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Abstract

Let Xk be a sequence of independent and identically distributed
random variables taking values in a compact metric space Ω, and con-
sider the problem of estimating the law of X1 in a Bayesian framework.
A conjugate family of priors for non-parametric Bayesian inference is
the Dirichlet process priors popularized by Ferguson. We prove that
if the prior distribution is Dirichlet, then the sequence of posterior
distributions satisfies a large deviation principle, and give an explicit
expression for the rate function. As an application, we obtain an as-
ymptotic formula for the predictive probability of ruin in the classical
gambler’s ruin problem.

Keywords: Bayesian nonparametrics, large deviations, asymptotics, Dirich-
let process.

1 Introduction

Let X be a Hausdorff topological space with Borel σ-algebra B, and let µn

be a sequence of probability measures on (X ,B). A rate function is a non-
negative lower semicontinuous function on X . We say that the sequence µn

satisfies the large deviation principle (LDP) with rate function I, if for all
B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n

1
n

log µn(B) ≤ lim sup
n

1
n

log µn(B) ≤ − inf
x∈B̄

I(x).

Let Ω be a complete, separable metric space (Polish space) and denote by
M1(Ω) the space of probability measures on Ω. Consider a sequence of
independent random variables Xk taking values in Ω, with common law

1Research carried out in part while the author was at BRIMS, Hewlett-Packard Labs.
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µ ∈M1(Ω). Denote by Ln the empirical measure corresponding to the first
n observations:

Ln =
1
n

n∑
k=1

δXk
.

We denote the law of Ln by L(Ln). For ν ∈ M1(Ω) define its Kullback-
Leibler distance or relative entropy (relative to µ) by

H(ν|µ) =

{ ∫
Ω

dν
dµ log dν

dµdµ ν � µ

∞ otherwise.

The statement of Sanov’s theorem is that the sequence L(Ln) satisfies the
LDP inM1(Ω) equipped with the τ -topology (see Dembo and Zeitouni 1993,
Theorem 6.2.10), with rate function H(·|µ). As a corollary, the LDP also
holds in the weak topology on M1(Ω), which is weaker than the τ -topology.

In an earlier paper (Ganesh and O’Connell 1999), we proved an inverse
of this result, which arises naturally in a Bayesian setting, for finite sets
Ω. The underlying distribution (of the Xk’s) is unknown, and has a prior
distribution π ∈ M1(M1(Ω)). The posterior distribution, given the first
n observations, is a function of the empirical measure Ln and is denoted
πn(Ln). We showed that, on the set {Ln → µ}, for any fixed µ in the sup-
port of the prior, the sequence πn(Ln) satisfies the LDP in M1(Ω) with rate
function given by H(µ|·) on the support of the prior (otherwise it is infi-
nite). Note that the roles played by the arguments of the relative entropy
function are interchanged compared to Sanov’s theorem. We pointed out
that the extension of the result to more general Ω would require additional
assumptions about the prior. To see that this is a delicate issue, note that,
since H(µ|µ) = 0, the LDP implies consistency of the posterior distribution
in the topology generated by Kullback-Leibler neighbourhoods; in particu-
lar, it implies weak consistency. But it was shown by Freedman (1963) that
Bayes estimates can be inconsistent even for countable Ω; even if the true
distribution is in the weak support of the prior, it does not follow that the
posterior mass of each weak neighbourhood tends to 1 (in fact, it can tend
to zero!).

There has recently been renewed interest in the consistency of non-parametric
Bayes methods, prompted by their increasing popularity in applied work. A
notable early result in this field is due to Schwartz (1965), who showed that
if the prior assigns positive probability to every Kullback-Leibler neighbour-
hood of the true distribution, then the posterior is weakly consistent. If, in
addition, the relevant space of probability distributions satisfies a ‘metric
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entropy’ condition, then Barron et al. (1999) show that the posterior con-
centrates on neighbourhoods defined by the Hellinger metric; these are finer
than weak neighbourhoods. (The Hellinger distance between two densities
f and g with respect to a reference measure µ is defined by

∫
(
√

f−√g)2dµ.)
Recent research on the consistency of Bayes methods is reviewed by Ghosal
et al. (1999) and Wasserman (1998). Rates of convergence of the posterior
have been investigated by Ghosal et al. (1998) and Shen and Wasserman
(1998), but there is relatively little work on more refined asymptotics.

