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Large deviations of the interference in a wireless
communication model

Ayalvadi J. Ganesh and Giovanni Luca Torrisi

Abstract—Interference from other users limits the capacity, marksP; € (0, 00) denote their transmission powers. Without
and possibly the connectivity, of wireless networks. A simple |oss of generality, we shall consider a receiver located at the
model of a wireless ad-hoc network, in which node locations are origin. Letw andj3 be positive constants which denote, respec-

described by a homogeneous Poisson point process, and node. . .
transmission powers are random, is considered in this paper. A ?lvely, the noise power at the receiver, and the threshold SINR

large deviation principle for the interference is presented under Needed for successful reception of a signal. The physical signal
different assumptions on the distribution of transmission powers. propagation is described by a measurable positive function
L : R? — (0,00), which gives the attenuation or path-loss

Index Terms—Large deviations, Poisson shot noise, subexpo-Of the signal. In addition, the signal undergoes random fading

nential distributions, fading channels, CDMA. (due to occluding objects, reflections, multi-path interference
etc.). We denote byd,, the random fading between node
|. INTRODUCTION and the origin, and defing, = P, H,,. Thus,Y,,L(X,,) is the

Wireless ad-hoc and sensor networks have been the toffic€ved power at the origin due to the transmitter at noede
of much recent research. Questions of interest include the/Vithin this framework we say that the receiver at the origin
connectivity of the network, namely the ability of any twg"@n decode the signal emitted by stationf
nodes to communicate, possibly via intermediate nodes, and Y, L(X,) S
the information transport capacity of the network [14], [6], w+ Zk;ﬁn ViL(Xp) B. 1)

[7]. The factor limiting the communication between any two

nodes is the ratio of signal power to the sum of noise and'€ sum in the denominator is restricted to those stations
interference. As such, the SINR ratio (signal to interferenddich are active during the period of interest. The marked
plus noise ratio) is an object of interest in its own right. In thiBCINt process can be taken as referring to this subset.
paper, we study the large deviations asymptotic of this quantity | "€ attenuation function is often taken to be_|asotrop|c
in the context of a simple model of a wireless network [2f-€ rotation invariant) an_daof the form(z) = |||~ or
which is described in the next section. <1+||x”), or max(R, [lz|[)"*, where the symbg|-|| denotes
The SINR determines whether a given pair of nodes can tzi_rke Euchd_ean norm, and_, R >0 are positive constants. T_he

to each other at a given time. The interference is determinfigt function exhibits infinite interference in the immediate
by which other nodes are transmitting simultaneously, as w¥|finity of an antenna, which is not physical. The last choice
as the degree of orthogonality between the codes they gfeattenuanpn functlon cqrresponds tq the case of isotropic
using. If the codes are perfectly orthogonal, then there wiifiténnas with ideal Hertzian propagation, and is the one we
be no interference. Most cellular systems employ channel £8@ll work with. (We make the assumption of isotropy only for
signment schemes to ensure that codes used in nearby celld'gfgtional convenience. It should be clear from our derivations
indeed orthogonal. Wireless LANSs (local area networks) u@t we sum up the contributions to interference at a point
scheduling to ensure that nearby nodes do not transmit simuff@M successive annuli around it, and the contribution from
neously. Motivated by ad-hoc networks, we are interested if®d @nnulus can be readily calculated for a given anisotropic
scenario where there is no centralized infrastructure and whéfgénuation function. In particular, our framework can deal
nodes may belong to multiple administrative domains. In sudjth directional antennas.) We shall assume that 2, which

a scenario, neither channel assignment nor sophisticated fofm&n integrability condition needed to ensure that the total
of scheduling may be feasible. Our aim is to determine hditerference is finite almost surely, and which is observed to

the outage probability depends on factors such as node denBR{f! in practice. , _ ,
and spreading (or processing) gain. he basic model described above is quite general and

encompasses the case where the signal emitted by station
I[I. MODEL DESCRIPTION interferes with the cumulative signals emitted from stations
é{ # n in such a way that only some proportignof these
cumulative signals should be considered as noise. Indeed,
q~ is situation is recovered replacinf(-) by ¢L(-), where
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system, and is smaller than 1 in a broadband system that usesveenY” and {(Xy, Y%)}x>1. we have
CDMA (code division multiple access); see, for instance, [8],

[16]. The physical model of [14] assumes= 1; the models Pz( V(|| <3 ‘ v — y)
of [13], [6], [7] allow ¢ to be smaller thar. w+V —Y{(|z])

From the modelling perspective, the effectjoiin (1) can be _ P(Ye(Hl‘H) <8 ‘ y — y)
absorbed into the threshofd (with the noise power suitably w+V
modified), so we shall assume without loss of generality that =PV > (yl(||z|)/B) — w).

¢ = 1. From the application perspective, we are interested in

¢ < 1, as is the case for example in a CDMA system withhe main aim of this paper is to provide large deviation
large spreading gain. In this case, we can hope that the SIRFnciples for the total interferenci at the origin. Since the
might exceed the threshold even if all stations transmit simuloise powerw is a positive constant, this will yield the large
taneously, in which case no complicated scheduling schemél@yiations for the SINR ratio.

needed. With that interpretation, the results of this paper can bdf a > 2, it can be readily verified from (2) thal'V' < co
seen as providing a guide to the trade-off achievable betwger’Y; < oo, and sol is finite almost surely (a.s.) it7 has
node density and spreading gain of the code. Rewriting (fipite mean. We shall consider several different models for the
allowing ¢ < 1, we see that the SINR is too small for decodinégw of Y7, namely, distributions with bounded support, those

if, and only if, with a tail which is asymptotically exponentially equivalent to
the tail of a Weibull or Exponential distribution (see Section
Z Y L(Xy) > l(Y"L(X'n) _ w) [l for the definition of asymptotic exponential equivalence),
P ¢ B and those with regularly varying tails. The Weibull assumption
on the distribution of the transmission powers is particularly
Thus, the probability of decoding failure is given by appealing in the context of wireless networks as a recent
c Yo L(X) work by Sagias and Karagiannis [15] states that the fading in
P(Z Y L(Xk) > 5) where ¢ = % —w. wireless channels can be modelled by a Weibull distribution
k#n (typically with Gaussian tail).

