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Microsoft Research, 7 J J Thomson Avenue
Cambridge CB3 0FB, United Kingdom

{ajg, lmassoul}@microsoft.com

Abstract

The growth of peer-to-peer applications on the Internet has motivated interest
in general purpose overlay networks. A basic requirement of an overlay is that it be
connected, so that any two peers can communicate, and that it retain connectivity
in the presence of node and link failures. In this paper, we use random graphs to
model of a class of overlay networks and study their connectivity in the presence
of link failures.

1 Introduction

Peer-to-peer applications currently constitute one of the fastest growing uses of the Inter-
net. A challenging research problem is to develop overlay architectures that can support
such applications without overloading end systems. Features of peer-to-peer systems
such as the transience of users and the absence of powerful central servers motivate fully
decentralized schemes that do not require global knowledge of membership, and that are
robust to node and link failures. Scalability is crucial in this context, and overlays must
be built ensuring that the memory and communication load on each node grows slowly
in the overlay size, while the global load is evenly balanced among the nodes. The basic
property required of an overlay network is that it be connected, so that any two peers
can communicate over it. Moreover, connectivity should be maintained in the presence
of failures or temporary disconnections of some fraction of member nodes.

We shall model the overlay as a graph with nodes i representing members, and a
directed edge (i, j) representing that i knows j. If the “who knows who” relation is
symmetric, the edges are taken to be undirected. A classical random graph model, which
was studied in detail by Erdös and Renyi [4], has a collection of n nodes; an edge is present
between every pair of nodes with probability p (which may depend on n), independent of
other edges. In the undirected case, they showed that there is a threshold for connectivity
at a mean degree of log(n): precisely, if the mean degree is log n+x, then the probability
of connectivity goes to e−e−x

as n → ∞. This was extended by Ball and Barbour [1]
to random directed graphs with a wide range of degree distributions. They showed a
similar threshold at a mean degree of log(n) (irrespective of the degree distribution) for
the probability that there is a directed path from any specified node to all other nodes.

These results suggest that the membership protocol should be designed so as to
provide each member with a set of neighbours whose size is of order log n. Then, the
memory requirements on each member grow slowly in the overlay size, but the overlay
network nevertheless has the desired properties. In [5], a decentralized algorithm is



described for constructing directed overlays in which each node has a mean out-degree
of c log n, where c is a specified design parameter. By the result of Ball and Barbour
quoted above, these overlays can tolerate independent link failures at rates p up to
(c − 1)/c, while retaining connectivity in the sense described, with high probability. A
similar result holds in the undirected case. Moreover, it turns out that at higher link
failure rates, connectivity is initially lost due to the isolation of single nodes which had
lower than average degree. This suggests that balancing node degrees should improve
resilience to failures. In [6], a Metropolis algorithm is proposed for reshaping the overlays
constructed in [5] so as to balance node degrees, without altering the mean degree, in
order to achieve load balancing as well as to improve fault tolerance. The Metropolis
scheme corresponds to a random walk on the space of undirected graphs on n nodes with
E edges. It is shown in [6] that the equilibrium distribution of this random walk is given
by:

µn(G) = Z−1 exp(−β
n∑

i=1

d2
i ), (1)

where di denotes the degree of node i in the graph G, β is a specified parameter (inverse
temperature) of the Metropolis algorithm, and Z is a normalizing constant. In the
remainder of the paper, we shall study the connectivity and failure resilience properties
of random graphs generated according to this distribution.

2 Degree distributions

In this section, we show for the random graph model described above that the node
degrees concentrate about their mean value. Specifically, we show that the variance of
node degrees remains bounded as n → ∞ and, with high probability, all node degrees
are within O(

√
log n) of the mean. This is in contrast to the Erdös-Renyi model, where

the variance grows like log n, and the maximum fluctuation of node degrees is O(log n).
The probability measure µn on graphs induces a probability measure on degree dis-

tributions, which we denote by πn. For d = (d1, . . . , dn),

πn(d) =
1

Zn

Gn(d)e−β
∑n

i=1
d2

i 1∑n
i=1di=2E

, (2)

where Gn(d) is the number of graphs having the degree sequence d, and Zn is a normal-
izing constant. We can rewrite the above as

πn(d) =
1

Zn(γ)

[
E!2E

(2E)!
Gn(d)

n∏
i=1

(di!)