In this paper, we prove an LDP for the special (but nevertheless, useful)
case of Dirichlet process priors on a compact metric space. The problem of
extending our results to an arbitrary Polish space remains open.

An LDP with a similar flavour for a sequence of Dirichlet processes has been
derived by Lynch and Sethuraman (1987); we compare our result with theirs
following the statement of Theorem 1. The techniques we use in this paper
are very different from those of Lynch and Sethuraman, who obtain their
results as a consequence of an LDP they derive for processes with stationary,
independent increments. We believe that our methods are of independent
interest, and also that they can be generalized to a wider class of prior
distributions.

The LDP for Dirichlet posteriors derived here has applications to queue and
risk management that are discussed in Ganesh et al. (1998). Some questions
of interest in this context are posed in terms of the ruin probability in the
classical gambler’s ruin problem. In Section 3, we use the LDP for the
posterior distributions to obtain an asymptotic formula for the predictive
probability of ruin.

2 The LDP

Let Ω be a compact metric space with Borel σ–algebra F . Let M1(Ω)
denote the space of probability measures on (Ω,F), and B(M1(Ω)) the
Borel σ–algebra induced by the weak topology on M1(Ω). In this case,
it is not possible to establish an LDP for Bayes posteriors corresponding
to arbitrary prior distributions, for reasons discussed above. Therefore, we
shall work with a specific family of priors, namely Dirichlet process priors;
see Ferguson (1973) for a detailed discussion of their properties.

The n-dimensional Dirichlet distribution with parameter a = (a1, . . . , an),
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denoted D(a), is defined to be the joint distribution of (Z1/Z, . . . , Zn/Z),
where Zi, i = 1, . . . , n are mutually independent, Zi has the gamma distrib-
ution with shape parameter ai and scale parameter 1, and Z = Z1+. . .+Zn.

Denote by M+(Ω) the space of finite non-negative measures on (Ω,F). The
“Dirichlet process” with parameter α ∈ M+(Ω), denoted D(α), is a proba-
bility distribution onM1(Ω). A random probability measure, µ, on Ω is said
to have law D(α) if, for every finite measurable partition (A1, . . . , An) of Ω,
the vector (µ(A1), . . . , µ(An)) has the n-dimensional Dirichlet distribution
D(α(A1), . . . , α(An)). The distribution of (µ(B1), . . . , µ(Bn)) for arbitrary
measurable B1, . . . , Bn follows in an obvious way from the distributions for
partitions.

Let π be a Dirichlet process prior, D(α), on the space M1(Ω). Then, con-
ditional on observing ω1,. . .,ωn, the posterior distribution is also a Dirichlet
process, but with parameter α +

∑n
i=1 δωi , where δx denotes Dirac measure

at x (see Ferguson 1973, 1974). In other words, the Dirichlet processes
D(α), α ∈ M+(Ω) are a conjugate family of priors. This property greatly
facilitates computation of posterior distributions and is very useful in ana-
lytical work. We now prove a large deviation principle for the sequence of
distributions, {D(α +

∑n
i=1 δωi), n = 1, 2, . . .}.

Theorem 1 Let α be a finite non-negative measure on (Ω,B(Ω)), with sup-
port Ω. Let µ be a probability measure on (Ω,B(Ω)), and let {xn} be an
Ω-valued sequence such that

1
n

n∑
i=1

δxi → µ weakly,

where δxi denotes Dirac measure at xi. Then the sequence of probability
measures, D(α +

∑n
i=1 δxi), satisfies an LDP in M1(Ω) equipped with its

weak topology, with rate function I(·) given by

I(ν) = H(µ|ν),

where H(µ|ν) denotes the relative entropy of µ with respect to ν.

Corollary: If Xi, i ∈ IN are independent and identically distributed with
common law µ, then the sequence of empirical distributions, (1/n)

∑n
i=1 δXi ,

converges weakly to µ with probability one. Hence, the sequence of random
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probability measures D(α +
∑n

i=1 δXi) almost surely satisfies an LDP (on
M1(Ω) equipped with its weak topology) with rate function I(·) = H(µ|·).