The scaling regime we will consider is the logarithmic as- In order to describe the structure of the paper we introduce

ymptotics of this probability ag tends to zero, i.e., a large>°™M€ More notation. DefinBy = 0, Ry = VER for k > 1,
deviations scaling regime. In other words, we are interesteda}ﬂoI let

systems with large bandwidth, and concomitant coding gain, A

in a regime in which the probability of the SINR falling below V¥ =Y YiL(Xi)1(Ri < || Xi[| < Riy1), k>0

the required threshold is small. i=1

As remarked above, we restrict ourselves to the capg the total interference at the origin due to sources at distance
of ideal Hertzian propagation, so thdt(z) = {(||z|) = betweenR, and R,1; here1(A) denotes the indicator of
max (R, [lz|)~*. Finally, we assume that the point procesge eventA. In particular, note that/ = >°,.,V*. The
{Xk}r>1 is a homogeneous Poisson process of intensand  article is organized as follows. In Section Ill we give some
that both the marks and the shadow fading to the origin are jigleliminaries on large deviations, heavy-tailed distributions
and independent of the locations. In particuléy,= P Hj iS  and extreme value theory. In Section IV we establish large
an iid sequence independent of the point progesg}. From  deviation principles for the random variablg§ = V° under
the modelling perspective, it suffices to considferather than different assumptions on the transmission powers. Specifically,
Py and Hy, separately. With some abuse of terminology, Wge consider the cases where the distribution of the transmis-
shall henceforth refer td@; as the transmission power andsjon power has (i) bounded support, (ii) superexponential tails,
use {(Xy,Yx)}x>1 as our basic marked point process. Withiii) exponential tails, (iv) subexponential tails and belongs
these assumptions, the denominator of the left-hand sidetg@fthe domain of attraction of the Gumbel distribution, (v)
(1) reduces tav + >, ., Yil([| Xk |). regularly varying tails. In Section V we extend these results

Look at the SINR between the receiver at the origin ang large deviation principles for the total interfererice= ¢V'.

a point located ar € R? of the Poisson process, denote byrhe different cases give rise to different speeds for the large

Y the transmission power of the antenna locatedr,adnd deviation principles, with the speed decreasing as the tail
assumeY” to be independent of the marked Poisson procegfows heavier.

{(Xk,Yx)}r>1. Let P, denote the Palm probability of the
Poisson process at € R? (i.e. the conditional law of the
Poisson process, given that it has a point)ptand define the I1l. PRELIMINARIES AND NOTATION

random variable We recall here some basic definitions in large deviations

theory. A family of probability measure§u. }.~o on (R, B)
V= Yool x here/(z) — R z)—o. ) Obeys alarge deviation principle (LDP) with rate functibn)
Z Bl Xxll), where((z) = max(R, z) @ and speed(-) if 7 : R — [0,00] is a lower semi-continuous
function,v : (0,00) — (0, 00) is a measurable function which
Due to Slivnyak’s theorem (see e.g. [4]) and the independerdigerges to infinity at the origin, and the following inequalities

k>1
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hold for every Borel seB € B: (1/~). Then the family of random variable§/°} obeys an
1 LDP on [0, c0) with speed log”(1) and good rate function
— inf I(z) < liminf — logu.(B)
z€B° — e—=0 w(e) L) =y(y—1)""¢/ "Rz,
. 1 .
< lim SUP@bg pe(B) < — inf I(x), Theorem 3: Suppose that there exists a constant 0
=0 veb such that—log P(Y; > y) ~ cy. Then the family of random
whereB° denotes the interior aB andB denotes the closure variables{V’} obeys an LDP or{0,c0) with speed? and
of B. Similarly, we say that a family oR-valued random good rate function
variables{V.}.-, obeys an LDP if{yu.}.~o obeys an LDP

and p.(-) = P(V. € -). We point out that the lower semi- fa(w) = cR%.
continuity of I(-) means that its level sets: Theorem 4: Suppose that; is subexponential and that
there exist constants > 0 and 0 < v < 1 such that
{xeR:I(z)<a}, a>0, —log P(Y7 > y) ~ ¢y”. Then the family of random variables

{V?} obeys an LDP o10, co) with speed(1)” and good rate

are closed; when the level sets are compact the rate functigAction
I(-) is said to be good. Ii(z) = cRY7a".

Throughout this paper we writ¢(x) ~ g(z) if f(z) and
g(x) are asymptotically equivalent, i.Bm, .o f(z)/g(z) =  Theorem 5: Suppose that’(Yy > y) ~ y“S(y), for
1; moreover, we say thaf(z) and g(z) are asymptotically SOmMe constant > 1 and slowly varying functionS(.). Then
exponentially equivalent ifog f(z) ~ log g(z). th.e family of random varlable‘SVEO.} obeys an LDP 010, oo)

We conclude this section with some preliminaries on heavith speedlog () and rate function
tailed distributions. Recall that a random variable is said to 0 ifz=0
be subexponential if its distribution functigi(-) has support Is(z) = {
(0,00) andG*2(z) ~ 2G(z) (see, e.g., [1, p. 251] and [9, pp. o
39-40]). HereG = 1 — G denotes the tail of the distribution Observe that as tends to infinity the speed and the rate
function G(-) andG*2(-) denotes the two-fold convolution of function of the LDP in Theorem 2 tend to those for the case
G(-). of bounded transmission powers (with= 1). Similarly, as

The family of subexponential distribution functions will be) t€nds tol, the speed and the rate function of Theorems 2
denoted by8. It can be classified using extreme value theor2d 4 tend to those for the case of transmission powers with
as follows. A positive functiony(-) on (0, cc) is said to be tails asymptot_lca!ly gxponennally equivalent to the tail of an
regularly varying at infinity of index: € R, written g € R(c), ExPonential distribution. .
if g(z) ~ 2°S(x) asz — oo, whereS(-) is a slowly varying .Before going qu the dgtans of the proofs, we remark
function, i.e.lim,_.. S(tz)/S(z) = 1 for eacht > 0. Goldie briefly on t_he intuition behlr_1d these resu_lts. The the_orems
and Resnick [12] showed that & € $ and satisfies some above provide LDPs for Poisson shot noise under different
smoothness conditions, thef(-) belongs to the maximum conditions on the shot shape (the distribution}a). The-
domain of attraction of either the Freathdistribution®,(z) = ©rem 1 basically gives the large deviations for a Poisson
e=*"°, ¢ > 0, or the Gumbel distribution\(z) = e=¢ ". In random variable, since the shot in this case is effectively a
the former case, it has regularly varying tail of index. We constant. The speedlog () comes from the fact that the

write G € MDA(A) if G(-) belongs to the maximum domaintail of a Poisson distribution behaves likgn!. WhenY; has
of attraction of the Gumbel distribution. superexponential Weibull tails, there is an interaction between

the tail asymptotics of the Poisson distribution and that of the

shot, both of which combine to contribute to the tail of the

Poisson shot noise. Finally, when the shot has exponential or

subexponential tails, it dominates and the Poisson distribution
In this section we show the following large deviatiorplays no role.

principles, which correspond respectively to the cases whereTlhis intuition also explains why the intensity of the

the transmission poweds, are bounded, have Weibullian tailsPoisson point process of transmitters plays no role in the large

which are superexponential, exponential or subexponential,daviation rate function, in any of the theorems above. In the

have regularly varying tails. exponential and subexponential cases, a large value of the
Theorem 1: Suppose thaf; has bounded support withinterference is caused by a single interfering transmitter, and

supremumb which is strictly positive. Then the family of hence it is the asymptotic of the distribution of transmission

random variabledV°} obeys an LDP orj0, c0) with speed powers which governs the rate function. In the superexpo-

%log% and good rate function nential case, a large value of the interference is caused by a

combination of(i) there being a large number of interferers

i in the vicinity of the origin, andii) each of these having a

b large transmit power. Of these, o) involves the underlying
Theorem 2: Suppose that there exist constants 0 and Poisson point process. Now, the number of transmitters within

v > 1 such that—log P(Y1 > y) ~ cy”. Definen = 1 — a region of aread is a Poisson random variable with mean

c ifz>0.