]
n∏

i=1

1

di!
e−βd2

i +γ(log n)di1∑n
i=1di=2E

=
G̃n(d)

Zn(γ)

n∏
i=1

1

di!
e−βd2

i +γ(log n)di1∑n
i=1di=2E

. (3)

The introduction of the tilt parameter γ doesn’t change the distribution as it multiplies
πn(d) by e2γE log n. This is a constant since the total number of edges is fixed. Thus, it
can be absorbed into the normalization factor Zn(γ) along with the term E!2E/(2E)!.

Random graphs with a specified degree sequence can be constructed using the config-
uration model [2], which we describe briefly. Associated with each vertex i are di labelled
configuration points, called half-edges. A configuration is a matching of configuration
points. If a configuration point of i is matched with a configuration point of j, this is



interpreted as an edge between i and j. If two configuration points of i are matched,
this corresponds to a loop. Thus, each configuration corresponds to a multigraph. Every
simple graph corresponds to exactly

∏n
i=1 di! distinct configurations since the di edges

incident on node i can be assigned to its di configuration points in di! ways.
The configuration model implies the upper bound G̃n(d) ≤ 1 for any degree sequence

d. Moreover, if the maximum degree ∆ = o(E1/4), then McKay and Wormald [8] establish
the equivalent

G̃n(d) ∼ e−λ−λ2

, where λ =
1

4E

n∑
i=1

di(di − 1). (4)

Given a degree sequence d, we define the mean degree d =
∑n

i=1 di/n and the variance
Var(d) = 1

n

∑n
i=1(di − d)2. We are interested in a regime where d = c log n for some

specified constant c, so that E = cn log n/2. For fixed constants α1, α2, c1 and c2, we
define the following sets of degree sequences:

A = {d : d = c log n},
A1(α1, α2) = {d : −

√
α1 log n ≤ di − d ≤

√
α2 log n ∀ i},

A2 = {d : di ≤ n1/4 ∀ i}.
Define Â1(α1, α2) = A ∩ A1(α1, α2), Â2 = A ∩ A2.

We show below that πn(Ac
2) is negligible, and so we need only consider graphs with

degree sequences d ∈ A2. For such graphs, the estimate in (4) is applicable. We can use
this to show that πn(Â1(α1, α2)) → 1 as n→ ∞, for suitable α1 and α2.

Observe from (4) that 4Eλ = n(Var(d) + d
2 − d). But if d ∈ Â1(α1, α2), then

Var(d) ≤ max{α1, α2} log n, and so λ ≤ 1
2
(c log n− 1 + 1

c
max{α1, α2}). Hence,

d ∈ Â1(α1, α2) ⇒ 1

G̃n(d)
∼ eλ+λ2 ≤ e

c2 log2 n
2 ,

for all n sufficiently large. Recall that G̃n(d) ≤ 1 for all d and, in particular, for d ∈ Ac
2,

the complement of A2. Thus, we have from (3) that, for n sufficiently large,

πn(Ac
2)

πn(Â1(α1, α2))
≤ e

c2 log2 n
2

∑
d∈Ac

2

∏n
i=1

1
di!
e−βd2

i +γ(log n)di∑
d∈Â1(α1,α2)

∏n
i=1

1
di!
e−βd2

i +γ(log n)di
· (5)

Let D1, . . . , Dn be independent and identically distributed (iid) random variables,
with

P (D1 = k) =
1

F (γ)

1

k!
e−βk2+γ(log n)k, , k ∈ IN, (6)

where F (γ) is a normalization constant. The dependence of the Di on n and γ hasn’t
been made explicit in the notation. We choose γ so that ED1 = c log n, for a specified
constant, c; this is possible because ED1 is a continuous function of γ.