Remarks: (1) There is no loss of generality in the assumption that the
support of the prior, α, is Ω. Indeed, if the prior were supported on some
smaller set Ω1, then since the posterior assigns no mass outside Ω1, we can
confine ourselves to the closed set Ω1, which is also a compact metric space.
(2) Lynch and Sethuraman (1987) prove an LDP for the sequence of Dirich-
let distributions, D(nµ), on [0, 1]. Their result would be equivalent to our
theorem, for Ω = [0, 1], if D(nµ) and D(α + nµn) are exponentially equiva-
lent whenever µn converges weakly to µ; however, establishing exponential
equivalence does not appear to be trivial.

We now sketch the main ideas behind the proof before proceeding with a
formal derivation. Let µn be a random element of M1(Ω) with distribution
D(α +

∑n
i=1 δxi) as above. For bounded measurable functions f : Ω → IR,

we define
Λn(f) = log E

[
exp

∫
Ω

fdµn

]
. (1)

We show in Lemma 1 below that, for finite measurable partitions (A1, . . . , Ak)
of Ω, the vector (µn(A1), . . . , µn(Ak)) satisfies the LDP in IRk. We then use
Varadhan’s integral lemma (Dembo and Zeitouni 1993, Theorem 4.3.1) to
infer the existence of the limit

Λ(f) = lim
n→∞

1
n

Λ(nf),

for simple functions f =
∑k

i=1 ci1Ai ; here 1Ai denotes the indicator of Ai.
This is extended in Lemma 3 to all bounded continuous functions on Ω, using
the continuity of Λ(·). By Theorem 4.5.3 in Dembo and Zeitouni (1993), the
existence of the limiting logarithmic moment generating function, Λ, implies
the large deviation upper bound for the sequence {µn}, for all compact
subsets of M1(Ω). Since Ω was assumed to be compact, M1(Ω) is compact
in the weak topology and so the upper bound holds for all closed sets. The
rate function for this upper bound is the convex conjugate of Λ, which we
identify to be H(µ|·).

We use the LDP for (µn(A1), . . . , µn(Ak)) and the contraction principle
(Dembo and Zeitouni 1993, Theorem 4.2.1) to get an LDP for

∑k
i=1 ciµn(Ai),

for arbitrary constants ci. Thus, we obtain a large deviation lower bound
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for sets of the form

U(φk, x, δ) = {ν ∈ M1(Ω) :
∫
Ω

φkdν ∈ (x− δ, x + δ)},

with rate function Hk(µ|·) given in Lemma 2. Here x ∈ IR and δ > 0
are arbitrary, and φk is any simple function φk =

∑k
i=1 ci1Ai , so that∫

φkdν =
∑

ciν(Ai). We extend the lower bound to sets of the form
U(φ, x, δ) where φ is any bounded continuous function on Ω, by using in-
creasingly fine partitions of Ω to approximate φ by simple functions. The
rate function for this lower bound is the limit of Hk(µ|·) as the partitions
indexed by k get finer, which is shown in Lemma 2 to be H(µ|·). Since
the sets U(φ, x, δ) constitute a base for the weak topology on M1(Ω), this
establishes the large deviation lower bound for all open sets.

The proof of Theorem 1 uses the following lemmas, whose proofs are in the
appendix.

Lemma 1 Let (A1, . . . , Ak) be a measurable partition of Ω and suppose that
the interior of Ai is non-empty for each i = 1, . . . , k. Let f be bounded and
measurable with respect to σ(A1, . . . , Ak), the σ-algebra generated by the sets
A1, . . . , Ak. Then,

Λ(f) := lim
n→∞

1
n

Λn(nf) (2)

exists and is finite, and is given by

Λ(f) = sup
ν∈M1(Ω)

[∫
Ω

fdν −H(µ|ν)
]
. (3)

Lemma 2 Let Ak = (Ak
1, . . . , A

k
nk

), k ∈ IN, be a sequence of partitions of Ω
such that the corresponding σ-algebras, σ(Ak), increase to B(Ω), the Borel
σ-algebra on Ω. Then, for all ν ∈M1(Ω), we have

H(µ|ν) = sup
k

Hk(µ|ν) = lim
k→∞

Hk(µ|ν),

where Hk(µ|ν) :=
∑nk

i=1 µ(Ak
i ) log[µ(Ak

i )/ν(Ak
i )].

