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Large deviations of the interference in a wireless
communication model
Ayalvadi J. Ganesh and Giovanni Luca Torrisi

Abstract—Interference from other users limits the capacity,
and possibly the connectivity, of wireless networks. A simple
model of a wireless ad-hoc network, in which node locations are
described by a homogeneous Poisson point process, and node
transmission powers are random, is considered in this paper. A
large deviation principle for the interference is presented under
different assumptions on the distribution of transmission powers.

Index Terms—Large deviations, Poisson shot noise, subexpo-
nential distributions, fading channels, CDMA.

I. I NTRODUCTION

Wireless ad-hoc and sensor networks have been the topic
of much recent research. Questions of interest include the
connectivity of the network, namely the ability of any two
nodes to communicate, possibly via intermediate nodes, and
the information transport capacity of the network [14], [6],
[7]. The factor limiting the communication between any two
nodes is the ratio of signal power to the sum of noise and
interference. As such, the SINR ratio (signal to interference
plus noise ratio) is an object of interest in its own right. In this
paper, we study the large deviations asymptotic of this quantity
in the context of a simple model of a wireless network [2],
which is described in the next section.

The SINR determines whether a given pair of nodes can talk
to each other at a given time. The interference is determined
by which other nodes are transmitting simultaneously, as well
as the degree of orthogonality between the codes they are
using. If the codes are perfectly orthogonal, then there will
be no interference. Most cellular systems employ channel as-
signment schemes to ensure that codes used in nearby cells are
indeed orthogonal. Wireless LANs (local area networks) use
scheduling to ensure that nearby nodes do not transmit simulta-
neously. Motivated by ad-hoc networks, we are interested in a
scenario where there is no centralized infrastructure and where
nodes may belong to multiple administrative domains. In such
a scenario, neither channel assignment nor sophisticated forms
of scheduling may be feasible. Our aim is to determine how
the outage probability depends on factors such as node density
and spreading (or processing) gain.

II. M ODEL DESCRIPTION

Let {(Xk, Pk)}k≥1 be a marked point process on the plane,
where {Xk}k≥1 denotes the locations of antennas, and the
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marksPk ∈ (0,∞) denote their transmission powers. Without
loss of generality, we shall consider a receiver located at the
origin. Letw andβ be positive constants which denote, respec-
tively, the noise power at the receiver, and the threshold SINR
needed for successful reception of a signal. The physical signal
propagation is described by a measurable positive function
L : R2 → (0,∞), which gives the attenuation or path-loss
of the signal. In addition, the signal undergoes random fading
(due to occluding objects, reflections, multi-path interference
etc.). We denote byHn the random fading between noden
and the origin, and defineYn = PnHn. Thus,YnL(Xn) is the
received power at the origin due to the transmitter at noden.

Within this framework we say that the receiver at the origin
can decode the signal emitted by stationn if

YnL(Xn)
w +

∑
k 6=n YkL(Xk)

≥ β. (1)

The sum in the denominator is restricted to those stations
which are active during the period of interest. The marked
point process can be taken as referring to this subset.

The attenuation function is often taken to be isotropic
(i.e., rotation invariant) and of the formL(x) = ‖x‖−α or
(1+‖x‖)−α or max(R, ‖x‖)−α, where the symbol‖·‖ denotes
the Euclidean norm, andα,R > 0 are positive constants. The
first function exhibits infinite interference in the immediate
vicinity of an antenna, which is not physical. The last choice
of attenuation function corresponds to the case of isotropic
antennas with ideal Hertzian propagation, and is the one we
shall work with. (We make the assumption of isotropy only for
notational convenience. It should be clear from our derivations
that we sum up the contributions to interference at a point
from successive annuli around it, and the contribution from
an annulus can be readily calculated for a given anisotropic
attenuation function. In particular, our framework can deal
with directional antennas.) We shall assume thatα > 2, which
is an integrability condition needed to ensure that the total
interference is finite almost surely, and which is observed to
hold in practice.

The basic model described above is quite general and
encompasses the case where the signal emitted by stationn
interferes with the cumulative signals emitted from stations
k 6= n in such a way that only some proportionφ of these
cumulative signals should be considered as noise. Indeed,
this situation is recovered replacingL(·) by φL̃(·), where
L̃ : R2 → (0,∞) is again a positive and measurable
function. The coefficientφ weights the effect of interferences,
depending on the orthogonality between codes used during
simultaneous transmissions. It is equal to1 in a narrow band
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system, and is smaller than 1 in a broadband system that uses
CDMA (code division multiple access); see, for instance, [8],
[16]. The physical model of [14] assumesφ = 1; the models
of [13], [6], [7] allow φ to be smaller than1.

From the modelling perspective, the effect ofφ in (1) can be
absorbed into the thresholdβ (with the noise power suitably
modified), so we shall assume without loss of generality that
φ = 1. From the application perspective, we are interested in
φ � 1, as is the case for example in a CDMA system with
large spreading gain. In this case, we can hope that the SINR
might exceed the threshold even if all stations transmit simul-
taneously, in which case no complicated scheduling scheme is
needed. With that interpretation, the results of this paper can be
seen as providing a guide to the trade-off achievable between
node density and spreading gain of the code. Rewriting (1)
allowingφ < 1, we see that the SINR is too small for decoding
if, and only if,∑

k 6=n

YkL(Xk) >
1
φ

(YnL(Xn)
β

− w
)
.

Thus, the probability of decoding failure is given by

P
(∑

k 6=n

YkL(Xk) >
c

φ

)
where c =

YnL(Xn)
β

− w.

The scaling regime we will consider is the logarithmic as-
ymptotics of this probability asφ tends to zero, i.e., a large
deviations scaling regime. In other words, we are interested in
systems with large bandwidth, and concomitant coding gain,
in a regime in which the probability of the SINR falling below
the required threshold is small.

As remarked above, we restrict ourselves to the case
of ideal Hertzian propagation, so thatL(x) = `(‖x‖) =
max(R, ‖x‖)−α. Finally, we assume that the point process
{Xk}k≥1 is a homogeneous Poisson process of intensityλ and
that both the marks and the shadow fading to the origin are iid
and independent of the locations. In particular,Yk = PkHk is
an iid sequence independent of the point process{Xk}. From
the modelling perspective, it suffices to considerYk rather than
Pk andHk separately. With some abuse of terminology, we
shall henceforth refer toYk as the transmission power and
use{(Xk, Yk)}k≥1 as our basic marked point process. With
these assumptions, the denominator of the left-hand side of
(1) reduces tow +

∑
k 6=n Yk`(‖Xk‖).

Look at the SINR between the receiver at the origin and
a point located atx ∈ R2 of the Poisson process, denote by
Y the transmission power of the antenna located atx, and
assumeY to be independent of the marked Poisson process
{(Xk, Yk)}k≥1. Let Px denote the Palm probability of the
Poisson process atx ∈ R2 (i.e. the conditional law of the
Poisson process, given that it has a point atx), and define the
random variable

V =
∑
k≥1

Yk`(‖Xk‖), where`(x) = max(R, x)−α. (2)

Due to Slivnyak’s theorem (see e.g. [4]) and the independence

betweenY and{(Xk, Yk)}k≥1, we have

Px

( Y `(‖x‖)
w + V − Y `(‖x‖)

< β
∣∣∣ Y = y

)
= P

(Y `(‖x‖)
w + V

< β
∣∣∣ Y = y

)
= P (V > (y`(‖x‖)/β)− w).

The main aim of this paper is to provide large deviation
principles for the total interferenceV at the origin. Since the
noise powerw is a positive constant, this will yield the large
deviations for the SINR ratio.

If α > 2, it can be readily verified from (2) thatEV <∞
if EY1 <∞, and soV is finite almost surely (a.s.) ifY1 has
finite mean. We shall consider several different models for the
law of Y1, namely, distributions with bounded support, those
with a tail which is asymptotically exponentially equivalent to
the tail of a Weibull or Exponential distribution (see Section
III for the definition of asymptotic exponential equivalence),
and those with regularly varying tails. The Weibull assumption
on the distribution of the transmission powers is particularly
appealing in the context of wireless networks as a recent
work by Sagias and Karagiannis [15] states that the fading in
wireless channels can be modelled by a Weibull distribution
(typically with Gaussian tail).

