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1. Let T1 and T2 be exponential random variables with parameters λ1
and λ2 respectively, and let T = min{T1, T2}.

(a) Show that the distribution of T is Exp(λ1 + λ2).

(b) Show that the probability that T = T1 is λ1/(λ1 + λ2), and that
this is independent of the value of T . (Hint. Compute P (T =
T1|T = t) and show that this doesn’t depend on t. Hence infer
the unconditional probability that T = T1.)

2. (a) We say that a random variable N has a Geometric distribution
with parameter p, written N ∼ Geom(p) if

P (N = k) = p(1− p)k−1, k = 1, 2, 3, . . .

Let N ∼ Geom(p), and let T1, T2, T3, . . . be iid Exp(λ) random
variables, independent of N . Let T =

∑N
k=1 TN . Using moment

generating functions or otherwise, show that T is exponentially
distributed with parameter λp. (Hint. Recall that the moment
generating function of T is defined as M(θ) = E[exp(θT )]. First
compute E[exp(θT )|N = n] and then average over N to obtain
the unconditional expectation.)

(b) Let Xt, t ≥ 0 be a Poisson process of rate λ1, and let Y1, Y2, Y3, . . .
be iid Bernoulli(p) random variables. Recall that this means that
Yi = 1 with probability p and Yi = 0 with probability 1− p.
Let X1

t =
∑Xt

i=1 Yi be the process obtained by retaining each point
of the Poisson process Xt independently with probability p and
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discarding it with probability 1− p. It is called the Bernoulli(p)
thinning of the Poisson process Xt.

Show that X1
t , t ≥ 0 is a Poisson process of rate λp by showing

that the times between successive events are Exp(λp), and any
other properties required.

3. Let Sn be the star graph on n nodes consisting of a single hub node
connected to each of n − 1 leaves; there are no edges between leaves.
Consider the following rumour-spreading model. Nodes become ac-
tive according to independent unit rate Poisson processes. If the hub
becomes active, it chooses a leaf uniformly at random and informs it
of the rumour if it is already informed. If a leaf becomes active, it
informs the hub if it is already informed.

(a) Suppose that only the hub node knows the rumour at time 0.
Compute E[Tk+1 − Tk] exactly, and use this to compute E[Tn]
exactly.

(b) Compute the conductanceΦ(P ) for the star graph with the prob-
abilities specified above, and the corresponding upper bound on
E[Tn], and compare it with the exact answer.

(c) Repeat the exact analysis when only a single leaf node initially
knows the rumour.

4. Let Cn be the cycle graph on n nodes numbered {1, 2, 3, . . . , n}, where
there are two directed edges out of each node i. These go to nodes
i − 1 and i + 1 for 2 ≤ i ≤ n − 1. The edges out of node 1 go to
nodes 2 and n, while the edges out of node n go to nodes n− 1 and 1.
Consider the rumour-spreading model in which nodes become active
according to independent unit rate Poisson processes, and an active
node contacts one of its two neighbours chosen uniformly at random
and informs it of the rumour if it knows the rumour.

(a) Suppose that only a single node knows the rumour at time 0.
Compute E[Tk+1 − Tk] exactly, and use this to compute E[Tn]
exactly. (Hint. Observe that, at any time, the set of nodes that
knows the rumour has to be a contiguous set.)

(b) Compute the conductance Φ(P ) for the cycle graph with the
probabilities specified above, and the corresponding upper bound
on E[Tn], and compare it with the exact answer.
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5. Let G = (V,E) be a directed graph on n nodes. Consider the follow-
ing rumour-spreading model on G. There are n independent Poisson
processes, {Nv(t), t ≥ 0}, one associated with each node v ∈ V . The
Poisson process at node v has rate λv. If there is an increment of the
process Nv(·) at time t, then node v chooses ones of its neighbours
w at random, with probability pvw, which is the vwth element of a
stochastic matrix P . If node v knows the rumour at time t, then node
w learns it at this time; if neither or both nodes know the rumour,
there is no change.

Let Tk be the first time that exactly k nodes know the rumour, and
suppose that T1 = 0, i.e., a single node knows the rumour to start
with.

(a) The above ‘node-driven’ model is equivalent to the following ‘edge-
driven’ model. There are independent Poisson processes on the
edges, with rij denoting the rate of the process on edge (i, j).
Whenever there is an increment of the Poisson process on edge
(i, j), node i informs node j of the rumour if i already knows it
and j does not. If both or neither of i and j know the rumour,
there is no change.

Explicitly compute the value of rij for each (i, j), in terms of the
rates λv and matrix P given above, so that the equivalence holds.
You don’t have to prove the equivalence.