This result is well known, see Georgii (1988) for example.
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Lemma 3 For all bounded, continuous functions f : Ω → IR, the limit in
(2) exists and is finite. The map Λ : Cb(Ω) → IR is convex and continuous,
and we have

Λ(f) = sup
ν∈M1(Ω)

[∫
fdν −H(µ|ν)

]
.

Here, Cb(Ω) denotes the space of bounded continuous functions from Ω to
IR, equipped with the supremum norm, ‖f‖∞ = supx∈Ω |f(x)|.

Proof of Theorem 1 : We have from Lemma 3 that Λ is the convex
conjugate of H(µ|·). But H(µ|·) is convex, and lower semicontinuous in the
weak topology (see Dupuis and Ellis 1997, Lemma 1.4.3), and recall that
M1(Ω) is Polish since Ω is a Polish space). Hence, H(µ|·) and Λ(·) are
convex duals of each other. The large deviations upper bound for compact
subsets of M1(Ω) now follows from Dembo and Zeitouni (1993), Theorem
4.5.3. But Ω was assumed to be compact, hence M1(Ω) is compact in the
weak topology, so the upper bound holds for all closed sets in M1(Ω). We
now turn to the proof of the large deviations lower bound.

The weak topology on M1(Ω) is generated by the sets

Uφ,x,δ =
{

ν ∈M1(Ω) :
∣∣∣∣ ∫

Ω
φdν − x

∣∣∣∣< δ

}
, φ ∈ Cb(Ω), x ∈ IR, δ > 0.

Given such a set and ε > 0, we can find a sequence of measurable partitions
Ak = (Ak

1, . . . , A
k
nk

) of Ω, and a sequence of simple functions φk measurable
with respect to σ(Ak), with the following properties: the σ-algebras σ(Ak)
increase to B(Ω), the Borel σ-algebra on Ω; for all k and all i ∈ {1, . . . , nk},
Ak

i is a µ-continuity set with non-empty interior; for some K > 0 and all
k > K, ‖φk − φ‖∞ < ε. We shall assume that ε < δ/3. We now have

P (µn ∈ Uφ,x,δ) ≥ P

(∣∣∣∣ ∫
Ω

φkdµn − x

∣∣∣∣< δ − ε

)
∀ k > K. (4)

Let φk =
∑nk

i=1 ck
i 1Ak

i
. Then,∫

Ω
φkdµn =

nk∑
i=1

ck
i µn(Ak

i ).

It is shown in the proof of Lemma 1 (see equation (13)) that the sequence
(µn(Ak

1), . . . , µn(Ak
nk

))n≥0 satisfies an LDP with rate function Ik given by

Ik(y1, . . . , ynk
) =


∑nk

j=1 µ(Aj) log
µ(Aj)

yj
, if y ∈ IRnk

+ and
∑nk

i=1 yi = 1,

+∞, otherwise.
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It follows from the Contraction Principle (Dembo and Zeitouni 1993, Theo-
rem 4.2.1) that

∑nk
i=1 ck

i µn(Ak
i ) satisfies an LDP with rate function Jk given

by

Jk(x) = inf

{
Ik(y) :

nk∑
i=1

ck
i yi = x

}

= inf
{

Hk(µ|ν) : ν ∈M1(Ω),
∫
Ω

φkdν = x

}
.

In particular, we obtain the large deviations lower bound,

lim inf
n→∞

1
n

log P

(∣∣∣∣ ∫
Ω

φkdµn − x

∣∣∣∣< δ − ε

)
(5)

≥ − inf{Jk(y) : |y − x| < δ − ε}

= − inf
{

Hk(µ|ν) : ν ∈M1(Ω),
∣∣∣∣ ∫

Ω
φkdν − x

∣∣∣∣< δ − ε

}
. (6)

Now, ‖φ− φk‖∞ < ε for all k > K, so we have for all ν ∈M1(Ω) that,∣∣∣∣ ∫
Ω

φdν − x

∣∣∣∣< δ − 2ε ⇒
∣∣∣∣ ∫

Ω
φkdν − x

∣∣∣∣< δ − ε ∀ k > K.

It now follows from (4) and (6) that, for all k > K,

lim inf
n→∞

1
n

log P (µn ∈ Uφ,x,δ) ≥ − inf
{

Hk(µ|ν) :
∣∣∣∣ ∫

Ω
φdν − x

∣∣∣∣< δ − 2ε

}
.