In order to describe the structure of the paper we introduce
some more notation. DefineR0 = 0, Rk =

√
kR for k ≥ 1,

and let

V k =
∞∑

i=1

YiL(Xi)1(Rk ≤ ‖Xi‖ < Rk+1), k ≥ 0

be the total interference at the origin due to sources at distance
betweenRk and Rk+1; here 1(A) denotes the indicator of
the eventA. In particular, note thatV =

∑
k≥0 V

k. The
article is organized as follows. In Section III we give some
preliminaries on large deviations, heavy-tailed distributions
and extreme value theory. In Section IV we establish large
deviation principles for the random variablesV 0

ε = εV 0 under
different assumptions on the transmission powers. Specifically,
we consider the cases where the distribution of the transmis-
sion power has (i) bounded support, (ii) superexponential tails,
(iii) exponential tails, (iv) subexponential tails and belongs
to the domain of attraction of the Gumbel distribution, (v)
regularly varying tails. In Section V we extend these results
to large deviation principles for the total interferenceVε = εV .
The different cases give rise to different speeds for the large
deviation principles, with the speed decreasing as the tail
grows heavier.

III. PRELIMINARIES AND NOTATION

We recall here some basic definitions in large deviations
theory. A family of probability measures{µε}ε>0 on (R,B)
obeys a large deviation principle (LDP) with rate functionI(·)
and speedv(·) if I : R → [0,∞] is a lower semi-continuous
function,v : (0,∞) → (0,∞) is a measurable function which
diverges to infinity at the origin, and the following inequalities
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hold for every Borel setB ∈ B:

− inf
x∈B◦

I(x) ≤ lim inf
ε→0

1
v(ε)

logµε(B)

≤ lim sup
ε→0

1
v(ε)

logµε(B) ≤ − inf
x∈B

I(x),

whereB◦ denotes the interior ofB andB denotes the closure
of B. Similarly, we say that a family ofR-valued random
variables{Vε}ε>0 obeys an LDP if{µε}ε>0 obeys an LDP
and µε(·) = P (Vε ∈ ·). We point out that the lower semi-
continuity of I(·) means that its level sets:

{x ∈ R : I(x) ≤ a}, a ≥ 0,

are closed; when the level sets are compact the rate function
I(·) is said to be good.

Throughout this paper we writef(x) ∼ g(x) if f(x) and
g(x) are asymptotically equivalent, i.e.limx→∞ f(x)/g(x) =
1; moreover, we say thatf(x) and g(x) are asymptotically
exponentially equivalent iflog f(x) ∼ log g(x).

We conclude this section with some preliminaries on heavy-
tailed distributions. Recall that a random variable is said to
be subexponential if its distribution functionG(·) has support
(0,∞) andG∗2(x) ∼ 2G(x) (see, e.g., [1, p. 251] and [9, pp.
39-40]). HereG = 1 − G denotes the tail of the distribution
functionG(·) andG∗2(·) denotes the two-fold convolution of
G(·).

The family of subexponential distribution functions will be
denoted byS. It can be classified using extreme value theory,
as follows. A positive functiong(·) on (0,∞) is said to be
regularly varying at infinity of indexc ∈ R, written g ∈ R(c),
if g(x) ∼ xcS(x) asx→∞, whereS(·) is a slowly varying
function, i.e.limx→∞ S(tx)/S(x) = 1 for eacht > 0. Goldie
and Resnick [12] showed that ifG ∈ S and satisfies some
smoothness conditions, thenG(·) belongs to the maximum
domain of attraction of either the Frechét distributionΦc(x) =
e−x−c

, c > 0, or the Gumbel distributionΛ(x) = e−e−x

. In
the former case, it has regularly varying tail of index−c. We
write G ∈MDA(Λ) if G(·) belongs to the maximum domain
of attraction of the Gumbel distribution.

IV. L ARGE DEVIATIONS OF THE TRUNCATED

INTERFERENCE

In this section we show the following large deviation
principles, which correspond respectively to the cases where
the transmission powersYk are bounded, have Weibullian tails
which are superexponential, exponential or subexponential, or
have regularly varying tails.

Theorem 1: Suppose thatY1 has bounded support with
supremumb which is strictly positive. Then the family of
random variables{V 0

ε } obeys an LDP on[0,∞) with speed
1
ε log 1

ε and good rate function

I1(x) =
Rαx

b
.

Theorem 2: Suppose that there exist constantsc > 0 and
γ > 1 such that− logP (Y1 > y) ∼ cyγ . Define η = 1 −

(1/γ). Then the family of random variables{V 0
ε } obeys an

LDP on [0,∞) with speed1
ε logη( 1

ε ) and good rate function

I2(x) = γ(γ − 1)−ηc1/γRαx.

Theorem 3: Suppose that there exists a constantc > 0
such that− logP (Y1 > y) ∼ cy. Then the family of random
variables{V 0

ε } obeys an LDP on[0,∞) with speed1
ε and

good rate function

I3(x) = cRαx.

Theorem 4: Suppose thatY1 is subexponential and that
there exist constantsc > 0 and 0 < γ < 1 such that
− logP (Y1 > y) ∼ cyγ . Then the family of random variables
{V 0

ε } obeys an LDP on[0,∞) with speed( 1
ε )γ and good rate

function
I4(x) = cRαγxγ .

Theorem 5: Suppose thatP (Y1 > y) ∼ y−cS(y), for
some constantc > 1 and slowly varying functionS(·). Then
the family of random variables{V 0

ε } obeys an LDP on[0,∞)
with speedlog

(
1
ε

)
and rate function

I5(x) =
{

0 if x = 0
c if x > 0.

Observe that asγ tends to infinity the speed and the rate
function of the LDP in Theorem 2 tend to those for the case
of bounded transmission powers (withb = 1). Similarly, as
γ tends to1, the speed and the rate function of Theorems 2
and 4 tend to those for the case of transmission powers with
tails asymptotically exponentially equivalent to the tail of an
Exponential distribution.

Before going into the details of the proofs, we remark
briefly on the intuition behind these results. The theorems
above provide LDPs for Poisson shot noise under different
conditions on the shot shape (the distribution ofY1). The-
orem 1 basically gives the large deviations for a Poisson
random variable, since the shot in this case is effectively a
constant. The speed1ε log

(
1
ε

)
comes from the fact that the

tail of a Poisson distribution behaves like1/n!. WhenY1 has
superexponential Weibull tails, there is an interaction between
the tail asymptotics of the Poisson distribution and that of the
shot, both of which combine to contribute to the tail of the
Poisson shot noise. Finally, when the shot has exponential or
subexponential tails, it dominates and the Poisson distribution
plays no role.

This intuition also explains why the intensityλ of the
Poisson point process of transmitters plays no role in the large
deviation rate function, in any of the theorems above. In the
exponential and subexponential cases, a large value of the
interference is caused by a single interfering transmitter, and
hence it is the asymptotic of the distribution of transmission
powers which governs the rate function. In the superexpo-
nential case, a large value of the interference is caused by a
combination of(i) there being a large number of interferers
in the vicinity of the origin, and(ii) each of these having a
large transmit power. Of these, only(i) involves the underlying
Poisson point process. Now, the number of transmitters within
a region of areaA is a Poisson random variable with mean
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λA, whose tail behavior is predominantly described by a1/n!
term, which does not depend onλA.

While the absence of the point process intensity in the rate
function may appear counter-intuitive, it really tells us that the
LDPs only capture the shape and scaling behavior of the tail
distribution of the interference, and that more refined estimates
of the actual probabilities are needed.

We will prove the theorems by providing matching large
deviation upper and lower bounds for half-intervals, i.e., for
P (V 0

ε ≥ x) and P (V 0
ε > x), and showing that these

imply a large deviation principle. The proof proceeds through
a sequence of lemmas, whose proofs are relegated to the
appendix so as not to interrupt the flow of the arguments.