Let D denote the random vector (D1, . . . , Dn). We can now rewrite (5) as

πn(Ac
2)

πn(Â1(α1, α2))
≤ e

c2 log2 n
2

P(D ∈ Ac
2)

P(D ∈ Â1(α1, α2))
· (7)

The advantage of this is that we have reformulated statements about graphs as statements
about iid random vectors. If we can show that the RHS above is small, then necessarily
πn(Ac

2) is small, as we set out to show.
We now state some properties of the random variable D1 that can be derived by

straightforward but tedious calculation. We omit the proofs due to lack of space.



Lemma 1 Let kγ − 1 denote the integer part of xγ = 1
2β

(
γ log n + log log n + γ

2β

)
, and

let η = 2β(xγ − kγ + 1
2
). Then, ED1 − kγ and Var(D1) remain bounded as n to ∞, and

the moment generating function of D1 satisfies

E[eθD1 ] ∼ eθkγ
ψ(θ + η)

ψ(η)

where ψ(θ) =
∑∞

j=−∞ eθj−βj2
/
∑∞

j=−∞ e−βj2
.

Intuitively, the lemma says that D1 has mean of order log n and constant variance;
moreover, the moment generating function of D1 − kγ remains bounded as n → ∞.
Finally, given a constant c, the parameter γ can be tuned so that ED1 = c log n. It can
be shown using the above that

P(D ∈ Ac
2) ≤

n∑
i=1

P(Di > n1/4) ≤ Kne−β
√

n, (8)

for some constant K.
Define the centered random variables, Xnj = Dj − EDj. It is a straightforward

consequence of the above lemma that:

Lemma 2 The random variables, {Xnj, j = 1, . . . , n, n ∈ IN}, satisfy the following con-
ditions:
(i) lim supn→∞ E[eθ|Xn1|] <∞ for some θ > 0.
(ii) lim infn→∞ Var(Xn1) > 0.
(iii) lim infn→∞

∑∞
j=−∞ min{P(Xn1 = j),P(Xn1 = j + 1)} > 0.

Using the above estimates and Chernoff’s bound, it can easily be shown that, given
any K > 0, we can choose α1 and α2 such that, for all n sufficiently large,

P(D ∈ A1(α1, α2)
c) < e−K log n. (9)

Let (D̃1, . . . , D̃n) have the joint distribution of (D1, . . . , Dn) conditional on D ∈
A1(α1, α2). Equivalently, D̃1, . . . , D̃n are iid, with D̃j having the distribution of Dj

conditional on −α1

√
log n ≤ Dj − EDj ≤ α2

√
log n. Now

P(D ∈ Â1(α1, α2)) = P(D ∈ A1(α1, α2))P(
n∑

j=1

Dj = cn log n|D ∈ A1(α1, α2))

= P(D ∈ A1(α1, α2))P(
n∑

j=1

D̃j = cn log n). (10)

Suppose α1, α2 > 0 are chosen so that ED̃1 = ED1 = c log n. It can be verified that
Lemma 2 holds for D̃j as well as for Dj. Properties (i)-(iii) established by this lemma
are precisely what we need to apply a local limit theorem of McDonald [7, Theorem 1];
using this theorem, we obtain that,

P(
n∑

j=1

D̃j = cn log n) =
1√

2πnσ̃

(
1 +O

( 1

n

))
, (11)

where σ̃ = Var(D̃1) remains bounded as n→ ∞. Combining this with (10) yields

P(D ∈ Â1(α1, α2)) =
1√

2πnσ̃

(
1 +O

( 1

n

))
.



Hence, by (7) and (8),

πn(Ac
2) ≤

πn(Ac
2)

πn(Â1(α1, α2))
≤ e

c2 log2 n
2

√
2πσ̃Kn3/2e−β

√
n
(
1 +O

( 1

n

))
, (12)

and so πn(Ac
2) → 0 as n→ ∞. Thus, we need only consider graphs with degree sequences

in A2, for which we can use the estimate in (4).

Theorem 1 There exist constants α1, α2 such that πn(Â1(α1, α2)) goes to 1 as n goes to
infinity.

