$Tr(\omega p^{-k/2+1}T_p) = O(N^{\varepsilon})$$

The trace formula

We can see that for some prime p where p|N and $p^2 \nmid N$, and $\omega = \pm 1$,

$$Tr\left(\frac{\omega p^{-k/2+1}T_p+T_1}{2}\right)=|\{f\in H_k^*(N):\lambda_f(p)=\omega p^{-1/2}\}|$$

Via the trace formula, one can show

$$Tr(\omega p^{-k/2+1}T_p) = O(N^{\varepsilon})$$

Note that.

$$TrT_1 = |H_k^*(N)|$$

Hence we have

$$\frac{Tr\left(\frac{\omega p^{-k/2-1}T_p+T_1}{2}\right)}{Tr(T_1)}=\frac{1}{2}+O(N^{\varepsilon}).$$

A combined distribution

Theorem

Let \mathcal{P} be a finite set of primes, $(\omega_p)_{p\in\mathcal{P}}$ be a sequence of signs indexed by primes in \mathcal{P} . We have,

$$\lim_{k+N\to\infty} \frac{1}{|H_k^*(N)|} |\{f \in H_k^*(N) : \omega_p \lambda_f(p) > 0 \text{ for } p \in \mathcal{P}\}| = \frac{1}{2^{|\mathcal{P}|}} (1 + o(1)),$$

as k + N tends to infinity over even k and square-free N.

$$\sum_{f \in H_k^*(N)} p_f = \sum_{p \le A(k,N)} p \cdot \underbrace{\#\{f : p_f = p\}}_{(1+o(1))\frac{1}{2^{\pi(A(k,N))}}|H_k^*(N)|} + \sum_{\substack{f \in H_k^*(N) \\ p_f > A(k,N)}} p_f$$

$$\sum_{f \in H_k^*(N)} n_f = \sum_{n \le B(k,N)} n \cdot \underbrace{\#\{f : n_f = n\}}_{(1+o(1))\prod_{p \le B(k,N)} \mu_p(I_p)|H_k^*(N)|} + \sum_{\substack{f \in H_k^*(N) \\ n_f > B(k,N)}} n_f$$

Provided A(k, N) and B(k, N) tend to infinity slow enough as k and N do.

21/33

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

 For this we develop hybrid large sieves: sieves that are uniform in both the weight and the level.

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

- For this we develop hybrid large sieves: sieves that are uniform in both the weight and the level.
- In the case of p_f we also develop a hybrid large sieve that includes eigenvalues that divide the level.

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

- For this we develop hybrid large sieves: sieves that are uniform in both the weight and the level.
- In the case of p_f we also develop a hybrid large sieve that includes eigenvalues that divide the level.
- We consider two types of large sieve,

Sketch proof

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

- For this we develop hybrid large sieves: sieves that are uniform in both the weight and the level.
- In the case of p_f we also develop a hybrid large sieve that includes eigenvalues that divide the level.
- We consider two types of large sieve,
 - 1. Weaker bound on a stronger interval

Sketch proof

This leaves us to show the number of forms with $p_f > A(k, N)$ or $n_f > B(k, N)$ is $o(|H_k^*(N)|)$.

- For this we develop hybrid large sieves: sieves that are uniform in both the weight and the level.
- In the case of p_f we also develop a hybrid large sieve that includes eigenvalues that divide the level.
- We consider two types of large sieve,
 - 1. Weaker bound on a stronger interval
 - 2. Stronger bound on a weaker interval

Large sieve inequalities

1. Weaker bound, stronger interval

Let N be square-free, $k \geq 2$ even and let β be a real number. Then there exist two positive constants C_0 , C such that,

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

Provided k and N are suitably large, and that $C_0 \ll \beta \ll \log(kN)$.

Large sieve inequalities

1. Weaker bound, stronger interval

Let N be square-free, $k \ge 2$ even and let β be a real number. Then there exist two positive constants C_0 , C such that,

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

Provided k and N are suitably large, and that $C_0 \ll \beta \ll \log(kN)$.

2. Stronger bound, weaker interval

Let A > 1, $0 < \varepsilon_1 < 1$, and $\varepsilon_2 > 0$.

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

Provided k, N large enough.