IV. LARGE DEVIATIONS OF THE TRUNCATED
INTERFERENCE
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AA, whose tail behavior is predominantly described hiy/a! Next, we consider the subexponential Weibull case. A large
term, which does not depend om. deviation upper bound is given by the following:

While the absence of the point process intensity in the rateLemma 9: Suppose that; is subexponential and that there
function may appear counter-intuitive, it really tells us that thexist constantg > 0 and0 < ~ < 1 such that— log P(Y; >
LDPs only capture the shape and scaling behavior of the tgjl ~ cy?, then
distribution of the interference, and that more refined estimates
of the actual probabilities are needed.

We will prove the theorems by providing matching large o
deviation upper and lower bounds for half-intervals, i.e., forn€ Proof uses a key fact about subexponential distributions,
P(V® > z) and P(V® > z), and showing that these Namely, thaF the ta!l d|str|but|on ofa sum of iid subexponenngl
imply a large deviation principle. The proof proceeds throudﬁ‘”d_om vanables_|s.asy_mptot|c.ally equivalent to that o_f their
a sequence of lemmas, whose proofs are relegated to Ey@imum, and this is still true if the number of terms in the
appendix so as not to interrupt the flow of the arguments. SUM is @ random variable provided that this random variable

The following two lemmas provide large deviation uppe?as exponentially decz_iylng tail. Details are in the appendix.
bounds in the superexponential and exponential cases, resped¢1€ Next lemma gives the large deviation lower bound

lim sup e” log P(VE0 >x) < —cR¥z", x>0.

e—0

tively. needed to prove Theorem 1. It is a straightforward conse-
Lemma 6: Suppose that there exist positive constaraad guence of the tail behavior of the Poisson distribution K@t
3 such thatlog $(6) ~ &° as@ — co. Then Lemma 10: If Y; has compact support whose supremum,

denotedb, is strictly positive (i.e.Y; is not identically zero),

lim sup % log P(V? > z) < —¢ Y8Rz, 2>0. then
e—0 logt?(1/e) o
i ” liminf —— o P(V0>a:)>—Rz z>0
Lemma 7: Suppose that there is a positive constastich gy log(1/e) & c - b’ -
that — log P(Y7 > y) ~ cy. Then o . )
The large deviation lower bound in the superexponential
limsupelog P(V? > x) < —cR*z, x >0. Weibull case is given by the following lemma.

e—0

Lemma 11: Suppose that there exist constants- 0 and

The proof of both lemmas uses Chernoff’'s bound. We -~ 1 such that— log P(Y; > y) ~ cy?. Definen = 1 —
present a brief outline here, leaving the details to the appgn7/~). Then, for allz > 0, we have
dix. Clearly, N c . S
- ZOYI»’ @) 111613(1)1f Tog"(1/2) log P(V,' > z) > —y(y —1)""c/7R%.

i=1 The proof involves identifying themost likely waythat

where N, is the number of points of the Poisson process large value ofVV? arises. Specifically, in (3), it involves
falling within the ball of radiusk centered at the origin. Using identifying the typical value ofVy, the number of interferers
the Chernoff bound, we have within distanceR of the receiver, as well as the typical value
of their transmission powers, conditional & > z/e. See

PV >z) < eXP(*‘% + AO(gRiae)) V02>0, (4 the appendix for details.

where Ao(8) = logE [exp@ Moy, } But N, is a Proof of Theorem 1. The function I (z) = R%z/b is
o continuous on[0, o) and has compact level sets. Hence, it

is a good rate function.

If Y7 has compact support with supremunthen it is easy
to see thatog ¢(0) ~ bf, whereg(-) is the moment generating
Ao(0) = lOgE{(E[egyl])No} —M(b0) =1).  (5) function of ;. Hence, we have by Lemma 6 that

. € 0 Rz

The proof now proceeds by substituting (5) in (4) and opti- hrsﬂj(l)lpmlog PVl 2z2)<———, ©20. (§)
mizing overé.

The upper bound in Lemma 6 is in terms of the logarithmi€his upper bound matches the corresponding lower bound in
moment generating function df; whereas the assumptions-€mma 10.
in Theorem 2 are in terms of the tail of its distribution. The The upper and lower bounds can be extended from half-
next lemma relates a tail condition on the law X5f to the intervals[z, co) and(z, 0o) to arbitrary closed and open sets in
tail behaviour of its logarithmic moment generating functior Standard way, which is repeated in the proofs of Theorems 2-
Its proof requires an extension of Laplace’s method, and is &etactually the rate function of Theorem 5 is not continuous in
out in the appendix. 0, however it is readily checked that the argument we consider

Lemma 8: Suppose that there exist constants> 0 and below holds for rate functions which are equal to 0 at the
~ > 1 such that—log P(Y; > y) ~ cy?. Definen = 1 — origin and continuous 0fi0, 00)). We therefore sketch it for

(1/7). Then completeness.
A /m—1/(y-1) a1/ Let F' be a closed subset db,oo0) and let z denote
log ¢(0) ~ (v = 1)y~ /e /7200, the infimum of F. Since I;(:) is increasing, I;(z) =

Poisson distributed random variable with mean= A\rR?
and theY; are iid and independent aV,. Hence, defining
¢(0) := Elexp(0Y7)], we have
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inf e I (y). Now F is contained iz, oo), and so we obtain closed sets follows along the lines of the proof of Theorem 1.

using (6) that o

lim sup < log P(V? € F) Proof of Theorems 3 and 4The large deviation upper

e—0  log(1/e) bound for half-intervalgz, c0) is provided by Lemma 7 in
< lim sup ;bgp(vao > ) the exponential case and by Lemma 9 in the subexponential
e—0  log(1/e) Weibull case. For the lower bound, observe that forzait 0,
< —Ii(z) = — inf I;(y).
ver PWV2>2) > P(VY>ux Ny>1)