(b) For the model in part (a), let R denote the matrix with elements
rij , and define its generalised conductance

Ψ(R) = min
S⊂V :S 6=∅

∑
i∈S,j∈Sc rij
1
n |S| · |Sc|

,

where Sc denotes the complement of the subset S.

Show that for each k between 1 and n− 1, Tk+1 − Tk is stochas-
tically dominated by an Exp

(
1
nk(n − k)Ψ(R)

)
random variable.

You may use the fact that if α ≥ β, then an Exp(α) random vari-
able is stochastically dominated by an Exp(β) random variable.

(c) Use the answer to part (b) to obtain an upper bound on E[Tn],
the time until all nodes learn the rumour. Specifically, show that

E[Tn] ≤ 2(1 + log n)

Ψ(R)
.
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You may use the fact that

n−1∑
k=1

1

k
≤ 1 + log(n).

(All logarithms are natural.)

6. Consider the complete undirected graph G = (V,E). Suppose each
edge (v, w) has a random length drawn from an Exp(1) distribution,
and that the lengths of different edges are mutually independent. Fix
a node s ∈ V . For any other node v ∈ V , the distance from s to v,
denoted d(s, v), is defined as the minimum of the lengths of all paths
between s and v. The length of a path is the sum of the lengths of the
edges constituting the path. The distance d(s, s) is defined to be zero.
Finally, let Ds = maxv∈V ds,v denote the maximum distance from s to
any another node in the graph.

Compute the mean of the random variable Ds (or a good bound on it)
by reducing the problem to one you know how to solve. Explain your
reasoning carefully.

7. Let Sn denote the star graph, which consists of a hub connected to
each of n− 1 leaves; there are no edges between leaves. Consider the
following voter model on Sn. Each node becomes active at the points
of a Poisson process of rate 1, independent of all other nodes. When it
becomes active, it chooses a neighbour uniformly at random from the
set of all its neighbours (i.e., excluding itself), and copies the state of
that neighbour.

Denote by Xv(t) ∈ {0, 1} the state of node v at time t. Let M(t) =
(n− 1)Xhub(t) +

∑
v 6=hubXv(t).

(a) Show that M(t) is a martingale.

(b) Suppose that initially the hub and k − 1 leaves are in state 1,
while n−k leaves are in state 0. What is the probability of being
absorbed into the all-1 state?

8. Consider the following modification of the classical voter model on the
complete graph Kn. Nodes can be in one of two states, 0 or 1, and
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change state as follows. Each node v becomes active at the points
of a Poisson process of rate λ, independent of all other nodes. It
then contacts a node w chosen uniformly at random from among all n
nodes (including itself). If w has the same state as v, nothing happens.
Otherwise, v copies the state of w with probability p, independent of
everything in the past; with the residual probability 1 − p, it retains
its current state. (You can think of this as modelling an attachment
to one’s current opinion / preference /affiliation.)

Suppose that initially, at time zero, k nodes are in state 1 and n − k
nodes are in state 0. Let T denote the random time that the process
hits one of the absorbing states, either the all-zero state, denoted 0,
or the all-one state, denoted 1.

(a) Compute the probability of hitting the all-one state.

(b) Obtain an upper bound on the expectation of T , the random time
to absorption.

Hint. You may, if you wish, use the results derived in lectures for the
above model with p = 1. These results state that Pk(hit 1) = k/n,
and Ek[T ] ≤ n/λ.

9. Let Cn be the cycle graph on n nodes, namely the graph in which n
nodes are arranged around a circle, and each is connected to its nearest
neighbour on the right and left. All edges are undirected. Consider
the SIS epidemic, or contact process, on Cn, with infection rate α and
cure rate 1.

(a) Let Nt denote the number of infected nodes at time t, and St the
set of infected nodes. Explain why

E[Nt+dt −Nt|St] ≤ (2α− 1)Ntdt+ o(dt),

for any set St of infected nodes, of size Nt.

(b) Use the answer to the last part to obtain an upper bound on
E[Nt] for arbitrary t ≥ 0 and arbitrary initial conditions.

You may use without proof the fact that, if x′(t) ≤ αx(t) for all
t, where x′(t) denotes the derivative of x at t, then x(t) is no
bigger than the solution of the differential equation y′(t) = αy(t)
started with the same positive initial condition y(0) = x(0).
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(c) Use the answer to the last part to obtain an upper bound on the
expectation of the random time T = inf{t ≥ 0 : Nt = 0}, the
time for the epidemic to die out.
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