◆ロト ◆母ト ◆宝ト ◆宝 → りへの

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

If $\varepsilon_p \lambda_f(p^\nu) > 0$ $(\nu \ge 1)$ for many primes in an interval, it's sum will be large – existing large sieves show this does not happen often, however these do not include primes that divide the level.

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

If $\varepsilon_p \lambda_f(p^\nu) > 0$ ($\nu \geq 1$) for many primes in an interval, it's sum will be large – existing large sieves show this does not happen often, however these do not include primes that divide the level.

$$\sum_{f \in H_k^*(N)} \left| \sum_{P$$

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

If $\varepsilon_p \lambda_f(p^\nu) > 0$ $(\nu \geq 1)$ for many primes in an interval, it's sum will be large – existing large sieves show this does not happen often, however these do not include primes that divide the level.

$$\sum_{f \in H_k^*(N)} \left| \sum_{P
$$\le \frac{B}{P^{\nu/2} \log P} \to + 2j \cdot 2^{2j} \left| \sum_{\substack{P$$$$

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

Via Lau-Wu large sieve:

$$\sum_{f \in H_k^*(N)} \left| \sum_{\beta$$

with conditions on β .

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

Via Lau-Wu large sieve:

$$\sum_{f \in H_k^*(N)} \left| \sum_{\beta$$

with conditions on β . Then we lower bound for our desired set,

$$|\{f: \varepsilon_p \lambda_f(p^{\nu}) > 0, \beta$$

$$\#\{f \in H_k^*(N) : p_f > \beta\} \ll k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right)$$

Via Lau-Wu large sieve:

$$\sum_{f \in H_k^*(N)} \left| \sum_{\beta$$

with conditions on β . Then we lower bound for our desired set,

$$|\{f: \varepsilon_p \lambda_f(p^{\nu}) > 0, \beta$$

In lower bounding, when only considering primes that are coprime to N, we keep N prime or β rough to keep the sets the same.

$$\#\{f\in H_k^*(N): n_f > (\log kN)^A\} \ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

For this sieve we use the Deshouillers-Iwaniec sieve for fixed weight,

$$\sum_{f \in H_k^*(N)} \omega_f \Big| \sum_{\substack{m \leq M \\ a = kN}} a_m \lambda_f(m) \Big|^2 \ll \left(1 + \frac{M}{N}\right) \|a\|^2, \quad \omega_f = \frac{\Gamma(k-1)}{(4\pi)^{k-1} \langle f, f \rangle}$$

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

For this sieve we use the Deshouillers-Iwaniec sieve for fixed weight,

$$\sum_{f \in H_k^*(N)} \omega_f \Big| \sum_{\substack{m \leq M \\ m \nmid N}} a_m \lambda_f(m) \Big|^2 \ll \left(1 + \frac{M}{N}\right) \|a\|^2, \quad \omega_f = \frac{\Gamma(k-1)}{(4\pi)^{k-1} \langle f, f \rangle}$$

and develop something uniform in both the weight and the level, and use a similar process as the previous sieve.

$$\sum_{f \in H_k^*(N)} \omega_f \Big| \sum_{\substack{m \leq M \\ m \nmid N}} a_m \lambda_f(m) \Big|^2 \ll \left(1 + \frac{M}{Nk^{1-\varepsilon}}\right) \|a\|^2,$$

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

We approximate this set through Chebyshev polynomials

$$\prod_{p \le m} Y_p(\theta) = \prod_{p \le m} \sum_{1 \le n_p \le s} \alpha_p(n_p) X_{n_p}(\theta)$$

which form an orthonormal basis of $L^2([0,\pi]^m,\mu_{ST}^{\otimes m})$, and so may approximate the characteristic function of the set.