Hence, we have from Lemma 2 that

lim inf
n→∞

1
n

log P (µn ∈ Uφ,x,δ) ≥ − inf
{

H(µ|ν) :
∣∣∣∣ ∫

Ω
φdν − x

∣∣∣∣< δ − 2ε

}
.

Since ε > 0 was arbitrary, we can let ε decrease to zero, to get

lim inf
n→∞

1
n

log P (µn ∈ Uφ,x,δ) ≥ − inf
{

H(µ|ν) :
∣∣∣∣ ∫

Ω
φdν − x

∣∣∣∣< δ

}
,

which is the desired large deviations lower bound for the set Uφ,x,δ, with rate
function H(µ|·). We have thus established the large deviations lower bound
for a base of the weak topology on M1(Ω), and hence for all open sets in
this topology. Combined with the upper bound above, this completes the
proof of the theorem.

We have established an LDP for the sequence of Dirichlet posterior distrib-
utions in the weak topology on M1(Ω), with rate function I(ν) = H(µ|ν).
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The rate function differs from that in Sanov’s theorem in that its argument,
ν, enters as the second rather than the first argument in the relative entropy
function. (Sanov’s theorem says that the empirical distribution of a sequence
of independent and identically distributed Ω-valued random variables with
common law µ satisfies an LDP with rate function J(ν) = H(ν|µ)). Intu-
itively, this is because, in Sanov’s theorem we are asking how likely we are
to observe ν, given that the true distribution is µ, whereas in this paper
we are asking how likely it is that the true distribution is ν, given that we
observe µ.

We believe that our result holds for a wider class of priors, of the form
described below. Let P be the set of all finite measurable partitions of Ω.
For P ∈ P let σ(P ) denote the σ-algebra generated by P . The restriction
of a measure ν ∈ M1(Ω) to the σ-algebra σ(P ) is denoted νP . In other
words, νP = E[ν|σ(P )]. For a prior π ∈ M1(M1(Ω)) we denote by πP

the corresponding element in M1(M1(Ω, σ(P ))), thus the restriction of π
to the Borel σ-algebra B(M1(Ω, σ(P ))). We fix a subset P ′ of P and say
that a prior measure π ∈M1(M1(Ω)) is exchangeable with respect to finite
projections in P ′ if for every P ∈ P ′ we have

[πn(µn)]P = πn
P (µn,P ).

Here πn(µn) denotes the posterior distribution on M1(Ω,B(Ω)) correspond-
ing to the prior P and the empirical distribution µn, [πn(µn)]P its restriction
to σ(P ) and πn

P (µn,P ) the posterior distribution on M1(Ω, σ(P )) correspond-
ing to the prior πP and the empirical distribution restricted to σ(P ).

The essential property of the Dirichlet process that we have used in the
proof of Theorem 1 is its exchangeability with respect to P ′, where P ′ is
the collection of finite partitions consisting of sets with non-empty interiors.
This collection is large enough to generate the Borel σ-algebra on Ω. We
believe that our methods can be generalized to priors which are exchangeable
with respect to finite projections in P ′, for some P ′ which generates the Borel
σ-algebra on Ω, although there do seem to be some technical difficulties
which we hope to address in future work. An example of a class of priors
which are exchangeable with respect to finite projections are the Polya tree
distributions studied by Mauldin et al. (1992) and Lavine (1992), which
generalize the Dirichlet process.
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3 Application to the gambler’s ruin problem

Suppose now that Ω is a compact subset of IR. As before, {Xk} is a sequence
of independent, identically distributed random variables with common law
µ ∈M1(Ω), and we are interested in level-crossing probabilities for the ran-
dom walk Sn = X1 + · · ·+Xn. For Q > 0, denote by R(Q,µ) the probability
that the walk ever exceeds the level Q. If a gambler has initial capital Q,
and loses amount Xk on the kth bet, then R(Q,µ) is the probability of ul-
timate ruin. If the underlying distribution µ is unknown, the gambler may
wish to assess this probability based on experience: this leads to a predictive
probability of ruin, given by the formula

Pn(Q,µn) =
∫

R(Q,λ)πn(dλ),

where, as before, µn is the empirical distribution of the first n observations
and πn ≡ πn(µn) is the posterior distribution corresponding to some prior,
π, and the empirical distribution, µn. A standard refinement of Wald’s
approximation yields

Ce−δ(µ)Q ≤ R(Q,µ) ≤ e−δ(µ)Q,

for some C > 0, where

δ(µ) = sup{θ ≥ 0 :
∫

eθxµ(dx) ≤ 1}.