This establishes the large deviation upper bound for arbitrary > P(Y1 > R*z/e)P(Ny > 1),

closed sets. )
Next, letG be an open subset @, o). Suppose first that @nd S0, by the assumption thatlog P(Y1 > y) ~ cy” for
0 ¢ G and setr = inf,cq I1(y). Thenw is finite and, for SOmev € (0,1], we obtain

arbitrary § > 0, we can findz € G such that/i(z) < v+ liminfe? log PVO>z) > hmi(glfg'Y log P(Y; > R%z/¢)
E—

d. Since@ is open, we can also fing > 0 such that(z — e—0 by
n,2 4+ 1) C G. Now, = —cRYz".
PVOe@) > PV°e(z—nz+n) Finally, the upper and lower bounds can be extended to

arbitrary closed and open sets using standard techniques, as in

_ 0 0
= PVo>a—n) =PV 22+n). (7)  the proof of Theorem 1o

Moreover, Proof of Theorem 5 The claim follows if we give upper
liminf —C log P(VO >z — 1) > ~I)(z — 1) and_lower bounds on half intervals, o) and (z, ), x >
e—0 log(1/e) 0. Since P(V? > 0) = 1 the upper and lower bounds for half
by Lemma 10, whereas intervals [0, 00) and (0,00) are obvious. Thus we consider
' c z > 0.
limsup ———— log P(V? > +1n) < —Li(z +n) Recall that regularly varying distributions are subexponen-

e log(1/¢) tial (see, e.g., [9, Corollary 1.3.2]). Therefore, we have by [1,
by (6). Sinceli(x —n) < I1(z +n), we obtain using (7) and Lemma 2.2] that
Lemma 19 in the appendix that

No
S 0 _ «
liminf —— log P(V? > —Ti(z—n). PV >z) = P() Yi>Rz/e
R logagy e (e €O = e % )
Sincel;(-) is continuous, by letting decrease to zero we get ~ E[N°|P(Y; > R%z/e)
= M(R%x/e)"°S(R%x/¢). 8
1iminf;10gP(V€O €G) > —I(x) > — inf I (y)—9, o(Re/e) S (R w/e) ®
==0" log(1/e) yed Likewise, we have for alb > 0 small enough, that

where the last inequality follows from the choice of The No
large deviation lower bound now follows upon lettin  p(1° > z) < p(ZYi >Ra(x_5)/€>
decrease to zero. o

If 0 € G, then, since&5 is open, there is an > 0 such that ~ (R — 8)/e) "¢ S(R* (2 — §) /&) (9
0.5) C G. Hence, o (R*(z —0)/e) " S(R"(z — 6)/£)(9)

The large deviation lower and upper bounds for half-intervals

0 0
P(VZ €G) 21-P(V. =n). readily follow from (8) and (9) upon taking logarithms and
By similar arguments to the above, we can show that letting ¢, and ther, tend to zeroo
o €
liminf ———log P(V? € G) > 0. V. LARGE DEVIATIONS OF THE TOTAL INTERFERENCE

=0 log(1/e)

Sinceinfy e I1(y) = I1(0) = 0 as I(-) is increasing, this
establishes the large deviation lower bounddife G, and
completes the proof of the theorem.

So far we have restricted attention ¥&, the contribution
to interference due to transmitters within range of the
location of interest. We now extend our results to the total
interferenceV’. HereG(-) denotes the distribution function of
Proof of Theorem 2.We obtain from Lemma 6 and Lemmathe transmission powers, i.€(z) = P(Y; < z).

8 the upper bound Theorem 12: We have the following:
' e 0 (7) If Y7 has bounded support with supremém 0, then the
hlgljgp log"(1/¢) log P(V.' > x) family of random variable$V.} obeys an LDP o0, co) with
- speed! log 1 and good rate functiod, (-) given by Theorem
<_ ((7 - 1)771/%71/(%1)) Rz 1

(73) If —log P(Y1 > y) ~ cy” for somec > 0 andy > 1,
then the family of random variable§/.} obeys an LDP on
This matches the lower bound from Lemma 11. The extensifih co) with speed? log”(1), wheren =1 — (1/v), and good

from the half-intervalgz, oo) and[z, oo) to arbitrary open and rate functionls(-) given by Theorem 2.

= —y(y=1)""/ TR,
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(113) If —log P(Y1 > y) ~ cy for somec > 0, then the family =~ Lemma 14: Suppose that the assumptions of either figrt

of random variablegV.} obeys an LDP o1f0, co) with speed (ii) or (i) of Theorem 12 are satisfied. Then the fan{ily. }

é, and good rate functiotiz(-) given by Theorem 3. obeys an LDP oif0, co) with the same speed and rate function

(iv) If G € MDA(A) N 8§ and —1log G(y) ~ cy” for some as stated fo{V.} in the corresponding part of Theorem 12.

¢ >0and0 < v < 1, then the family of random variables The proof is in the appendix. The idea is to show that the

{V.} obeys an LDP o0, c0) with speed(2)” and good rate total contribution to the interference from nodes in all annuli

function I,(-) given by Theorem 4. sufficiently far from the origin is negligible and hence, by

(v) If G € R(—c), ¢ > 1, then the family of random variablesLemma 13, that they don't change the rate function in the

{V.} obeys an LDP or0, ) with speedlog (%) and rate LDP. In addition, the Contraction Principle [5, Theorem 4.2.1]

function I5(-) given by Theorem 5. is used to show that the contribution from any finite number
The proof of the theorem requires different techniques of nearby annuli also doesn’t change the rate function.

the cases where the tails Bf decay exponentially or faster, We shall use the above lemma to prove pais(iii) of

and where they decay subexponentially. In the former case, Weeorem 12. For the proof of partsv) and (v), we need the

shall make use of the following lemma and Chernoff’s bountivo lemmas stated below following some definitions; we refer
Lemma 13: Suppose that the family of random variableghe reader to [9, Lemma A3.27] and [9, Lemma A3.26] for

{X.} obeys an LDP on[0,) with speedv(-) and rate their proofs.

function I(z) = ~x for some~ > 0. Let {Y.} be a  Consider the random variable
family of non-negative random variables independer{Lsf },
satisfying e X = ZWZ’“’
P(Yz > ) < exp(—v(e)y') =
where theZ’s are iid positive random variables with distri-
for all e > 0 andz > 0, and for somey’ > ~. DefineZ. = bution function F(-) and they’s are positive constants. We
X.+Y.. Then,{Z.} obeys an LDP ori0, c0) with speedv(-) assume without loss of generality thatxy o ¥, = 1.
and rate functiory(-). Lemma 15: SupposeF’ € MDA(A) NS and ", -, v <

The proof is in the appendix. Loosely speaking, the lemma, for some0 < § < 1. Then,
says that making a small perturbation to the random variables =
X. by adding a noise terii. does not change the rate function P(X =) ~ k7 F(x),
in the LDP if the tails of the random variablés decay \yherek™ is the cardinality of{k > 0 : ¢, = 1}.

sufficiently rapidly. Observe that it is not the case that } Lemma 16: AssumeF € R(—c), for some positive con-
and{Z.} are exponentially equivalent (see [5] for a definition)stant ., say F(z) ~ 2°S(x). If moreovery, . v < oo,
Nevertheless, they do have the same large deviations rg§esome0n < § < min(c, 1). Then =

function.