Proof : Observe that

πn(Â1(α1, α2)) = πn(A) − πn(A \ A1(α1, α2))

≥ πn(A) − πn((A \ A1(α1, α2)) ∩ A2) − πn(Ac
2).

But πn(A) = 1 by definition, and we have shown above that πn(Ac
2) → 0 as n → ∞.

Hence, it suffices to show that

πn((A \ A1(α1, α2)) ∩ A2) → 0 as n→ ∞. (13)

Recall from (4) that, if d ∈ A2, then G̃n(d) ∼ e−λ(d)−λ(d)2 . Now,

λ(d) =
Var(d) + d

2 − d

2d
≥ c log n− 1

2
∀ d ∈ A,

since the mean degree, d, is c log n. In particular, this lower bound on λ(d) holds for all
d in (A \ A1(α1, α2)

c) ∩ A2, since this is a subset of A. In addition, we saw earlier that,
if d ∈ Â1(α1, α2), then

λ(d) ≤ 1

2

(
c log n− 1 +

1

c
max{α1, α2}

)
.

Denote max{α1, α2} by α. Now, by (3),

πn((A \ A1(α1, α2)) ∩ A2)

πn(Â1(α1, α2))

=

∑
d∈(A\A1(α1,α2))∩A2

e−λ(d)−λ(d)2 ∏n
i=1

1
di!
e−βd2

i +γ(log n)di∑
d∈Â1(α1,α2) e

−λ(d)−λ(d)2
∏n

i=1
1

di!
e−βd2

i +γ(log n)di

≤ e
α
2c(c log n+ α

2c)
∑

d∈(A\A1(α1,α2))∩A2

∏n
i=1

1
di!
e−βd2

i +γ(log n)di∑
d∈Â1(α1,α2)

∏n
i=1

1
di!
e−βd2

i +γ(log n)di
·

In other words, there are constants κ1 and κ2 such that

πn((A \ A1(α1, α2)) ∩ A2)

πn(Â1(α1, α2))
≤ κ1e

κ2 log nP(D ∈ (A \ A1(α1, α2)) ∩ A2)

P(D ∈ Â1(α1, α2))

≤ κ1e
κ2 log nP(D ∈ A \ A1(α1, α2))

P(D ∈ Â1(α1, α2))
. (14)

Now, by (9), for any givenK > 0, we can choose α1 and α2 such that P(D ∈ A1(α1, α2)
c) ≤

e−K log n. Thus,

P(D ∈ A \ A1(α1, α2)) ≤ P(D ∈ A1(α1, α2)
c) ≤ e−K log n. (15)



Moreover, analogous to (11), we have

P(D ∈ A) = P (
n∑

j=1

Dj = cn log n) =
1√

2πnσ

(
1 +O

(
1

n

))
,

where σ = Var(D1) remains bounded as n→ ∞. Therefore,

P(D ∈ Â1(α1, α2)) = P(D ∈ A) − P(D ∈ A ∩ A1(α1, α2)
c)

≥ P(D ∈ A) − P(D ∈ A1(α1, α2)
c)

=
1√

2πnσ

(
1 +O

(
1

n

))
. (16)

Substituting (15) and (16) in (14), we have

πn((A \ A1(α1, α2)) ∩ A2) ≤ πn(A \ A1(α1, α2))

πn(Â1(α1, α2))

≤ κ1σ
√

2πn e(κ2−K) log n
(
1 +O

(
1

n

))
.

Since K can be chosen arbitrarily large, the above quantity goes to zero as n→ ∞, which
establishes (13) and the claim of the theorem. �

3 Failure resilience

In the following, we work with graphs whose degree sequence belongs to the set A1(α1, α2)
for some specified α1 and α2. We are interested in the probability that the graph remains
connected when links fail independently with probability p. It is straightforward to
compute the probability that a given node i becomes isolated due to link failures; it is
simply pdi . Thus, by the union bound, the probability that some node becomes isolated
is at most

n∑
i=1

pdi ≤ npc log n−
√

α1 log n = exp[(1 + c log p) log n− c log p
√
α1 log n].