The following two lemmas provide large deviation upper
bounds in the superexponential and exponential cases, respec-
tively.

Lemma 6: Suppose that there exist positive constantsc̃ and
β such thatlog φ(θ) ∼ c̃θβ asθ →∞. Then

lim sup
ε→0

ε

log1/β(1/ε)
logP (V 0

ε ≥ x) ≤ −c̃−1/βRαx, x ≥ 0.

Lemma 7: Suppose that there is a positive constantc such
that− logP (Y1 > y) ∼ cy. Then

lim sup
ε→0

ε logP (V 0
ε ≥ x) ≤ −cRαx, x ≥ 0.

The proof of both lemmas uses Chernoff’s bound. We
present a brief outline here, leaving the details to the appen-
dix. Clearly,

V 0
ε = εR−α

N0∑
i=1

Yi, (3)

whereN0 is the number of points of the Poisson process
falling within the ball of radiusR centered at the origin. Using
the Chernoff bound, we have

P (V 0
ε ≥ x) ≤ exp

(
−θx+ Λ0(εR−αθ)

)
∀ θ ≥ 0, (4)

where Λ0(θ) := logE
[
exp
(
θ
∑N0

i=1 Yi

)]
. But N0 is a

Poisson distributed random variable with meanλ0 = λπR2

and theYi are iid and independent ofN0. Hence, defining
φ(θ) := E[exp(θY1)], we have

Λ0(θ) = logE
[(
E[eθY1 ]

)N0
]

= λ0(φ(θ)− 1). (5)

The proof now proceeds by substituting (5) in (4) and opti-
mizing overθ.

The upper bound in Lemma 6 is in terms of the logarithmic
moment generating function ofY1 whereas the assumptions
in Theorem 2 are in terms of the tail of its distribution. The
next lemma relates a tail condition on the law ofY1 to the
tail behaviour of its logarithmic moment generating function.
Its proof requires an extension of Laplace’s method, and is set
out in the appendix.

Lemma 8: Suppose that there exist constantsc > 0 and
γ > 1 such that− logP (Y1 > y) ∼ cyγ . Define η = 1 −
(1/γ). Then

log φ(θ) ∼ (γ − 1)γ−1/ηc−1/(γ−1)θ1/η.

Next, we consider the subexponential Weibull case. A large
deviation upper bound is given by the following:

Lemma 9: Suppose thatY1 is subexponential and that there
exist constantsc > 0 and0 < γ < 1 such that− logP (Y1 >
y) ∼ cyγ , then

lim sup
ε→0

εγ logP (V 0
ε ≥ x) ≤ −cRαγxγ , x ≥ 0.

The proof uses a key fact about subexponential distributions,
namely, that the tail distribution of a sum of iid subexponential
random variables is asymptotically equivalent to that of their
maximum, and this is still true if the number of terms in the
sum is a random variable provided that this random variable
has exponentially decaying tail. Details are in the appendix.

The next lemma gives the large deviation lower bound
needed to prove Theorem 1. It is a straightforward conse-
quence of the tail behavior of the Poisson distribution forN0.

Lemma 10: If Y1 has compact support whose supremum,
denotedb, is strictly positive (i.e.Y1 is not identically zero),
then

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε > x) ≥ −R
αx

b
, x ≥ 0.

The large deviation lower bound in the superexponential
Weibull case is given by the following lemma.

Lemma 11: Suppose that there exist constantsc > 0 and
γ > 1 such that− logP (Y1 > y) ∼ cyγ . Define η = 1 −
(1/γ). Then, for allx ≥ 0, we have

lim inf
ε→0

ε

logη(1/ε)
logP (V 0

ε > x) ≥ −γ(γ − 1)−ηc1/γRαx.

The proof involves identifying themost likely waythat
a large value ofV 0 arises. Specifically, in (3), it involves
identifying the typical value ofN0, the number of interferers
within distanceR of the receiver, as well as the typical value
of their transmission powers, conditional onV 0 > x/ε. See
the appendix for details.

Proof of Theorem 1. The function I1(x) = Rαx/b is
continuous on[0,∞) and has compact level sets. Hence, it
is a good rate function.

If Y1 has compact support with supremumb, then it is easy
to see thatlog φ(θ) ∼ bθ, whereφ(·) is the moment generating
function of Y1. Hence, we have by Lemma 6 that

lim sup
ε→0

ε

log(1/ε)
logP (V 0

ε ≥ x) ≤ −R
αx

b
, x ≥ 0. (6)

This upper bound matches the corresponding lower bound in
Lemma 10.

The upper and lower bounds can be extended from half-
intervals[x,∞) and(x,∞) to arbitrary closed and open sets in
a standard way, which is repeated in the proofs of Theorems 2-
5 (actually the rate function of Theorem 5 is not continuous in
0, however it is readily checked that the argument we consider
below holds for rate functions which are equal to 0 at the
origin and continuous on(0,∞)). We therefore sketch it for
completeness.

Let F be a closed subset of[0,∞) and let x denote
the infimum of F . Since I1(·) is increasing, I1(x) =
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infy∈F I1(y). Now F is contained in[x,∞), and so we obtain
using (6) that

lim sup
ε→0

ε

log(1/ε)
logP (V 0

ε ∈ F )

≤ lim sup
ε→0

ε

log(1/ε)
logP (V 0

ε ≥ x)

≤ −I1(x) = − inf
y∈F

I1(y).

This establishes the large deviation upper bound for arbitrary
closed sets.

Next, letG be an open subset of[0,∞). Suppose first that
0 /∈ G and setν = infy∈G I1(y). Then ν is finite and, for
arbitrary δ > 0, we can findx ∈ G such thatI1(x) ≤ ν +
δ. SinceG is open, we can also findη > 0 such that(x −
η, x+ η) ⊆ G. Now,

P (V 0
ε ∈ G) ≥ P (V 0

ε ∈ (x− η, x+ η))
= P (V 0

ε > x− η)− P (V 0
ε ≥ x+ η). (7)

Moreover,

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε > x− η) ≥ −I1(x− η)

by Lemma 10, whereas

lim sup
ε→0

ε

log(1/ε)
logP (V 0

ε ≥ x+ η) ≤ −I1(x+ η)

by (6). SinceI1(x− η) < I1(x+ η), we obtain using (7) and
Lemma 19 in the appendix that

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε ∈ G) ≥ −I1(x− η).

SinceI1(·) is continuous, by lettingη decrease to zero we get

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε ∈ G) ≥ −I1(x) ≥ − inf
y∈G

I1(y)−δ,

where the last inequality follows from the choice ofx. The
large deviation lower bound now follows upon lettingδ
decrease to zero.

If 0 ∈ G, then, sinceG is open, there is anη > 0 such that
[0, η) ⊆ G. Hence,

P (V 0
ε ∈ G) ≥ 1− P (V 0

ε ≥ η).

By similar arguments to the above, we can show that

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε ∈ G) ≥ 0.

Since infy∈G I1(y) = I1(0) = 0 as I1(·) is increasing, this
establishes the large deviation lower bound if0 ∈ G, and
completes the proof of the theorem.�

Proof of Theorem 2. We obtain from Lemma 6 and Lemma
8 the upper bound

lim sup
ε→0

ε

logη(1/ε)
logP (V 0

ε ≥ x)

≤ −
(
(γ − 1)γ−1/ηc−1/(γ−1)

)−η

Rαx

= −γ(γ − 1)−ηc1/γRαx.

This matches the lower bound from Lemma 11. The extension
from the half-intervals(x,∞) and[x,∞) to arbitrary open and

closed sets follows along the lines of the proof of Theorem 1.
�

Proof of Theorems 3 and 4 The large deviation upper
bound for half-intervals[x,∞) is provided by Lemma 7 in
the exponential case and by Lemma 9 in the subexponential
Weibull case. For the lower bound, observe that for allx ≥ 0,

P (V 0
ε > x) ≥ P (V 0

ε > x,N0 ≥ 1)
≥ P (Y1 > Rαx/ε)P (N0 ≥ 1),

and so, by the assumption that− logP (Y1 > y) ∼ cyγ for
someγ ∈ (0, 1], we obtain

lim inf
ε→0

εγ logP (V 0
ε > x) ≥ lim inf

ε→0
εγ logP (Y1 > Rαx/ε)

= −cRαγxγ .