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

We approximate this set through Chebyshev polynomials

$$\prod_{p\leq m} Y_p(\theta) = \prod_{p\leq m} \sum_{1\leq n_p\leq s} \alpha_p(n_p) X_{n_p}(\theta)$$

which form an orthonormal basis of $L^2([0,\pi]^m,\mu_{ST}^{\otimes m})$, and so may approximate the characteristic function of the set. With Hecke multiplicity,

$$\prod_{p\leq m} Y_p(\theta_f(p)) = \sum_{\substack{d\mid m^s\\m\mid d}} \left(\prod_{p\mid d} \alpha_p(v_p(m))\right) \lambda_f(d)$$

$$\#\{f\in H_k^*(N): n_f>(\log kN)^A\}\ll k^{1-\varepsilon_1}N^{1/2+\varepsilon_2}$$

We approximate this set through Chebyshev polynomials

$$\prod_{p\leq m} Y_p(\theta) = \prod_{p\leq m} \sum_{1\leq n_p\leq s} \alpha_p(n_p) X_{n_p}(\theta)$$

which form an orthonormal basis of $L^2([0,\pi]^m,\mu_{ST}^{\otimes m})$, and so may approximate the characteristic function of the set. With Hecke multiplicity,

$$\prod_{p \leq m} Y_p(\theta_f(p)) = \sum_{\substack{d \mid m^s \\ m \mid d}} \left(\prod_{p \mid d} \alpha_p(v_p(m)) \right) \lambda_f(d)$$

Then apply the hybrid large sieve, picking a_m and M appropriately.

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

Sketch proof

We can first use the sieve for $\beta = A(k, N)$ or B(k, N) up to $\beta \leq \log(kN)$,

$$\sum_{\substack{f \in H_k^*(N) \\ \beta < (p_f \text{ or } n_f) < 2\beta}} \ll \beta \cdot k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right) = o(k\varphi(N)).$$

Sketch proof

We can first use the sieve for $\beta = A(k, N)$ or B(k, N) up to $\beta \leq \log(kN)$,

$$\sum_{\substack{f \in H_k^*(N) \\ \beta < (p_f \text{ or } n_f) \le 2\beta}} \ll \beta \cdot k\varphi(N) \exp\left(-C\frac{\beta}{\log \beta}\right) = o(k\varphi(N)).$$

Then at log kN we use the upper bound $n_f \ll Q^{3/8}$ or the GRH bound $p_f \ll (\log Q)^2$, then for large enough k, N (recall $Q = k^2N$)

$$\sum_{\substack{f \in H_k^*(N) \\ p_f > \log(kN)}} p_f \ll (\log Q)^2 \cdot k\varphi(N) \exp\left(-C \frac{\log kN}{\log\log kN}\right) = o(k\varphi(N))$$

$$\sum_{\substack{f \in H_k^*(N) \\ n_f > (\log(kN))^A}} n_f \ll Q^{3/8} \cdot k^{1-\varepsilon_1} N^{1/2+\varepsilon_2} = o(k\varphi(N))$$

A corollary or two

Clearly, we may make other statements on the signs of $\lambda_f(p)$ depending on how we define N.

A corollary or two

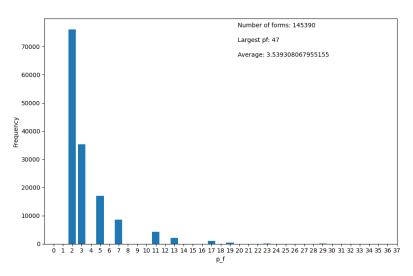
Clearly, we may make other statements on the signs of $\lambda_f(p)$ depending on how we define N.

Example

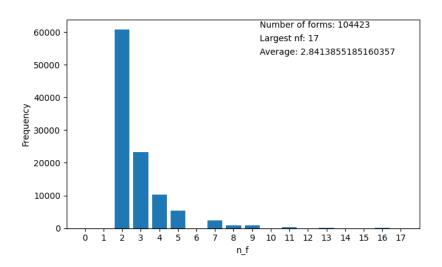
Let $N_a = \prod_{i=1}^a p_i$. For k tending to infinity over even integers,

$$\lim_{a,k\to\infty} \frac{1}{|H_k^*(N_a)|} \sum_{f\in H_k^*(N_a)} n_f = \sum_{i=1}^{\infty} \frac{p_i}{2^i},$$

Statistical data - pf



Statistical data - n_f



Statistical data

$$\sum_{i=1}^{\infty} \frac{p_i}{2^i} \approx 3.674643966011328...$$

$$\sum_{i\geq 1} \sum_{n\geq 1} p_i^n \prod_{j=1}^{\pi(p_i^n)} \mu_{p_j}(I_n(p_j)) \approx 2.9423403000531483...$$

Thank you for listening! Any questions?