Hence, if c log p < −1 or, equivalently, p < exp(−1/c), then the probability that some
node becomes isolated goes to zero as n increases to infinity.

By way of comparison, consider the classical random graph model of Erdös and
Renyi [4] with the same mean degree. Here, an edge is present between each pair of
nodes with probability c log n/n, independent of all other edges. After taking failures
into account, the edge probability becomes (1 − p)c log n/n, and the presence of edges
continues to be mutually independent. It is well known for this model that, if (1−p)c < 1,
then the graph is disconnected with high probability. Moreover, in a sense that can be
made precise, the main reason for disconnection when (1 − p)c is “close to” 1 is the
isolation of individual nodes. Intuitively, these arguments suggest that random graphs
drawn from the distribution (1) can tolerate link failure rates up to e−1/c while retain-
ing connectivity, whereas classical random graphs with the same mean degree can only
tolerate failure rates up to (c− 1)/c. We now establish this claim rigorously.

Given a graph G and a subset U of its vertex set, let eU(G) denote the number of
edges incident within U (i.e., having both their vertices with U); let eU,Uc(G) denote
the number of edges having one vertex in U and the other in its complement, U c. Let



d(G) = {d1, d2, . . . , dn} denote the degree sequence of G. For positive constants δ, β and
C, for n ∈ IN and a degree sequence d, we define the following subsets of graphs on a
vertex set V of cardinality n:

E1(n, δ, β,d) = {G : d(G) = d & ∃U : |U | ≤ βn, eU,Uc(G) < (1 − δ)|U |c log n},(17)

E2(n, β, C,d) = {G : d(G) = d & ∃U : βn < |U | ≤ n/2, eU,Uc(G) < Cn}. (18)

We also define

E1(n, δ, β) =
⋃
d

E1(n, δ, β,d), E2(n, β, C) =
⋃
d

E2(n, β, C,d). (19)

We shall derive bounds on the probabilities of these sets using the configuration model [2]
and adapting the techniques of [3]. To this end, we define the analogous sets of configu-
rations Ê1(n, δ, β,d), Ê2(n, β, C,d), Ê1(n, δ, β) and Ê2(n, β, C). Recall that configurations
correspond to multigraphs, i.e, there may be loops or multiple edges. A multiple edge is
counted the corresponding number of times in the above definitions.

Lemma 3 Given δ > 0, we can choose β > 0 such that

lim
n→∞µn(E1(n, δ, β)) = 0,

where the distribution µn was defined in (1).

Proof : Denote |U | by u. Suppose first that u ≤ 2εc log n, for a given ε > 0. The number

of edges incident within U can be at most
(

u
2

)
, so eU(G) ≤ εuc log n for all U . But

2eU(G) + eU,Uc(G) = DU :=
∑
i∈U

di.

Since DU ∼ cu log n for degree sequences d ∈ A1(α1, α2) and any U ⊆ V , it follows
from the above that, if δ > 2ε and n is sufficiently large, then eU,Uc(G) ≥ (1 − δ)uc log n
whenever u ≤ 2εc log n.

Next, fix a degree sequence d ∈ A1(α1, α2). By (1), all graphs with the same degree
sequence are equally likely under the distribution µn, so we can use the configuration
model to generate a random graph with this distribution, conditional on the degree
sequence. Recall that each graph with a given degree sequence corresponds to the same
number of configurations, namely

∏n
i=1 di!, but a configuration may not yield a simple

graph (it could have loops and multiple edges). Assuming that every “bad” configuration
(namely, a configuration H with eU,Uc(H) < (1− δ)uc log n for some U ⊆ V ) corresponds
to a simple graph yields an upper bound on the fraction of graphs which are bad. Using
the enumeration formula of McKay and Wormald [8], this bound says that,

µn(E1(n, δ, β,d)|d) ≤ eλ+λ2

P(H ∈ Ê1(n, δ, β,d)|d), (20)

where P(·|d) denotes the probability with respect to the uniform distribution on config-
urations with degree sequence d, and λ was defined in (4).