Next, define P(X >z) ~28(z) whereS(z) = (Z wg)S(x).
I k>0
U’ = Zthl(Rj <Xl < Rjga), =1 Proof of Theorem 12.We first give the proofs of partgi)-
=1 . (#i7). Under these assumptions, we established the LDP for
0 .
k10 I L A {V2} in Theorems 1-3, and the LDP f¢#V. } with the same
Wh=V"+ ZRj v’y k=1, and W= lim W%  gyaed and rate function in Lemma 14. Sifce < V. < W.
7=1 for all ¢ > 0, the large deviation upper and lower bounds on

where R; = /jR. The limit above exists since the randonhalf-intervals also hold fok.. These bounds can be extended
variables U7 are positive, and so the sequen¢®’*} is to a full LDP as in the proof of Theorem 1.

increasing. The reason for the choifie = /jR is that this ~ We nhow prove partiv). As usual, it suffices to prove large
makes the areas of the successive anfuli R;_; < ||z|| < deviation upper and lower bounds for half-intervalsoo) and

R;} equal. (r,00), respectively. Set’® = R*V° and recall that
Observe thaR;“Uj is an upper bound for the interference oo

due to nodes in the annulys: : R; < ||z|| < Rj+1}. More- W = R“’ZWU’“, wherey =1 andyy, = k=2 k> 1.

over, the random variable§? are iid because they are the k=0

sum of the marks of a homogeneous marked Poisson process (10)

over disjoint intervals of equal area. In addition] is a.s. SINc€a > 2, itis clear ;hat there is @ € (0,1) such that
finite. Indeed ad > 2, and sozkZO Py, < oo. We also note that, by [1,

Lemma 2.2],
EW — )\()R_a(]. + Zj—(X/Q)E}/i’ No
i>1 PU° > ) = P(ZYZ- > x) ~ E[No]P(Y1 > )
and this quantity is finite since > 2 and the assumptions of =1
Theorem 12 guaranteBY; < oc. = AP > 1)

Define W. = eW and note thatV? < V. < W.. The Therefore, by the closure property 8f DA(A) and$ under
following lemma holds: tail-equivalence (see, e.g. [9, Proposition 3.3.28 and Lemma
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A3.15]), the law ofU° also belongs ta DA(A)N 8. So, by  Here is a brief outline of the proof. Fix > 0 arbitrarily
Lemma 15, we get small. Observe that from (2) the total interfereniceat the
origin is bounded from below by

[e3%

P(W.>az) = P(RaW > B x) ~ 2P(U0 >

No
= 2P(V0 > w), 70 = (o) S Vil(1Xull < ) = () 3 Vi,
k>1 k=1

R:x>

where the last equality follows from the equalify® =
R*VY. SinceV? < V. < W, we have for allz > 0 that where N, denotes the number of nodes within the disc of
lim s & log P(V. > < limsune” loe2P(V0 > r§d|u5p centered at the origin, and has a Poisson distribution
l?:z)lps ogP(Ve 2 2) < H?f(l)lpg 0g2P(V:" 2 x)] with meanwp?\. Next, define
< —cR*x". 00
7 — (R, 1l < R j
We have used Lemma 9 to obtain the last inequality. A vl = ZYll(RJ < | Xill < Rjga), 520,
matching lower bound for open half-intervals, co) follows =t X
from the LDP forV? stated in Theorem 4. 3 50 b T 7 T
. - 4 Wi =00)U" + > UR)U’, k>1, W= lim Wy,
The proof of (v) is very similar. SinceP(V. > 0) = 1 k=40 Z (1) i
for all ¢ > 0, the large deviation upper and lower bounds for A X
[0,00) and (0, 00) are obvious. So we consider > 0. To where Ry = 0 and R, = Vkp, k > 1. Clearly, the total
obtain the upper bound, we first note that< W, whereW interferenceV is bounded from above bi/. R R
is defined by (10). We also have, by [1, Lemma 2.2], that We can now derive LDPs for the familigsV°} and{cW}
exactly as in the previous sections. The one technical condition

j=1

PU°>z) = P(Zyi > z) ~ E[No]P(Y; > z) that needs to be checked is th@kz0 Y9 < oo for some
Pt § € (0,1), whereyy = 1 and vy, = £(Ry)/£(0), k > 1. This
= Xz °S(2), condition is satisfied because of the assumption in (11) about

the tail of the attenuation function.

for some slowly varying functiorti(-). This implies that the  Next, we note that the rate functions of the LDPs obtained
law of U” is in R(—c). Hence, by Lemma 186, in the previous sections did not depend on the intensityf
R I\ —C~ /1 the Poisson process, and that the param@&tenly entered

) ~ (*) S( )’ via the attenuation function for nodes in the disc closest to
the origin. Thus, by analogy, the rate functions farl’®}
and {W} will simply have R~ replaced by¢(p) and £(0),
respectively. So, letting;(-) denote the speed corresponding

1 to the rate functior;(-) (¢ = 1,...,5) in Theorem 12 and by
log(1/¢) log P(We 2 ) —» —¢ ase = 0. Ii(r)(-), r > 0, the rate function obtained b¥;(-) replacing

Since V. < W., we have the desired large deviation uppeft ~ oY £(r) we have, for allp > 0 andz > 0,

P(W. > 2) = P(R°W >

£ £

for a suitable slowly varying functioS(~). It readily follows,
using the definition of a slowly varying function, that

bound forV; on half-intervaldz, co). A matching lower bound 79 () < Tim it 1 log P(eTh

for open half-intervalgz, co) follows from the LDP forV° —1;"(s) < limin vi(e) 8 (eW > )

stated in Theorem 5. This concludes the proof of the theorem. 1 . ©

o < lim sup e log P(eW > z) < I,/ (x).
e—0 )

Letting p tend to zero and using the continuity 6f(-) and
) ) i ) £(-), we obtain the desired LDPs for the total interferefice
In this section, we discuss some variants of the model Wgore precisely, we obtain upper and lower bounds on closed
have studied as well as some implications for communicatigp,q open half-intervals, which can be extended to any closed
networks. _ . and open set by standard techniques, see the proof of Theorem
We assumed an attenuation function of the fobtx) = 1).
max(R, |[z[|)~* for convenience. In fact, our analysis easily "| g -, > ( be a positive constant. Using similar arguments,
carries over to quite general attenuation functions, as We N@ye can show that all the conclusions of Theorem 12 continue

argue. Suppose thé(x) = (||z[|) for some continuous, Non- 1 hold with R* replaced byl /((r.) if we assume that the
increasing functiorf : [0, c0) — (0, 00). Suppose also that the 5ttenuation function is of the form

following tail condition holds for all- sufficiently large: )
é(m{() if v <7e

Je>0,a>2: L(r) <er . (11) Lx) if x>,

VI. DISCUSSION

The attenuation functio.(x) = ¢(||z||) = (1 + ||z||)~<, for wherel: (0,00) — (0,00) is a continuous and non-increasing
instance, satisfies this conditiondf > 2. function which satisfieg(11). (In Section 1l, we followed
We now claim that all the conclusions of Theorem 12 corconvention and defined the attenuation function to be strictly
tinue to hold if we replacé?® by 1/¢(0) in the corresponding positive, but there is no harm in allowing it to take the value
rate functions. zero.) To be more specific, we provide here a possible choice
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for the bounds orl/; the LDPs are then obtained arguing as The LDPs we have obtained are crude estimates of the
above (i.e. the case. = 0). For a fixedp > 0, consider the probability of the interference exceeding a threshold. Indeed,

lower bound forV defined by: since LDPs provide the asymptotics of probabilities on the
-0 logarithmic scale, the rate functions do not even depend on
Ve o= Ulp+1)re) Z Yil(re < [ Xell < (p+ Dre) the intensity of the Poisson process of node locations, whereas
E>1

the actual probability certainly does! A natural question,
o therefore, is whether we can get more refined estimates of

= (p+1re) ZY’“ this exceedance probability. We leave this as a problem for
= future research. Here we limit ourselves to noting that one

whereN denotes the number of nodes within the annul@PProach to estimating the exceedance probability is via fast
(z: re < lz| < (p+ 1)r.}, and has a Poisson distributiopSimulation. Our LDPs can be of help in developing such a
with megmr(pQ +2p)r2)\. Next, define scheme as they provide some insight into the required change

of measure.