Thus,

C

∫
M1(Ω)

e−δ(λ)Q πn(dλ) ≤ Pn(Q,µn) ≤
∫
M1(Ω)

e−δ(λ)Q πn(dλ).

Now, if π is the Dirichlet process, D(α), parametrized by an arbitrary finite
positive measure α whose support is all of Ω, then the sequence πn obeys
an LDP by Theorem 1, and we can apply Varadhan’s lemma (see, for exam-
ple, Dembo and Zeitouni (1993) Theorem 4.3.1) to obtain the asymptotic
formula, for q > 0,

lim
n→∞

1
n

log Pn(qn, µn) = − inf{H(µ|ν) + δ(ν)q : ν ∈ supp π},

on the set µn → µ. Here, we are using the easy (Ω is compact) fact that
δ : M1(Ω) → IR+ is continuous. This formula can be simplified in special
cases. Its implications for risk and network management are discussed in
Ganesh et al. (1998).
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4 Conclusion

In this paper, we establish a large deviations principle for the sequence of
Bayesian posteriors induced by a Dirichlet prior on a compact metric space,
Ω. Can the result be extended to an arbitrary Polish space? Our approach
yields the large deviation lower bound for arbitrary open subsets of this
space, and the upper bound for compact subsets. In other words, we can
prove a weak LDP on a Polish space. This could be strengthened to a
full LDP if the sequence of Dirichlet posteriors were exponentially tight.
However, exponential tightness of this sequence would imply the goodness
of the rate function H(µ|·), which we know not to be true in general. For
example, take Ω = IR, µ = δ0, the unit mass at 0, and νn = (1/2)δ0+(1/2)δn.
Then H(µ|νn) = log 2 for all n, but the sequence νn is not tight. This
implies that H(µ|·) doesn’t have compact level sets, i.e., it is not a good
rate function. Hence, our method cannot be easily extended to arbitrary
Polish spaces. Finally, while we have worked with Dirichlet process priors,
we believe that our approach can be extended to priors with the appropriate
exchangeability properties, as discussed at the end of Section 2. However,
there do appear to be some technical difficulties with this approach, which
we hope to address in future work.

Acknowledgements: We would like to thank the referees for their com-
ments, which have helped to improve the presentation of the paper.
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A Proofs

Proof of Lemma 1: Let (A1, . . . , Ak) be a partition of Ω such that the
interior of Ai is non-empty and that Ai is a µ-continuity set for every i =
1 . . . , k. Let f be bounded and measurable with respect to the σ-algebra
generated by the partition. Then we can write

f =
k∑

i=1

ci1Ai , (7)

for some constants ci, where 1Ai denotes the indicator of Ai. Then, by (1),

Λn(f) = log E
[
exp

k∑
i=1

ciµn(Ai)
]
. (8)

By the assumption that each Ai has non-empty interior and that the support
of α is Ω, we have

αn(Aj) := α(Aj) +
n∑

i=1

δxi(Aj) > 0 ∀ n ∈ IN and j = 1, . . . , k; (9)

We have from the definition of the Dirichlet distribution that

(µn(A1), . . . , µn(Ak)) ∼
(

Z1
n∑k

i=1 Zi
n

, . . . ,
Zk

n∑k
i=1 Zi

n

)
,

where the Zi
n are independent gamma random variables, with

Zj
n ∼ G(αn(Aj), 1),

and αn is defined in (9). Here, G(α, 1) denotes the gamma distribution with
shape parameter α and scale parameter 1. It is straightforward to evaluate
the cumulant generating functions of the Zj

n. We have

λj
n(θ) := log E[exp(θZj

n)] =
{
−αn(Aj) log(1− θ), if θ < 1,
+∞, otherwise.

Since
∑n

i=1 δxi(Aj)/n → µ(Aj) by assumption, we get

λj(θ) := lim
n→∞

1
n

λj
n(θ) =

{
−µ(Aj) log(1− θ), if θ < 1,
+∞, otherwise.