Finally, the upper and lower bounds can be extended to
arbitrary closed and open sets using standard techniques, as in
the proof of Theorem 1.�

Proof of Theorem 5 The claim follows if we give upper
and lower bounds on half intervals[x,∞) and (x,∞), x ≥
0. SinceP (V 0

ε > 0) = 1 the upper and lower bounds for half
intervals [0,∞) and (0,∞) are obvious. Thus we consider
x > 0.

Recall that regularly varying distributions are subexponen-
tial (see, e.g., [9, Corollary 1.3.2]). Therefore, we have by [1,
Lemma 2.2] that

P (V 0
ε > x) = P

( N0∑
i=1

Yi > Rαx/ε
)

∼ E[N0]P (Y1 > Rαx/ε)
= λ0(Rαx/ε)−cS(Rαx/ε). (8)

Likewise, we have for allδ > 0 small enough, that

P (V 0
ε ≥ x) ≤ P

( N0∑
i=1

Yi > Rα(x− δ)/ε
)

∼ λ0 (Rα(x− δ)/ε)−c
S(Rα(x− δ)/ε).(9)

The large deviation lower and upper bounds for half-intervals
readily follow from (8) and (9) upon taking logarithms and
letting ε, and thenδ, tend to zero.�

V. L ARGE DEVIATIONS OF THE TOTAL INTERFERENCE

So far we have restricted attention toV 0, the contribution
to interference due to transmitters within rangeR of the
location of interest. We now extend our results to the total
interferenceV . HereG(·) denotes the distribution function of
the transmission powers, i.e.G(x) = P (Y1 ≤ x).

Theorem 12: We have the following:
(i) If Y1 has bounded support with supremumb > 0, then the
family of random variables{Vε} obeys an LDP on[0,∞) with
speed1

ε log 1
ε and good rate functionI1(·) given by Theorem

1.
(ii) If − logP (Y1 > y) ∼ cyγ for somec > 0 and γ > 1,
then the family of random variables{Vε} obeys an LDP on
[0,∞) with speed1

ε logη( 1
ε ), whereη = 1− (1/γ), and good

rate functionI2(·) given by Theorem 2.
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(iii) If − logP (Y1 > y) ∼ cy for somec > 0, then the family
of random variables{Vε} obeys an LDP on[0,∞) with speed
1
ε , and good rate functionI3(·) given by Theorem 3.
(iv) If G ∈ MDA(Λ) ∩ S and− logG(y) ∼ cyγ for some
c > 0 and 0 < γ < 1, then the family of random variables
{Vε} obeys an LDP on[0,∞) with speed

(
1
ε

)γ
and good rate

function I4(·) given by Theorem 4.
(v) If G ∈ R(−c), c > 1, then the family of random variables
{Vε} obeys an LDP on[0,∞) with speedlog

(
1
ε

)
and rate

function I5(·) given by Theorem 5.
The proof of the theorem requires different techniques in

the cases where the tails ofY1 decay exponentially or faster,
and where they decay subexponentially. In the former case, we
shall make use of the following lemma and Chernoff’s bound.

Lemma 13: Suppose that the family of random variables
{Xε} obeys an LDP on[0,∞) with speedv(·) and rate
function I(x) = γx for some γ > 0. Let {Yε} be a
family of non-negative random variables independent of{Xε},
satisfying

P (Yε ≥ x) ≤ exp(−v(ε)γ′x)

for all ε > 0 andx ≥ 0, and for someγ′ ≥ γ. DefineZε =
Xε +Yε. Then,{Zε} obeys an LDP on[0,∞) with speedv(·)
and rate functionI(·).

The proof is in the appendix. Loosely speaking, the lemma
says that making a small perturbation to the random variables
Xε by adding a noise termYε does not change the rate function
in the LDP if the tails of the random variablesYε decay
sufficiently rapidly. Observe that it is not the case that{Xε}
and{Zε} are exponentially equivalent (see [5] for a definition).
Nevertheless, they do have the same large deviations rate
function.

Next, define

U j =
∞∑

i=1

Yi1(Rj ≤ ‖Xi‖ < Rj+1), j ≥ 1

W k = V 0 +
k∑

j=1

R−α
j U j , k ≥ 1, and W = lim

k→∞
W k,

whereRj =
√
jR. The limit above exists since the random

variablesU j are positive, and so the sequence{W k} is
increasing. The reason for the choiceRj =

√
jR is that this

makes the areas of the successive annuli{x : Rj−1 ≤ ‖x‖ <
Rj} equal.

Observe thatR−α
j U j is an upper bound for the interference

due to nodes in the annulus{x : Rj ≤ ‖x‖ < Rj+1}. More-
over, the random variablesU j are iid because they are the
sum of the marks of a homogeneous marked Poisson process
over disjoint intervals of equal area. In addition,W is a.s.
finite. Indeed,

EW = λ0R
−α
(
1 +

∑
j≥1

j−α/2
)
EY1,

and this quantity is finite sinceα > 2 and the assumptions of
Theorem 12 guaranteeEY1 <∞.

Define Wε = εW and note thatV 0
ε ≤ Vε ≤ Wε. The

following lemma holds:

Lemma 14: Suppose that the assumptions of either part(i),
(ii) or (iii) of Theorem 12 are satisfied. Then the family{Wε}
obeys an LDP on[0,∞) with the same speed and rate function
as stated for{Vε} in the corresponding part of Theorem 12.

The proof is in the appendix. The idea is to show that the
total contribution to the interference from nodes in all annuli
sufficiently far from the origin is negligible and hence, by
Lemma 13, that they don’t change the rate function in the
LDP. In addition, the Contraction Principle [5, Theorem 4.2.1]
is used to show that the contribution from any finite number
of nearby annuli also doesn’t change the rate function.

We shall use the above lemma to prove parts(i)-(iii) of
Theorem 12. For the proof of parts(iv) and(v), we need the
two lemmas stated below following some definitions; we refer
the reader to [9, Lemma A3.27] and [9, Lemma A3.26] for
their proofs.

Consider the random variable

X =
∑
k≥0

ψkZk,

where theZ ’s are iid positive random variables with distri-
bution functionF (·) and theψ’s are positive constants. We
assume without loss of generality thatmaxk≥0 ψk = 1.

Lemma 15: SupposeF ∈ MDA(Λ) ∩ S and
∑

k≥0 ψ
δ
k <

∞, for some0 < δ < 1. Then,

P (X ≥ x) ∼ k+F (x),

wherek+ is the cardinality of{k ≥ 0 : ψk = 1}.
Lemma 16: AssumeF ∈ R(−c), for some positive con-

stant c, sayF (x) ∼ x−cS(x). If moreover
∑

k≥0 ψ
δ
k < ∞,

for some0 < δ < min(c, 1). Then

P (X ≥ x) ∼ x−cS̃(x) whereS̃(x) =
(∑

k≥0

ψc
k

)
S(x).

Proof of Theorem 12.We first give the proofs of parts(i)-
(iii). Under these assumptions, we established the LDP for
{V 0

ε } in Theorems 1-3, and the LDP for{Wε} with the same
speed and rate function in Lemma 14. SinceV 0

ε ≤ Vε ≤ Wε

for all ε > 0, the large deviation upper and lower bounds on
half-intervals also hold forVε. These bounds can be extended
to a full LDP as in the proof of Theorem 1.

We now prove part(iv). As usual, it suffices to prove large
deviation upper and lower bounds for half-intervals[x,∞) and
(x,∞), respectively. SetU0 = RαV 0 and recall that

W = R−α
∞∑

k=0

ψkU
k, whereψ0 = 1 andψk = k−α/2, k ≥ 1.