While we have presented LDPs for the interference in
the case of general signal power distributions, more precise
L resul[tlsli':lrﬁ_hav?ri]lablehin E[he r?PeCit?ll csse of It?ayllc(aigp fading;
T 71 5 \F7i % see . The throughput achievable by a network of sensors
Wi = lre)U" + ZE(RJ')UJ’ k=1, W= kh—>H;o Wi, transmitting to a cluster head is considered in [3]. The authors

model the system at packet level using a loss network, and
where R, = Vkr., k > 1. Clearly, the total interference atmodel interference using a Poisson point process of node
the origin V' is bounded from above by . locations and Rayleigh fading. Our results here could form the

We can use this generalization to analyze the effect ofbasis for studying throughput and other performance measures
scheduling strategy which ensures that all transmitters withim sensor networks with more general attenuation functions.
some vicinity of the receiver must remain silent. (This can be
thought of as a simplistic model of the 802.11 protocol with VIl. CONCLUDING REMARKS

RTS/CTS, with the exclusion zone corresponding to the regionwe established a large deviation principle for the total
within which the CTS can be heard. It is simplistic becausgterference in a model of an ad-hoc wireless network. We also
this will actually be a random region and, moreover, the abilifentified the most likely way in which such large deviations
of a node to hear the CTS will be correlated with the fading @frise.
its own signal to the receiver. By assuming that nodes within awe modelled node locations using a Poisson point process
fixed radius are silenced, we are ignoring this correlation.) Sayid considered a number of different models for the signal
this exclusion zone is a circle of radiug centered on the power distribution. While we considered a Hertzian model
receiver. Assuming that no other transmitters are silencst attenuation, the techniques used can be extended to other
(again, a simplifying assumption, as other transmissions goiffbdels as well, and we outlined some such extensions. Our
on in parallel will create their own exclusion zones), this cagain findings were as follows: if signal powers have superex-
be modelled by simply considering the attenuation functigsbnentially decaying tails, large values of the interference are
{(-) defined above. We can also incorporate the effect gfie to a combination of a large number of interfering nodes
spreading gain in a CDMA system, as described in Sectigfd higher signal power at these nodes, whereas for signal
Il. Suppose the spreading gainligs, i.e., only a fractiony powers with exponential or subexponential tails, large values

of the transmitted power interferes with the receiver. If this igf the total interference are due to a single interferer with high
combined with the above scheduling strategy, then the attepawer.

07 = SOVil(R, < X < Byp) 521,

i=1

=2

ation function is effectively = ¢/, and S0y := GL(r) is It remains an open problem to extend the results to node
the quantity that enters into the rate function in placéf* ocation models other than the Poissonian one. Such models
in Theorem 12. could be motivated, for example, by algorithms for channel

The above expression gives us some insight into the relatiocation that ensure that nearby nodes do not transmit on
benefits of spreading vs. scheduling. Suppé(ssg is roughly the same channel. We considered one very simple example
of the form z=*. Then, doublingr. decreases/i..x by of such a model, but it would be of interest to study more
2%, at the cost of silencingt times as many nodes duringrealistic examples.
each transmission period. On the other hand, increasing the
spreading gain b2* would require a proportionate increase REFERENCES
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1999, Then the finiteness of the Laplace transform for edck

c follows by (14) noticing that by the choice of it holds
Jor e~ ((=9e=0ydy < 00, By (4), for eachr > 0 ande, 6 >
APPENDIX 0 such thatd < § < cR“/e, we have

Proof of Lemma 6 Not? that 8 > 1 by '_[he_ cor_1v_ex_ity of elog P(V > 2) < —fex + cAo(eR0). (15)

log¢(-) and that3 and ¢ are unique. It is implicit in the

assumption of the lemma thak-) is finite everywhere, i.e., Choosef = (c — §)R* /e and take thdimsup ase — 0 in

thatY; has a super-exponentially decaying tail. Now considét5). By the finiteness of the Laplace transform and (5) we
have

%

9_R log & 1/p
_?@ Ogg) , >0 limsupelog P(V? > z) < —(c — §)R*z, x> 0.

e—0
where~y > 0 is a constant we shall specify later. Note that f
anyz > 0, 0 is strictly positive for alle sufficiently small. For
¢ andf as above, we have by (4) and (5) that Proof of Lemma 8 Fix 6 > 0. By assumption there exists

M > 0 such that

% he conclusion follows letting tend to0. ¢

1/+10g PV >z) <
log'/"(1/e) exp(—(1 = 0)ey”) = P(Y1 > y) = exp(—(1 + d)cy”)
% 1/8
_11;% (7 log E) for all y > M. SinceY; > 0 we have
log'/"(1/e) € s
(4R ) -1, (12) BRI =140 [ PP iy, 0ER
log'/7(1/¢) ’

e Hence, for allf > 1,
Now eR~*0 = (vylog(x/e))/? tends to infinity asc tends

to zero. Hence, by the assumption of the lemma, we have for B(0) > P_(0) = /Oo Oy=(+)ey” gy, (16)
arbitrary § > 0 that - M

In order to obtain the logarithmic asymptotics of the above
integral, we need a version of Laplace’s method which is
detailed in Lemma 17 below. By this lemma, we have

lim sup

e—0 1Og1/6(1/€) ¢(€R_a9)

9
< lim sup —————— exp((1 + 0)é(e R~“0)")
=0 log 2 (1/e) log ¥ (6) ~ (y — 1y /(1 +8)e) /O~ DgMn. (a7)
: 3 N T
- hglj(?p log?(1/¢) eXp((l +o)eylog E) Similarly, for all 6 > 0,
€ x\ (1+6)éy oo
=limsup —————( — . < — OM Oy—(1—8)cy”
msp 7 () o0) < wa(0) = 0 [ e . (9)
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By Lemma 17 in the appendix, together with the principle okgain, choose: = #—?, for some3 > 1, and take logarithms
the largest term (see, e.g., [10, Lemma 2.1]), we deduce thatthe above inequality. Then,

- B B (0)—6—"
log 14 (6) ~ (v — 1)y /"((1 = 6)e) "/ =Hgl/n. (19) i inf 28 i er*Wdy >
9—co (y— 1)y~ Yna=-t/(r=1gt/n =

Sinced > 0 can be chosen arbitrarily small, it follows from

. log(egyow)—ayo(19)”—01*‘3 — PM—aMTy
16)-(19) that
(16)-(19) hgrgg‘}f T Vi A gi
log 6(6) ~ (7 — 1)y~/1c=1/ =D, gt o1

which is the claim of the lemmas where the last equality follows from the fact that

We need the following variant of Laplace’s method to proveefvo(9)—avo(6)"=6""" _ 0M—aM™ _, 0yo(8)—ayo(6)"—6"""
Lemma 8.