13



Hence, by the Gärtner-Ellis theorem (see Dembo and Zeitouni (1993) The-
orem 2.3.6), the sequence of random variables Zj

n/n satisfies an LDP in IR
with rate function λ∗j which is the convex dual of λj , i.e.,

λ∗j (x) = sup
θ∈IR

[θx−λj(θ)] =

x− µ(Aj) + µ(Aj) log
µ(Aj)

x
, if x > 0,

+∞, else.
(10)

If µ(Aj) = 0, then the assumption of steepness of λj is not satisfied, so
the Gärtner-Ellis theorem doesn’t apply. However, it is not hard to verify
directly in this case that Zj

n/n does indeed satisfy an LDP with the above
rate function.

Since {Zj
n, j = 1, . . . , k} are independent, {Zj

n/n, j = 1, . . . , k} jointly sat-
isfy an LDP in IRk with rate function λ∗(x) =

∑k
j=1 λ∗j (xj), where x =

(x1, . . . , xk) and λ∗j is given by (10).

Define Y j
n = Zj

n/
∑k

i=1 Zi
n. Since

∑k
i=1 Zi

n is strictly positive with probability
1, the maps

(Z1
n, . . . , Zk

n) → (Y 1
n , . . . , Y k

n )

are almost surely continuous for every n. It follows from the Contrac-
tion Principle (Dembo and Zeitouni (1993) Theorem 4.2.1) that {Y j

n , j =
1, . . . , k} jointly satisfy an LDP with rate function I given by

I(y1, . . . , yk) = inf


k∑

j=1

λ∗j (zj) : yj =
zj∑k
i=1 zi

, j = 1, . . . , k

 . (11)

If yj < 0 for some j, then any z included in the infimum in (11) must have
zi < 0 for some i and so, by (10), I(y) = ∞. Next, if yj = 0 for all j or if∑n

i=1 yi 6= 1, then there does not exist z ∈ IRk such that yj = zj/
∑k

i=1 zi

for all j. Hence I(y), being the infimum of an empty set, is again +∞.

In the following, we shall confine attention to y ∈ IRk such that y ≥ 0 and∑k
i=1 yi = 1. If z ∈ IRk is such that yj = zj/

∑k
i=1 zi for all j = 1, . . . , k,

then we can write z = βy for some β > 0. Now (11) gives

I(y1, . . . , yk) = inf
β>0

k∑
j=1

λ∗j (βyj). (12)

Setting the derivative of the sum on the right with respect to β equal to
zero yields

0 =
k∑

j=1

(
yj −

µ(Aj)
β

)
= 1− 1

β
.
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To obtain the last equality, we have used the fact that
∑k

j=1 yj = 1 by
assumption, while

∑k
j=1 µ(Aj) = 1 as µ is a probability distribution and

A1, . . . , Ak partition Ω. Since each λ∗j is convex, the above implies that the
infimum in (12) is achieved at β = 1, and

I(y) =
k∑

j=1

λ∗j (yj) =
k∑

j=1

yj − µ(Aj) + µ(Aj) log
µ(Aj)

yj

=
k∑

j=1

µ(Aj) log
µ(Aj)

yj
.

The second equality above comes from (10) and the third follows from the
fact that µ and y are both probability distributions, hence sum to 1. It
follows from the preceding discussion that the sequence of random vectors
(µn(A1), . . . , µn(Ak)) satisfy an LDP in IRk with rate function

I(y) =


∑k

j=1 µ(Aj) log
µ(Aj)

yj
, if y ∈ IRk

+ and
∑k

i=1 yi = 1,

+∞, otherwise.
(13)

Observe from (7) that |
∫

fdµn| ≤ maxk
i=1 |ci| as µn is a probability distrib-

ution. Hence, we have from Varadhan’s lemma (Dembo and Zeitouni 1993,
Theorem 4.3.1) and the LDP for (µn(A1), . . . , µn(Ak)) that

Λ(f) := lim
n→∞

1
n

Λn(nf) = sup
y∈IRk

[
k∑

i=1

ciyi − I(y)

]
.

Using (13), we can rewrite the above as

Λ(f) = sup
ν∈M1(Ω)

[
k∑

i=1

ciν(Ai)−
k∑

i=1

µ(Ai) log
µ(Ai)
ν(Ai)

]

= sup
ν∈M1(Ω)

[∫
Ω

fdν −Hk(µ|ν)
]
, (14)

where Hk(µ|ν) is defined in Lemma 2. We now show that we can replace
Hk(µ|ν) in the supremum above by H(µ|ν).