Fix a subset U and let DU =
∑

i∈U di. The number of edges incident within U in a
random configuration is bounded above by a binomial random variableX with parameters
DU and DU/(2E − DU). Using Chernoff’s bound, we can show, for any δ̂ ∈ (0, 1) and
any degree sequence d ∈ A1(α1, α2), that

log P(X > δ̂DU) ≤ −uc log n
[
δ̂ log

δ̂(n− u)

u
− δ̂

](
1 +O

( 1√
log n

))
. (21)



We omit the details for brevity. We can use this bound, and the fact thatX stochastically
dominates eU(H) (conditional on d), to show the following, for n sufficiently large:

P(∃U ⊆ V : eU(H) > δ̂DU and 2εc log n ≤ u ≤ √
n) ≤ exp

(
−εδ̂c

2

2
log3 n

)
, (22)

and, for small enough β,

P(∃U ⊆ V : eU(H) > δ̂DU and
√
n ≤ u ≤ βn) ≤ e−

√
n. (23)

Now, for degree sequences d ∈ A1(α1, α2), DU ∼ uc log n for all U ⊆ V , and so eU(H) >
uδc log n implies that eU(H) > δ′DU for any δ′ < δ, if n is sufficiently large. Hence, we
have from (20), (22) and (23) that

µn(E1(n, δ, β,d)|d) ≤ eλ+λ2

(e−k log3 n + e−
√

n),

for every d ∈ A1(α1, α2). But λ = O(log n), so µn(E1(n, δ, β,d)|d ∈ A1(α1, α2)) goes to
0 as n→ ∞. By Theorem 1, µn(d /∈ A1(α1, α2)) goes to 0 as well. Since

µn(E1(n, δ, β)) ≤ µn(E1(n, δ, β,d)|d ∈ A1(α1, α2)) + µn(d /∈ A1(α1, α2)),

the claim of the lemma is established. �

Lemma 4 For arbitrarily small β > 0 and arbitrarily large C > 0

lim
n→∞µn(E2(n, β, C)) = 0.

Proof : As in the proof of Lemma 3, we fix a degree sequence d ∈ A1(α1, α2) and a
subset U , and bound the probability that eU,Uc(G) < Cn in terms of the probability that
eU,Uc(H) < Cn, where H is drawn uniformly at random from configurations with degree
sequence d. Analogous to (20), we have

µn(E2(n, β, C,d)|d) ≤ eλ+λ2

P(H ∈ Ê2(n, β, C,d)|d). (24)

Fix positive constants β and C. Let U be a subset of the vertex set with βn < u ≤ n/2,
and let j < Cn. Recall that the number of configurations with degree sequence d is

Hn(d) =
(2E)!

E!2E

n∏
i=1

di!, (25)

where E =
∑n

i=1 di/2 is the total number of edges. The number of these configurations
with exactly j edges crossing the cut between U and U c is

HU,Uc(j) ≤
(
DU

j

)(
2E −DU

j

)
j! ×

(DU − j)!

(DU−j
2

)! 2
DU−j

2

(2E −DU − j)!

(E − DU−j
2

)! 2
2E−DU−j

2

n∏
i=1

di!, (26)

where DU =
∑

i∈U di. The dependence of H on d has been suppressed for notational
convenience. The first two terms on the right above count the number of ways we can
choose j configurations points each from U and U c to match up. The term j! counts
the number of ways of matching them. The remaining configuration points have to be



matched within the sets U and U c as there are only j edges crossing the cut. The number
of ways of doing this is the number of configurations on U with DU − j points, times the
number of configurations on U c with 2E − DU − j points, and with a degree sequence
strictly bounded by d (since j points each in U and U c have been used up). This yields
the remaining terms in the bound above. We obtain from (25) and (26) after some
simplification that

P(eU,Uc(H) = j) =
HU,Uc(j)

Hn(d)
≤
(

E
DU/2

)(
DU/2
j/2

)(
E−(DU/2)

j/2

)
(

2E
DU

)(
j

j/2

) 2j.