Lemma 17: For fixed constantd/ > 0, a > 0 andy > 1, asf — co. By (20) and (21), we get

define the functiony(9) = [ e?¥=*¥"dy, 6 > 0, andn = vo(0)-0~7
1—(1/7). Then log /M e Wdy ~ (y = 1)y~ 1m0 DG,
_ (o (22)
log (6) ~ (v — 1)y~ /7o~ 0=1gt/n, Similarly, one can prove that
Proof. It is implicit from the assumption thap(0) is finite 1,4 /oO F W dy o (y—1)y Y1~ = Dgl/n(23)
everywhere. Consider the function Yo (0)+0—5
Finally, for any#,e > 0, we have
Fo(y) =0y —ay”, y>0. Y Y 4
9eeMin{Fo(yo(0)—€),Fo (yo(0)+¢)}
Note that it is differentiable with a unigue maximum attained yo(0)+e » A
atyo(6) = (£)/0~D and < [ Py < eelm),
) yo(0)—¢
Folyo(9)) = (v — 1)7‘1/%‘1/(7‘1)91/". Choose agaim = #~°, 8 > 1, and take the logarithm in the
above inequality. Then it is readily seen that
For eachd > 0 large enough and > 0 we have Yo (0)+6"
F,
yo(0)—¢ vol0)— 4 log/ , ¢ "Wdy ~ Fy(yo(0))
/ ng(y)dy _ / deFe®) yo(0)—0°
u uo B = (y = Dy Dgln, (24)
1 _
< ( sup m) [eF"(yO(G) ) — er(M)} asf — oo. The conclusion follows by (22), (23), (24) and the
ye[M’i’O(G)‘E] o\Y principle of the largest term (see, e.g., [10, Lemma 24]).
F 6)—
S @) —o)° owo@)=e) Proof of Lemma 9. The proof uses a key result about
0 1 subexponential distributions [1, Lemma 2.2 p. 259], which

= O 1eG(yo(G)—E)—a(yo(f))—e)”.
0 —avy(yo(d) —e)'—

No
Chooses = #~# for someg > 1, and take logarithms in the P(ZYi > I) ~ E[No|P(Y1 > z),
above inequality. Then, i=1

states that

s asx — oo, under the assumption that the are iid subexpo-
log fﬁf(e)_e efoWdy _ nential and independent @¥,, which has exponential tail. In
(v = D)y~ Vnq=1/G=0g1/n = our case,Ny is Poisson with mean, so the assumptions
PR S o .5\ hold. Thus, for alld > 0 small enough, it holds
9((@)1 T -0 ﬁ) —a((a)l T—0 ﬁ)

lim sup
60— o0

fim sup (= 1)y na-1/G-g/n No
~ 1 (20) PV > ) < P(ZYi > Rz — 5)/5)
=1
Similarly, for eachd > 0 large enough and > 0 we have ~ XNP(Y1 > R(x — §)/e), ase — 0.
Yo(0)—e yo(B)—e 1 The claim of the lemma follows from the assumption
/ e Wdy = / —— deW) —log P(Y1 > y) ~ ¢y, by letting§ decrease to zere.
M M Fy(y) ’ '
> ( inf )[epg(yu(g)_e) B eF"(M)} Proof of Lemma 10 Since Y; has compact support with
~ \yelMyo(0)—<] Fy(y) supremumb > 0, for arbitrarily smallé > 0, there is ap > 0

(depending o) such thatP(Y; > (1 — §)b) = p. Recall

[eeyo(e)—ayo(e)tee _ eé)]&{—alvﬂ] . 'dt ) : ©
*  that the independent thinning with retention probabifityf

> -
—0—ayMr1
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a Poisson point process with intensityis a Poisson point Proof of Lemma 11 For arbitraryn > 0, we have

process with intensityu (see, e.g., [4]). Therefore, if we RO

define Ny = ZZN:"I 1(Y; > (1 —6)b), then Ny is a Poisson  P(V? >z) > P(No > n,min{Yy,...,Y,} > —)

random variable with meap),. We now have cn
No

VP> eR™(1-68)b Y 1(Y; > (1-6)b) = eR™*(1—)bNo.

i=1

P(No 2 n)(P(¥i > }Zx)) (28)

Denote by [z] the integer part ofz € R, and take
n = [k/(clog!/7(1/¢))], where the constant > 0 will

Thus, o _ R be specified later. Along similar lines as in the proof of
PV, >2) > P(No > m), Lemma 18 one can show that the family of random vari-
f Hich we deduce that. for > 0 ables{clog'/7(1/¢)Ny} obeys an LDP 010, o) with speed
rom which we deduce that, for > 0, .
- alogl/lm/a) log slogl/lm/e)) and good rate functiod (z) =
iminf ———— 0 . Therefore,
hgn_}glf Tog(1/7) log P(V; > x) x
. e . Rz log P(Np > ——
> - v h =
= hgi%lf log(1/¢) logP(NO - e(1- 5)b) ( 810g1/7(1/€)) .
Rz S ~Elogn(1
= — ~ g ~ 0g €)s
O (25) clog!/7(1/e) (elogwl/s)) ¢ o8 1/e)
The equality in(25) follows by Lemma 18 below (which ase — 0, and so,
guarantees that the family of random variab{esvy} obeys . €
an LDP onl0, co) with speed? log 1 and good rate function lim, log"(1/2) log P(No 2 n) = —k. (29)
J(x) = z). Letting 6 decrease to zero, we obtain the claim of )
the lemmas We have suppressed the dependence oh ¢ for notational

We now provide a large deviation principle for the PoissofPnvenience. Next, by the assumption thadbg P(Y1 > y) ~
distribution, which was used in the proof of Lemma 10 abov&/» We obtain