(10)
Sinceα > 2, it is clear that there is aδ ∈ (0, 1) such that
αδ > 2, and so

∑
k≥0 ψ

δ
k < ∞. We also note that, by [1,

Lemma 2.2],

P (U0 > x) = P
( N0∑

i=1

Yi > x
)
∼ E[N0]P (Y1 > x)

= λ0P (Y1 > x).

Therefore, by the closure property ofMDA(Λ) andS under
tail-equivalence (see, e.g. [9, Proposition 3.3.28 and Lemma
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A3.15]), the law ofU0 also belongs toMDA(Λ)∩ S. So, by
Lemma 15, we get

P (Wε ≥ x) = P
(
RαW ≥ Rαx

ε

)
∼ 2P

(
U0 ≥ Rαx

ε

)
= 2P (V 0

ε ≥ x),

where the last equality follows from the equalityU0 =
RαV 0. SinceV 0

ε ≤ Vε ≤Wε, we have for allx ≥ 0 that

lim sup
ε→0

εγ logP (Vε ≥ x) ≤ lim sup
ε→0

εγ log[2P (V 0
ε ≥ x)]

≤ −cRαγxγ .

We have used Lemma 9 to obtain the last inequality. A
matching lower bound for open half-intervals(x,∞) follows
from the LDP forV 0

ε stated in Theorem 4.
The proof of (v) is very similar. SinceP (Vε > 0) = 1

for all ε > 0, the large deviation upper and lower bounds for
[0,∞) and (0,∞) are obvious. So we considerx > 0. To
obtain the upper bound, we first note thatV ≤W , whereW
is defined by (10). We also have, by [1, Lemma 2.2], that

P (U0 > x) = P (
N0∑
i=1

Yi > x) ∼ E[N0]P (Y1 > x)

= λ0x
−cS(x),

for some slowly varying functionS(·). This implies that the
law of U0 is in R(−c). Hence, by Lemma 16,

P (Wε ≥ x) = P
(
RαW ≥ Rαx

ε

)
∼
(x
ε

)−c

S̃
(x
ε

)
,

for a suitable slowly varying functioñS(·). It readily follows,
using the definition of a slowly varying function, that

1
log(1/ε)

logP (Wε ≥ x) → −c asε→ 0.

SinceVε ≤ Wε, we have the desired large deviation upper
bound forVε on half-intervals[x,∞). A matching lower bound
for open half-intervals(x,∞) follows from the LDP forV 0

ε

stated in Theorem 5. This concludes the proof of the theorem.
�

VI. D ISCUSSION

In this section, we discuss some variants of the model we
have studied as well as some implications for communication
networks.

We assumed an attenuation function of the formL(x) =
max(R, ‖x‖)−α for convenience. In fact, our analysis easily
carries over to quite general attenuation functions, as we now
argue. Suppose thatL(x) = `(‖x‖) for some continuous, non-
increasing functioǹ : [0,∞) → (0,∞). Suppose also that the
following tail condition holds for allr sufficiently large:

∃c > 0, α > 2 : `(r) ≤ cr−α. (11)

The attenuation functionL(x) = `(‖x‖) = (1 + ‖x‖)−α, for
instance, satisfies this condition ifα > 2.

We now claim that all the conclusions of Theorem 12 con-
tinue to hold if we replaceRα by 1/`(0) in the corresponding
rate functions.

Here is a brief outline of the proof. Fixρ > 0 arbitrarily
small. Observe that from (2) the total interferenceV at the
origin is bounded from below by

V̂ 0 = `(ρ)
∑
k≥1

Yk1(‖Xk‖ < ρ) = `(ρ)
N̂ρ∑
k=1

Yk,

where N̂ρ denotes the number of nodes within the disc of
radiusρ centered at the origin, and has a Poisson distribution
with meanπρ2λ. Next, define

Û j =
∞∑

i=1

Yi1(R̂j ≤ ‖Xi‖ < R̂j+1), j ≥ 0,

Ŵk = `(0)Û0 +
k∑

j=1

`(R̂j)Û j , k ≥ 1, Ŵ = lim
k→∞

Ŵk,

where R̂0 = 0 and R̂k =
√
kρ, k ≥ 1. Clearly, the total

interferenceV is bounded from above bŷW .
We can now derive LDPs for the families{εV̂ 0} and{εŴ}

exactly as in the previous sections. The one technical condition
that needs to be checked is that

∑
k≥0 ψ

δ
k < ∞ for some

δ ∈ (0, 1), whereψ0 = 1 andψk = `(R̂k)/`(0), k ≥ 1. This
condition is satisfied because of the assumption in (11) about
the tail of the attenuation function.

Next, we note that the rate functions of the LDPs obtained
in the previous sections did not depend on the intensityλ of
the Poisson process, and that the parameterR only entered
via the attenuation function for nodes in the disc closest to
the origin. Thus, by analogy, the rate functions for{εV̂ 0}
and{εŴ} will simply haveR−α replaced bỳ (ρ) and `(0),
respectively. So, lettingvi(·) denote the speed corresponding
to the rate functionIi(·) (i = 1, . . . , 5) in Theorem 12 and by
I
(r)
i (·), r ≥ 0, the rate function obtained byIi(·) replacing
R−α by `(r) we have, for allρ > 0 andx ≥ 0,

−I(ρ)
i (x) ≤ lim inf

ε→0

1
vi(ε)

logP (εŴ > x)

≤ lim sup
ε→0

1
vi(ε)

logP (εŴ ≥ x) ≤ I
(0)
i (x).

Letting ρ tend to zero and using the continuity ofIi(·) and
`(·), we obtain the desired LDPs for the total interferenceV
(more precisely, we obtain upper and lower bounds on closed
and open half-intervals, which can be extended to any closed
and open set by standard techniques, see the proof of Theorem
1).

Let re > 0 be a positive constant. Using similar arguments,
one can show that all the conclusions of Theorem 12 continue
to hold with Rα replaced by1/`(re) if we assume that the
attenuation function is of the form

ˆ̀(x) =
{

0 if x < re
`(x) if x ≥ re,

where` : (0,∞) → (0,∞) is a continuous and non-increasing
function which satisfies(11). (In Section II, we followed
convention and defined the attenuation function to be strictly
positive, but there is no harm in allowing it to take the value
zero.) To be more specific, we provide here a possible choice
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for the bounds onV ; the LDPs are then obtained arguing as
above (i.e. the casere = 0). For a fixedρ > 0, consider the
lower bound forV defined by:

Ṽ 0 = `((ρ+ 1)re)
∑
k≥1

Yk1(re ≤ ‖Xk‖ < (ρ+ 1)re)

= `((ρ+ 1)re)
Ñρ∑
k=1

Yk,

where Ñρ denotes the number of nodes within the annulus
{x : re ≤ ‖x‖ < (ρ + 1)re}, and has a Poisson distribution
with meanπ(ρ2 + 2ρ)r2eλ. Next, define