Using Stirling’s formula, it can be shown that, for n sufficiently large,

log P(eU,Uc(H) = j) ≤ −cn log n

4
h
(β

2

)
, (27)

where, for x ∈ [0, 1], h(x) = −x log x − (1 − x) log(1 − x) denotes the binary entropy of
x. This bound applies to arbitrary U ⊆ V with βn < u < n/2, and it doesn’t depend
on u. The number of subsets U with cardinality between βn and n/2 is smaller than the
total number of subsets, which is 2n. Hence, by the union bound,

P(H(d) : ∃U with βn < u < n/2 and eU,Uc(H) = j) ≤ 2ne−
cn log n

4
h(β

2
).

The above holds for each j < Cn. Applying the union bound once more,

P(H ∈ Ê2(n, β, C,d)|d) ≤ Cn2ne−
cn log n

4
h(β

2
), for all d ∈ A1(α1, α2).

Substituting this in (24) and noting that λ = O(log n), we see that

µn(E2(n, β, C,d)|d) → 0 as n→ ∞, for all d ∈ A1(α1, α2).

We also know from Theorem 1 that µn(d /∈ A1(α1, α2)) goes to zero. But,

µn(E2(n, β, C)) ≤ µn(E2(n, β, C,d)|d ∈ A1(α1, α2)) + µn(d /∈ A1(α1, α2)),

and so µn(E2(n, β, C)) → 0 as n→ ∞, as claimed. �

Finally, we shall use the results above to show that random graphs drawn from the
distribution µn can tolerate link failure rates up to e−1/c without losing connectivity. Fix
p < e−1/c and assume that links fail independently with probability p each. For a subset
U of the vertex set, let êU,Uc denote the number of edges between U and U c that have
not failed. We shall show that, with high probability, êU,Uc > 0 for all subsets U , i.e., the
graph is connected. Now,

P(êU,Uc(G) = 0|eU,Uc(G)) = peU,Uc (G).

Suppose first that G /∈ E1(n, δ, β). Then, eU,Uc(G) ≥ (1 − δ)uc log n for all U ⊆ V
with |U | < βn. Hence,

P(∃U : |U | < βn, êU,Uc(G) = 0) ≤
βn∑

u=1

(
n

u

)
p(1−δ)uc log n.



Since p < e−1/c, given we can choose δ > 0 so that p(1−δ)c < e−(1+ε), for some ε > 0.
Therefore, using the inequality

(
n
u

)
≤ nu/u!, we get

P(∃U : |U | < βn, eU,Uc(G) = 0) ≤
βn∑

u=1

1

u!
e−εu log n ≤ exp(e−ε log n) − 1, (28)

which goes to zero as n→ ∞.
Suppose next that G /∈ E2(n, β, C). Then, eU,Uc(G) ≥ Cn for all U ⊆ V with

βn < |U | ≤ n/2. Hence,

P(∃U : βn < |U | ≤ n/2, êU,Uc(G) = 0) ≤ ∑
|U |:βn<u≤n/2

pCn ≤ 2npCn. (29)

Since C can be chosen arbitrarily large, the above quantity goes to zero as n→ ∞.
We see from (28) and (29) that, for suitably chosen δ and β,

P(∃U : êU,Uc(G) = 0|G /∈ {E1(n, δ, β) ∪ E2(n, β, C)}) → 0 as n→ ∞.

Also, by Lemmas 3 and 4,

P(G ∈ {E1(n, δ, β) ∪ E2(n, β, C)}) → 0 as n→ ∞,

when G is chosen according to the distribution µn. Hence, for any p < e−1/c, a graph G
chosen at random from the distribution µn, and subjected to independent link failures
with probability p, remains connected, with probability going to 1 as n→ ∞.

References

[1] F. Ball and A. Barbour, “Poisson approximation for some epidemic models”, J. Appl.
Prob., vol. 27, pp. 479–490, 1990.
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vol. 5, pp. 17–60, 1960.

[5] A. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Peer-to-peer membership manage-
ment for gossip-based protocols”, IEEE Trans. Comp., vol. 52, pp. 139–149, 2003.
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