(see also the proof of Lemma 11). o o 1/~
Lemma 18: Let X be a Poisson random variable withnlogP(Yl > R x) ~— 1’;6 (R zlog (1/E)>7
meany > 0. Then the family of random variablgs X } obeys en elog'/7(1/e) .
an LDP on[0, co) with speed? log 2 and good rate function __c(RYx)7log"(1/¢)
J(z) ==z. 1 e’
Proof We shall show that and so,
—z < limi _c € R*x c(R%x)"
r lllc:n_)l(l;lf log(é/a) 10g P(EX > 37) ili}(l) Wnlogp(yl > ) - _ (H’Yil) ) (30)
<limsup ———log P(e X > z) < —u, (26) o _
-0 log(1l/e) Substituting (29) and (30) in (28), we get
for all x > 0. Then the claim follows by extending these o c 0 c(Rez)
bounds to arbitrary open and closed sets by standard tech- hggglfmlog PV, >x) > -k — a1

niques (see the proof of Theorem 1). The bound&i) are
obvious forz = 0. Forz > 0 ande > 0 small enough we The maximum value of the lower bound is attainedrat=
have ((y — 1)e)"/7R*z. Substituting this into the right-hand side
of the latter inequality, we get
P(X > [z/e] —1) < P(eX > ) .
iminf —— 0 > _ —_ 1) pe

< P(eX >z) < P(X > [z/e]), lim inf g™ (1/2) log P(V.' > ) > —y(y — 1) "¢ /"R,
where [z] denotes the integer part af So, using the usual 4 claimed. This completes the proof of the lemma.
upper boundcjor the tal (?If the Porl]sson distribution we get, for o following variant of the principle of the largest term is
anyz > 0 ande > 0 small enough, used in the proof of Theorem 1.

ple/el=1 _# Lemma 19: Let {ay},>1 and{b,},>1 be two sequences
([z/e] —11° < PleX > 1) < PleX 2 2) of positive numbers such that, > b, for all n > 1. Assume
_ h
< exp{-p+ [a/e) - [e/ellog(u"a/e)}.  @7) "
By Stirling’s formula we have liminf e, logan > —a and limsup e, logbn < —b, (31)

([z/e]-1)! ~ V2 ([z/e]-1) /=D exp{—([z/e]-1)}, where{c, },>1 is a sequence of positive numbers converging
ase — 0. So finally we get(26) by taking the logarithm, © 0, @nd0 < a <b. Then

irgu(l;p)lyi:g by £/1og(1/¢) and passing to the limit as— 0 liminf ¢, log(an — bn) > —a.
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Proof Using assumptior{31) and the fact thad < a < b it %log% and good rate function given by
follows that for alle > 0 small enoughb > a + 2¢ and there RO + Zk . k Ro
existsn = n(e) such that for alln > 7 it holds inf{ 0 ; =L g+ 3 Ry = x} _r

a, > e (@te)/en and b, < e (=) /en,

Thus Now definelV* =20k By U We have
an — by > e~ (0¥ en = (bme)/en log E[e/V"] = Z log E[e?%5 V7]
_ ef(aJrs)/cn (1 o 67(b70’725)/c") ) j=k+1
Taking the logarithm, multiplying by, and passing to the - Ek: Ao[¢(0R;") — 1]. (32)
Jj=k+1

limit as n — oo in the above inequality we have ‘
Indeed the R—*U? are iid and have the same distribu-

i 0 - ] Te =
liminf e, log(an — by) > —(a +&). tion as V°. Now, recall thatR; VIR, thus R;

N 00 a/2 . . .
% R,_“. Using the convexity of¢(-), we obtain that,
The claim follows since is arbitrary.o forall j > k+1,

Proof of Lemma 13 For eache > 0, let Y. be independent /2 o2
of X. and have distribution given by S(OR) < (k> S(OR) + (1 B (k> ) $(0)
J - y ]

) J
P(Y: > z) = exp(~v(e)y'z) ¥z > 0. /2
= () [p(6R, ) — 1] + 1.

Then, Y. stochastically dominatey. and so they can be J
coupled in such a way that > Y. almost surely. Moreover, Substituting this in (32), we get

it is easy to see thatY.} obeys an LDP orf0, co) with speed L SN
v(-) and rate functiom’z. SinceY: is independent ofx., log E[e”"] < Ao[¢(OR,®) — 1] > ()
we have by Theorem 4.14 in [10] that the fam{lyX.,Y.)} g1 N

satisfies an LDP of), c0)? with speedv(-) and rate function

J(x,y) = vyr + +'y. Therefore, by the contraction principle /2

(see e.g. [5, Theorem 4.2.1]) the famifiy = X, + Y. obeys wherec, = Z;’ik,H (f) . Note that this infinite sum is

an LDP on[0, co) with speedv(-) and good rate function finite by the assumption that > 2. Now using the Chernoff’s
bound we have, for al# > 0,

clo(OR,“),

1(z) :miﬂ}f:ﬂx*V'y' i
P(WF > z) <exp (—0z + e Ao (OR,?)) -
By similar computations as in the proof of Lemma 6 it follows

«
Rix

Since~y’ > ~ it holds I(2) = vz.

We have thus shown thz{lt?e} obeys an LDP with the same
speed and rate function gsX. }. Moreover, sincer; is non- lim SUD 77 log P(WE > z) < —
negative, we haveX, < Z. < Z. for all ¢ > 0. Hence, we =0 log(1/e)
can obtain lower bounds oR(Z. > z) and upper bounds on Moreover,W, = Wk + WPk, and we showed above thiily*}

P(Z. > z) from the corresponding bounds oXi. and Z., obeys an LDP or0, co) with speed! log 1 and rate function
respectively. These can be extended to a full LDP as in the(z) = R“x/b. Hence, by Lemma 13 we see thflV.}
proof of Theorem 1o also obeys an LDP with the same speed and rate function, as

. claimed.o
Proof of Lemma 14 We shall prove the lemma in the

case of bounded;. The other two cases are similar. Define Ayalvadi Ganeshreceived his B.Tech. from the Indian In-
Ul = eU’/ and WF = eWP*. Since the random vari- stitute of Technology, Madras, in 1988, and his M.S. and Ph.D.

ablesU!,U2,... are iid, and for each] the family {U7} from Cornell University in 1991 and 1995, all in Electrical En-

obeys an LDP or{0, o) with speed 10g and good rate gineering. He was with Microsoft Research, Cambridge from
function J(z) = ﬂg (the proof is |dent|cal to Theorem 1),1999 to 2007 and is now at the Department of Mathematics,
then the fami|y{( ...,UF)} satisfies an LDP om0, oo)* University of Bristol. His research interests include stochastic

with speed log and good rate functio/(z1,...,z,) = networks, large deviations and random graphs.

(1/b)E 1T (see e.g. [10, Theorem 4.14]). Similarly, by Giovanni Luca Torrisi graduated in Mathematics at the
Theorem 1 the family{(V°,UL,...,UF)} satisfies an LDP University of Roma "La Sapienza” in 1994, and received his
on [0,00)* with speed ! log 1 and good rate function Ph.D. in Mathematics from the University of Milano in 2000.
I(wg, @1, ... ) = (R%zo + X", @;)/b. Therefore, by the Since 2001, he is a researcher in Applied Probability at the
contracuon prmmple (see e.g. [5 Theorem 4.2.1)) it follow&NR. He is interested in stochastic modeling and performance
that the family {IV*} obeys an LDP or{0,c0) with speed evaluation of queueing and communication networks.