Ũ j =
∞∑

i=1

Yi1(R̃j ≤ ‖Xi‖ < R̃j+1), j ≥ 1,

W̃k = `(re)Ũ1 +
k∑

j=2

`(R̃j)Ũ j , k ≥ 1, W̃ = lim
k→∞

W̃k,

where R̃k =
√
kre, k ≥ 1. Clearly, the total interference at

the originV is bounded from above bỹW .
We can use this generalization to analyze the effect of a

scheduling strategy which ensures that all transmitters within
some vicinity of the receiver must remain silent. (This can be
thought of as a simplistic model of the 802.11 protocol with
RTS/CTS, with the exclusion zone corresponding to the region
within which the CTS can be heard. It is simplistic because
this will actually be a random region and, moreover, the ability
of a node to hear the CTS will be correlated with the fading of
its own signal to the receiver. By assuming that nodes within a
fixed radius are silenced, we are ignoring this correlation.) Say
this exclusion zone is a circle of radiusre centered on the
receiver. Assuming that no other transmitters are silenced
(again, a simplifying assumption, as other transmissions going
on in parallel will create their own exclusion zones), this can
be modelled by simply considering the attenuation function
ˆ̀(·) defined above. We can also incorporate the effect of
spreading gain in a CDMA system, as described in Section
II. Suppose the spreading gain is1/φ, i.e., only a fractionφ
of the transmitted power interferes with the receiver. If this is
combined with the above scheduling strategy, then the attenu-
ation function is effectivelỹ̀ = φˆ̀, and so˜̀

max := φ`(re) is
the quantity that enters into the rate function in place ofR−α

in Theorem 12.
The above expression gives us some insight into the relative

benefits of spreading vs. scheduling. Suppose`(x) is roughly
of the form x−α. Then, doublingre decreases̃̀ max by
2α, at the cost of silencing4 times as many nodes during
each transmission period. On the other hand, increasing the
spreading gain by2α would require a proportionate increase
in bandwidth. Sinceα > 2, this suggests that scheduling
is more efficient than coding. (In fact, this holdsa fortiori
if our simplifying assumptions are removed. Without those
assumptions, more nodes would be silenced, and it would also
be nodes with higher channel gain to the receiver that would
be more likely to be silenced.) Of course, this is only one
aspect of the design; in an ad-hoc network, coding may be
simpler to implement than scheduling.

The LDPs we have obtained are crude estimates of the
probability of the interference exceeding a threshold. Indeed,
since LDPs provide the asymptotics of probabilities on the
logarithmic scale, the rate functions do not even depend on
the intensity of the Poisson process of node locations, whereas
the actual probability certainly does! A natural question,
therefore, is whether we can get more refined estimates of
this exceedance probability. We leave this as a problem for
future research. Here we limit ourselves to noting that one
approach to estimating the exceedance probability is via fast
simulation. Our LDPs can be of help in developing such a
scheme as they provide some insight into the required change
of measure.

While we have presented LDPs for the interference in
the case of general signal power distributions, more precise
results are available in the special case of Rayleigh fading;
see [11]. The throughput achievable by a network of sensors
transmitting to a cluster head is considered in [3]. The authors
model the system at packet level using a loss network, and
model interference using a Poisson point process of node
locations and Rayleigh fading. Our results here could form the
basis for studying throughput and other performance measures
in sensor networks with more general attenuation functions.

VII. C ONCLUDING REMARKS

We established a large deviation principle for the total
interference in a model of an ad-hoc wireless network. We also
identified the most likely way in which such large deviations
arise.

We modelled node locations using a Poisson point process
and considered a number of different models for the signal
power distribution. While we considered a Hertzian model
for attenuation, the techniques used can be extended to other
models as well, and we outlined some such extensions. Our
main findings were as follows: if signal powers have superex-
ponentially decaying tails, large values of the interference are
due to a combination of a large number of interfering nodes
and higher signal power at these nodes, whereas for signal
powers with exponential or subexponential tails, large values
of the total interference are due to a single interferer with high
power.

It remains an open problem to extend the results to node
location models other than the Poissonian one. Such models
could be motivated, for example, by algorithms for channel
allocation that ensure that nearby nodes do not transmit on
the same channel. We considered one very simple example
of such a model, but it would be of interest to study more
realistic examples.
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APPENDIX

Proof of Lemma 6 Note thatβ ≥ 1 by the convexity of
log φ(·) and thatβ and c̃ are unique. It is implicit in the
assumption of the lemma thatφ(·) is finite everywhere, i.e.,
thatY1 has a super-exponentially decaying tail. Now consider

θ =
Rα

ε

(
γ log

x

ε

)1/β

, x > 0

whereγ > 0 is a constant we shall specify later. Note that for
anyx > 0, θ is strictly positive for allε sufficiently small. For
ε andθ as above, we have by (4) and (5) that

ε

log1/β(1/ε)
logP (V 0

ε ≥ x) ≤

− Rαx

log1/β(1/ε)

(
γ log

x

ε

)1/β

+
ελ0

log1/β(1/ε)
(φ(εR−αθ)− 1). (12)

Now εR−αθ = (γ log(x/ε))1/β tends to infinity asε tends
to zero. Hence, by the assumption of the lemma, we have for
arbitraryδ > 0 that

lim sup
ε→0

ε

log1/β(1/ε)
φ(εR−αθ)

≤ lim sup
ε→0

ε

log1/β(1/ε)
exp((1 + δ)c̃(εR−αθ)β)

= lim sup
ε→0

ε

log1/β(1/ε)
exp
(
(1 + δ)c̃γ log

x

ε

)
= lim sup

ε→0

ε

log1/β(1/ε)

(x
ε

)(1+δ)c̃γ

.

Now takeγ = 1/((1 + δ)c̃). Then, it follows from the above
that

lim sup
ε→0

ε

log1/β(1/ε)
φ(εR−αθ) ≤ lim sup

ε→0

x

log1/β(1/ε)
= 0. (13)

By (12) and (13), we get

lim sup
ε→0

ε

log1/β(1/ε)
logP (V 0

ε ≥ x) ≤ −γ1/βRαx,

whereγ = 1
(1+δ)c̃ . As δ > 0 can be chosen arbitrarily small,

this establishes the claim of the lemma.�

Proof of Lemma 7 First note that for eachθ < c we have
EeθY1 < ∞. Indeed, for allδ > 0 small enough we have
(1 − δ)c > θ, and by the assumption− logP (Y1 > y) ∼ cy
it follows that there existsM > 0 such that

P (Y1 > y) ≤ e−(1−δ)cy, for all y > M .

SinceY1 ≥ 0 we have

EeθY1 = 1 + θ

∫ ∞

0

eθyP (Y1 > y)dy, for eachθ ∈ R.

(14)
Then the finiteness of the Laplace transform for eachθ <
c follows by (14) noticing that by the choice ofδ it holds∫∞

M
e−((1−δ)c−θ)ydy <∞. By (4), for eachx > 0 andε, θ >

0 such that0 < θ < cRα/ε, we have

ε logP (V 0
ε ≥ x) ≤ −θεx+ εΛ0(εR−αθ). (15)

Chooseθ = (c − δ)Rα/ε and take thelim sup as ε → 0 in
(15). By the finiteness of the Laplace transform and (5) we
have

lim sup
ε→0

ε logP (V 0
ε ≥ x) ≤ −(c− δ)Rαx, x ≥ 0.

The conclusion follows lettingδ tend to0. �

Proof of Lemma 8 Fix δ > 0. By assumption there exists
M ≥ 0 such that

exp(−(1− δ)cyγ) ≥ P (Y1 > y) ≥ exp(−(1 + δ)cyγ)

for all y > M . SinceY1 ≥ 0 we have

E[eθY1 ] = 1 + θ

∫ ∞

0

eθyP (Y1 > y)dy, θ ∈ R.

Hence, for allθ ≥ 1,

φ(θ) ≥ ψ−(θ) :=
∫ ∞

M

eθy−(1+δ)cyγ

dy. (16)

In order to obtain the logarithmic asymptotics of the above
integral, we need a version of Laplace’s method which is
detailed in Lemma 17 below. By this lemma, we have

logψ−(θ) ∼ (γ − 1)γ−1/η((1 + δ)c)−1/(γ−1)θ1/η. (17)

Similarly, for all θ > 0,

φ(θ) ≤ ψ+(θ) := eθM + θ

∫ ∞

M

eθy−(1−δ)cyγ

dy. (18)
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By Lemma 17 in the appendix, together with the principle of
the largest term (see, e.g., [10, Lemma 2.1]), we deduce that

logψ+(θ) ∼ (γ − 1)γ−1/η((1− δ)c)−1/(γ−1)θ1/η. (19)

Sinceδ > 0 can be chosen arbitrarily small, it follows from
(16)-(19) that

log φ(θ) ∼ (γ − 1)γ−1/ηc−1/(γ−1)θ1/η,

which is the claim of the lemma.�
We need the following variant of Laplace’s method to prove

Lemma 8.
Lemma 17: For fixed constantsM ≥ 0, α > 0 andγ > 1,

define the functionψ(θ) =
∫∞

M
eθy−αyγ

dy, θ > 0, and η =
1− (1/γ). Then

logψ(θ) ∼ (γ − 1)γ−1/ηα−1/(γ−1)θ1/η.