Let ν ∈ M1(Ω) be arbitrary. If µ(Ai) > 0 and ν(Ai) = 0 for some Ai, then
µ 6� ν and H(µ|ν) and Hk(µ|ν) are both infinite. Hence, such ν can be
excluded from consideration of the supremum above, and we shall suppose
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without loss of generality that µ(Ai) = 0 whenever ν(Ai) = 0. We now define
λ ∈ M1(Ω) as follows. Set λ ≡ ν on Ai if µ(Ai) = 0; if µ(Ai) > 0, take λ
to be absolutely continuous with respect to µ on Ai, with Radon-Nikodym
derivative

dλ

dµ
≡ ν(Ai)

µ(Ai)
> 0.

Then µ is absolutely continuous with respect to λ and we have

H(µ|λ) =
∫
Ω

dµ log
dµ

dλ
=

∑
i:µ(Ai)>0

∫
Ai

dµ log
dµ

dλ

=
∑

i:µ(Ai)>0

µ(Ai) log
µ(Ai)
ν(Ai)

= Hk(µ|ν). (15)

Also, ∫
Ω

fdν =
k∑

i=1

ciν(Ai) =
k∑

i=1

ciλ(Ai) =
∫
Ω

fdλ. (16)

Since ν ∈M1(Ω) was arbitrary, we obtain from (15) and (16) that

sup
ν∈M1(Ω)

[∫
Ω

fdν −Hk(µ|ν)
]
≤ sup

λ∈M1(Ω)

[∫
Ω

fdλ−H(µ|λ)
]
.

The reverse inequality holds as well because Hk(µ|ν) ≤ H(µ|ν) for all ν ∈
M1(Ω) by Lemma 2 (or by the convexity of x 7→ x log x on [0,∞)). Hence,
equality holds above and the claim of the lemma follows from (14).

Proof of Lemma 3: Let ε > 0 be given, and let f : Ω → IR be bounded
and continuous. We can find k > 0 and a simple function g =

∑k
i=1 ci1Ai

such that ‖f − g‖∞ < ε. Since f is continuous, we can in fact choose the Ai

to be µ-continuity sets with non-empty interiors. Now, by (1) and the fact
that each µn is a probability distribution,

Λn(nf) = log E

[
exp

∫
Ω

nfdµn

]
≤ log E

[
exp

(∫
Ω

ngdµn + nε
)]

= nε + Λn(ng),

so that, by (2),

lim sup
n→∞

1
n

Λn(nf) ≤ Λ(g) + ε.

Likewise, lim infn→∞ Λn(nf)/n ≥ Λ(g) − ε. Since ε > 0 is arbitrary, it
follows that

Λ(f) := lim
n→∞

1
n

Λn(nf)
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exists and is finite for all bounded, continuous f : Ω → IR. The arguments
above also show that Λ : Cb(Ω) → IR is continuous, with |Λ(f) − Λ(g)| ≤
‖f − g‖∞.

For f ∈ L∞(Ω), define

H∗(f) = sup
ν∈M1(Ω)

[∫
Ω

fdν −H(µ|ν)
]
, (17)

i.e., H∗ is the convex conjugate of H(µ|·). Now |
∫

fdν| ≤ ‖f‖∞ for all ν ∈
M1(Ω), while H(µ|·) is non-negative, with H(µ|µ) = 0. Thus, |H∗(f)| ≤
‖f‖∞. Since H∗ is a convex function with domain L∞(Ω), which is bounded
on the open neighbourhood, {f : ‖f‖∞ < 1}, we have by (Rockafellar 1974,
Theorem 8) that H∗ is continuous on the interior of its domain, which is all
of L∞(Ω).

By Lemma 1, H∗ and Λ agree on functions of the form f =
∑k

i=1 ci1Ai , where
the Ai partition Ω and each Ai is a µ-continuity set with non-empty interior.
Since such functions are dense in Cb(Ω), Λ was shown to be continuous on
Cb(Ω) and H∗ to be continuous on L∞(Ω) ⊇ Cb(Ω), it follows that Λ = H∗

on all of Cb(Ω) and, consequently, that Λ is convex.
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