Proof. It is implicit from the assumption thatψ(θ) is finite
everywhere. Consider the function

Fθ(y) = θy − αyγ , y > 0.

Note that it is differentiable with a unique maximum attained
at y0(θ) = ( θ

αγ )1/(γ−1) and

Fθ(y0(θ)) = (γ − 1)γ−1/ηα−1/(γ−1)θ1/η.

For eachθ > 0 large enough andε > 0 we have∫ y0(θ)−ε

M

eFθ(y)dy =
∫ y0(θ)−ε

M

1
F ′θ(y)

deFθ(y)

≤
(

sup
y∈[M,y0(θ)−ε]

1
F ′θ(y)

)[
eFθ(y0(θ)−ε) − eFθ(M)

]
≤ 1
F ′θ(y0(θ)− ε)

eFθ(y0(θ)−ε)

=
1

θ − αγ(y0(θ)− ε)γ−1
eθ(y0(θ)−ε)−α(y0(θ)−ε)γ

.

Chooseε = θ−β for someβ > 1, and take logarithms in the
above inequality. Then,

lim sup
θ→∞

log
∫ y0(θ)−θ−β

M
eFθ(y)dy

(γ − 1)γ−1/ηα−1/(γ−1)θ1/η
≤

lim sup
θ→∞

θ
((

θ
αγ

) 1
1−γ − θ−β

)
− α

((
θ

αγ

) 1
1−γ − θ−β

)γ

(γ − 1)γ−1/ηα−1/(γ−1)θ1/η

= 1. (20)

Similarly, for eachθ > 0 large enough andε > 0 we have∫ y0(θ)−ε

M

eFθ(y)dy =
∫ y0(θ)−ε

M

1
F ′θ(y)

deFθ(y)

≥
(

inf
y∈[M,y0(θ)−ε]

1
F ′θ(y)

)[
eFθ(y0(θ)−ε) − eFθ(M)

]
≥ 1
θ − αγMγ−1

[
eθy0(θ)−αy0(θ)γ−εθ − eθM−αMγ

]
.

Again, chooseε = θ−β , for someβ > 1, and take logarithms
in the above inequality. Then,

lim inf
θ→∞

log
∫ y0(θ)−θ−β

M
eFθ(y)dy

(γ − 1)γ−1/ηα−1/(γ−1)θ1/η
≥

lim inf
θ→∞

log(eθy0(θ)−αy0(θ)γ−θ1−β − eθM−αMγ

)
(γ − 1)γ−1/ηα−1/(γ−1)θ1/η

= 1 (21)

where the last equality follows from the fact that

eθy0(θ)−αy0(θ)γ−θ1−β

− eθM−αMγ

∼ eθy0(θ)−αy0(θ)γ−θ1−β

,

asθ →∞. By (20) and (21), we get

log
∫ y0(θ)−θ−β

M

eFθ(y)dy ∼ (γ − 1)γ−1/ηα−1/(γ−1)θ1/η.

(22)
Similarly, one can prove that

log
∫ ∞

y0(θ)+θ−β

eFθ(y)dy ∼ (γ−1)γ−1/ηα−1/(γ−1)θ1/η. (23)

Finally, for anyθ, ε > 0, we have

2εemin{Fθ(y0(θ)−ε),Fθ(y0(θ)+ε)}

≤
∫ y0(θ)+ε

y0(θ)−ε

eFθ(y)dy ≤ 2εeFθ(y0(θ)).

Choose againε = θ−β , β > 1, and take the logarithm in the
above inequality. Then it is readily seen that

log
∫ y0(θ)+θβ

y0(θ)−θβ

eFθ(y)dy ∼ Fθ(y0(θ))

= (γ − 1)γ−1/ηα−1/(γ−1)θ1/η, (24)

asθ →∞. The conclusion follows by (22), (23), (24) and the
principle of the largest term (see, e.g., [10, Lemma 2.1]).�

Proof of Lemma 9. The proof uses a key result about
subexponential distributions [1, Lemma 2.2 p. 259], which
states that

P
( N0∑

i=1

Yi > x
)
∼ E[N0]P (Y1 > x),

asx→∞, under the assumption that theYi are iid subexpo-
nential and independent ofN0, which has exponential tail. In
our case,N0 is Poisson with meanλ0, so the assumptions
hold. Thus, for allδ > 0 small enough, it holds

P (V 0
ε ≥ x) ≤ P

( N0∑
i=1

Yi > Rα(x− δ)/ε
)

∼ λ0P (Y1 > Rα(x− δ)/ε), asε→ 0.

The claim of the lemma follows from the assumption
− logP (Y1 > y) ∼ cyγ , by letting δ decrease to zero.�

Proof of Lemma 10 Since Y1 has compact support with
supremumb > 0, for arbitrarily smallδ > 0, there is ap > 0
(depending onδ) such thatP (Y1 > (1 − δ)b) = p. Recall
that the independent thinning with retention probabilityp of
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a Poisson point process with intensityµ is a Poisson point
process with intensitypµ (see, e.g., [4]). Therefore, if we
define Ñ0 =

∑N0
i=1 1(Yi > (1 − δ)b), then Ñ0 is a Poisson

random variable with meanpλ0. We now have

V 0
ε ≥ εR−α(1−δ)b

N0∑
i=1

1(Yi > (1−δ)b) = εR−α(1−δ)bÑ0.

Thus,

P (V 0
ε > x) ≥ P

(
Ñ0 >

Rαx

ε(1− δ)b

)
,

from which we deduce that, forx ≥ 0,

lim inf
ε→0

ε

log(1/ε)
logP (V 0

ε > x)

≥ lim inf
ε→0

ε

log(1/ε)
logP

(
Ñ0 >

Rαx

ε(1− δ)b

)
= − Rαx

(1− δ)b
. (25)

The equality in (25) follows by Lemma 18 below (which
guarantees that the family of random variables{εÑ0} obeys
an LDP on[0,∞) with speed1

ε log 1
ε and good rate function

J(x) = x). Letting δ decrease to zero, we obtain the claim of
the lemma.�

We now provide a large deviation principle for the Poisson
distribution, which was used in the proof of Lemma 10 above
(see also the proof of Lemma 11).

Lemma 18: Let X be a Poisson random variable with
meanµ > 0. Then the family of random variables{εX} obeys
an LDP on[0,∞) with speed1

ε log 1
ε and good rate function

J(x) = x.
Proof We shall show that

−x ≤ lim inf
ε→0

ε

log(1/ε)
logP (εX > x)

≤ lim sup
ε→0

ε

log(1/ε)
logP (εX ≥ x) ≤ −x, (26)

for all x ≥ 0. Then the claim follows by extending these
bounds to arbitrary open and closed sets by standard tech-
niques (see the proof of Theorem 1). The bounds in(26) are
obvious forx = 0. For x > 0 and ε > 0 small enough we
have

P (X ≥ [x/ε]− 1) ≤ P (εX > x)
≤ P (εX ≥ x) ≤ P (X ≥ [x/ε]),

where [x] denotes the integer part ofx. So, using the usual
upper bound for the tail of the Poisson distribution we get, for
any x > 0 andε > 0 small enough,

µ[x/ε]−1

([x/ε]− 1)!
e−µ ≤ P (εX > x) ≤ P (εX ≥ x)

≤ exp{−µ+ [x/ε]− [x/ε] log(µ−1[x/ε])}. (27)

By Stirling’s formula we have

([x/ε]−1)! ∼
√

2π([x/ε]−1)([x/ε]−1)+(1/2) exp{−([x/ε]−1)},

as ε → 0. So finally we get(26) by taking the logarithm,
multiplying by ε/ log(1/ε) and passing to the limit asε→ 0
in (27). �

Proof of Lemma 11 For arbitraryn > 0, we have

P (V 0
ε > x) ≥ P

(
N0 ≥ n,min{Y1, . . . , Yn} >

Rαx

εn

)
= P (N0 ≥ n)

(
P
(
Y1 >

Rαx

εn

))n

. (28)

Denote by [z] the integer part ofz ∈ R, and take
n = [κ/(ε log1/γ(1/ε))], where the constantκ > 0 will
be specified later. Along similar lines as in the proof of
Lemma 18 one can show that the family of random vari-
ables{ε log1/γ(1/ε)N0} obeys an LDP on[0,∞) with speed

1
ε log1/γ(1/ε)

log
(

1
ε log1/γ(1/ε)

)
and good rate functionJ(x) =

x. Therefore,

logP
(
N0 ≥

κ

ε log1/γ(1/ε)

)
∼ − κ

ε log1/γ(1/ε)
log
( 1

ε log1/γ(1/ε)

)
∼ −κ

ε
logη(1/ε),

asε→ 0, and so,

lim
ε→0

ε

logη(1/ε)
logP (N0 ≥ n) = −κ. (29)

We have suppressed the dependence ofn on ε for notational
convenience. Next, by the assumption that− logP (Y1 > y) ∼
cyγ , we obtain

n logP
(
Y1 >

Rαx

εn

)
∼ − κc

ε log1/γ(1/ε)

(Rαx log1/γ(1/ε)
κ

)γ

= −c(R
αx)γ

κγ−1

logη(1/ε)
ε

,

and so,

lim
ε→0

ε

logη(1/ε)
n logP

(
Y1 >

Rαx

εn

)
= −c(R

αx)γ

κγ−1
. (30)

Substituting (29) and (30) in (28), we get

lim inf
ε→0

ε

logη(1/ε)
logP (V 0

ε > x) ≥ −κ− c(Rαx)γ

κγ−1
.

The maximum value of the lower bound is attained atκ =
((γ − 1)c)1/γRαx. Substituting this into the right-hand side
of the latter inequality, we get

lim inf
ε→0

ε

logη(1/ε)
logP (V 0

ε > x) ≥ −γ(γ − 1)−ηc1/γRαx,

as claimed. This completes the proof of the lemma.�
The following variant of the principle of the largest term is

used in the proof of Theorem 1.
Lemma 19: Let {an}n≥1 and {bn}n≥1 be two sequences

of positive numbers such thatan > bn for all n ≥ 1. Assume
that

lim inf
n→∞

cn log an ≥ −a and lim sup
n→∞

cn log bn ≤ −b, (31)

where{cn}n≥1 is a sequence of positive numbers converging
to 0, and0 < a < b. Then

lim inf
n→∞

cn log(an − bn) ≥ −a.
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Proof Using assumption(31) and the fact that0 < a < b it
follows that for allε > 0 small enoughb > a+ 2ε and there
existsn̄ = n̄(ε) such that for alln ≥ n̄ it holds

an ≥ e−(a+ε)/cn and bn ≤ e−(b−ε)/cn .

Thus

an − bn ≥ e−(a+ε)/cn − e−(b−ε)/cn

= e−(a+ε)/cn

(
1− e−(b−a−2ε)/cn

)
.

Taking the logarithm, multiplying bycn and passing to the
limit as n→∞ in the above inequality we have

lim inf
n→∞

cn log(an − bn) ≥ −(a+ ε).

The claim follows sinceε is arbitrary.�

Proof of Lemma 13 For eachε > 0, let Ỹε be independent
of Xε and have distribution given by

P (Ỹε ≥ x) = exp(−v(ε)γ′x) ∀ x ≥ 0.

Then, Ỹε stochastically dominatesYε and so they can be
coupled in such a way that̃Yε ≥ Yε almost surely. Moreover,
it is easy to see that{Ỹε} obeys an LDP on[0,∞) with speed
v(·) and rate functionγ′x. Since Ỹε is independent ofXε,
we have by Theorem 4.14 in [10] that the family{(Xε, Ỹε)}
satisfies an LDP on[0,∞)2 with speedv(·) and rate function
J(x, y) = γx + γ′y. Therefore, by the contraction principle
(see e.g. [5, Theorem 4.2.1]) the familỹZε = Xε + Ỹε obeys
an LDP on[0,∞) with speedv(·) and good rate function

I(z) = inf
x+y=z

γx+ γ′y.

Sinceγ′ ≥ γ it holds I(z) = γz.
We have thus shown that{Z̃ε} obeys an LDP with the same

speed and rate function as{Xε}. Moreover, sinceYε is non-
negative, we haveXε ≤ Zε ≤ Z̃ε for all ε > 0. Hence, we
can obtain lower bounds onP (Zε > x) and upper bounds on
P (Zε ≥ x) from the corresponding bounds onXε and Z̃ε,
respectively. These can be extended to a full LDP as in the
proof of Theorem 1.�

Proof of Lemma 14 We shall prove the lemma in the
case of boundedY1. The other two cases are similar. Define
U j

ε = εU j and W k
ε = εW k. Since the random vari-

ablesU1, U2, . . . are iid, and for eachj the family {U j
ε }

obeys an LDP on[0,∞) with speed 1
ε log 1

ε and good rate
function J(x) = x

b (the proof is identical to Theorem 1),
then the family{(U1

ε , . . . , U
k
ε )} satisfies an LDP on[0,∞)k

with speed1
ε log 1

ε and good rate functionJ(x1, . . . , xk) =
(1/b)

∑k
j=1 xj (see e.g. [10, Theorem 4.14]). Similarly, by

Theorem 1, the family{(V 0
ε , U

1
ε , . . . , U

k
ε )} satisfies an LDP

on [0,∞)k+1 with speed 1
ε log 1

ε and good rate function
I(x0, x1, . . . , xk) = (Rαx0 +

∑k
j=1 xj)/b. Therefore, by the

contraction principle (see e.g. [5, Theorem 4.2.1]) it follows
that the family{W k

ε } obeys an LDP on[0,∞) with speed

1
ε log 1

ε and good rate function given by

inf
{Rαx0 +

∑k
j=1 xj

b
: x0 +

k∑
j=1

R−α
j xj = x

}
=
Rαx

b

= I1(x).

Now defineW̃ k =
∑∞

j=k+1R
−α
j U j . We have

logE[eθW̃ k

] =
∞∑

j=k+1

logE[eθR−α
j

Uj

]

=
∞∑

j=k+1

λ0[φ(θR−α
j )− 1]. (32)

Indeed theR−αU j are iid and have the same distribu-
tion as V 0. Now, recall thatRj =

√
jR, thus R−α

j =(
k
j

)α/2

R−α
k . Using the convexity ofφ(·), we obtain that,

for all j ≥ k + 1,

φ(θR−α
j ) ≤

(
k

j

)α/2

φ(θR−α
k ) +

(
1−

(
k

j

)α/2
)
φ(0)

=
(
k

j

)α/2

[φ(θR−α
k )− 1] + 1.

Substituting this in (32), we get

logE[eθW̃ k

] ≤ λ0[φ(θR−α
k )− 1]

∞∑
j=k+1

(
k

j

)α/2

= ckΛ0(θR−α
k ),

where ck =
∑∞

j=k+1

(
k
j

)α/2

. Note that this infinite sum is
finite by the assumption thatα > 2. Now using the Chernoff’s
bound we have, for allθ ≥ 0,

P (W̃ k
ε ≥ x) ≤ exp

(
−θx+ ckΛ0(θR−α

k )
)
.

By similar computations as in the proof of Lemma 6 it follows

lim sup
ε→0

ε

log(1/ε)
logP (W̃ k

ε ≥ x) ≤ −R
α
kx

b
.

Moreover,Wε = W k
ε +W̃ k

ε , and we showed above that{W k
ε }

obeys an LDP on[0,∞) with speed1
ε log 1

ε and rate function
I1(x) = Rαx/b. Hence, by Lemma 13 we see that{Wε}
also obeys an LDP with the same speed and rate function, as
claimed.�
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