THE LINEAR GEODESIC PROPERTY
IS NOT GENERALLY PRESERVED
BY A FIFO QUEUE!

A. J. Ganesh? and Neil O’ConnellP

Abstract

If a FIFO queue is fed by several input streams that jointly satisfy
a sample path large deviation principle (LDP) with ‘linear geodesic-
s’, then the cumulative departures (upto a large time) also satisfy the
LDP with a rate function which depends in a relatively simple way on
the rate function corresponding to the inputs: this was demonstrated
in a recent paper by the second author. It suggests the possibility of
an iterative scheme which would allow one to determine the large de-
viation behaviour of more complicated networks. To do this, however,
one would require that the linear geodesic property be preserved: in
this paper we demonstrate that in general it is not preserved. This is
true even in the case of a single input stream.
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1 Introduction and Preliminaries

There has been considerable recent interest in the large deviations behaviour
of queueing systems. This started with the observation that for a single serv-
er queue, the tails of the queue length distribution can be characterised in
terms of the large deviations behaviour of the arrivals and service processes.
(This is actually a classical result, originally due to Cramér in the iid case; for
more general statements in the context of queueing systems, see [2, 7, 8, 9].)
Since then there have been many attempts to extend the theory to more
complicated networks. A starting point in this quest is to consider the ef-
fect of interactions in a shared buffer, which is served according to a FIFO
(first-in-first-out) policy. More precisely, if the arrival streams are assumed
to jointly satisfy a large deviation principle (LDP), then what can be said
about the joint large deviation behaviour of the corresponding departure
streams? A partial answer to this question was presented in [7], where
the notion of decoupling of effective bandwidths was introduced. There it is
shown that there is a region over which the large deviation rate functions for
the cumulative departures and arrivals agree, and bounds are given outside
that region. Chang and Zajic [4] consider the case of a single arrival stream
and stochastic service rate. In [10], a full description of the rate function for
the cumulative departures is given in general, under the hypothesis that the
arrival processes jointly satisfy a sample path LDP with ‘linear geodesics’
(roughly speaking, this means that the most likely path to an extreme value
is a straight line?). This begs the question, which we will address in this
paper: do the departures also satisfy this hypothesis? If so, then one could
treat quite complicated networks by successive iteration of the single-buffer
results in [10]. We know of one example where this is the case, namely if
the inputs and service are independent Poisson processes and the queue is
stable: then the outputs, in equilibrium, are also independent Poisson pro-
cesses with the same rates as the corresponding inputs. However, we find
that it is not generally the case, even when there is just one input stream.

The remainder of this section is devoted to giving some background and a
formal description of the problem. Counterexamples to the above suggestion
are given in the next section.

It is usually assumed, or is a consequence of the stochastic model of the arrival process,
that the sample paths of the arrival process satisfy an LDP with rate function of the form
I(¢p) = [ A~ (¢(t))dt. If A* is convex, then the sample path ¢ that minimizes I(¢) subject
to the boundary conditions ¢(0) = a and ¢(1) = b is described by the straight line joining
(0,a) and (1,0).



But, first, we discuss some special cases when the departure process does
have linear geodesics. Suppose there is a single input stream. If the service
process is deterministic, then the departure process has linear geodesics.
So, a recursive analysis of networks of such queues is possible, as in [3].
Even if the service process is stochastic, we show that, conditional on the
departure rate from a queue exceeding its mean, the departure process has
linear geodesics. We are typically interested in the probability of queue
lengths exceeding some large threshold, and in well-designed networks this
requires departure rates exceeding their mean. Therefore, we have linear
geodesics in the region of interest, and so the study of networks of queues
using a recursive approach is again feasible. Such an approach has been
taken in Bertsimas et al. [1], in the context of quite general arrival and
service processes, and a single class of customers. We show in this paper
that this approach can’t be extended easily to networks with more than one
traffic class. In fact, even if the service process is deterministic and there are
only two traffic types, the departure process need not have linear geodesics.
(This is true even if we condition on the aggregate departure rate exceeding

its mean.)
We now give a formal description of the problem. Counsider a discrete
time queue with d arrival streams X = (X1!,..., X%) sharing an infinite

buffer according to an FIFO policy with stochastic service rate C. Xy
denotes the number of arrivals of each type in time slot k, while C} denotes
the maximum number of customers of any type that can be served in this
time slot. We will begin by assuming that the queue is empty at time slot
0. Define

n n
A=) Xy,  Bu=) G (1)
k=1 k=1

Let A, = 2?21 AJ denote the total number of arrivals, and D,, the total
number of departures up to time n. Assuming that the queue is work-
conserving, we have

Dn= inf (Ax — Bg) + Bn (2)
The amount of work, D,, = (D, ..., D?), serviced from each input stream

by time n, is defined as follows. Set,
T, =sup{k <n: Ay < D,} (3)



Recall that Xj, = (X},..., X{) denotes the amount of work arriving from
the different streams in time slot k. 7T}, denotes the last time slot such that
all arrivals up to it have been served by time n (some of the arrivals in
time slot T}, + 1 may also have been served). In words, work is serviced
in the order received and simultaneous arrivals from different sources are
thoroughly mixed in the queue.

Define S, (t) = (Ap,q/n, Bing/n), Ru(t) = Dpuy/n. For each positive
integer k, let £* denote the subspace of paths in Lo ([0,1]¥) with non-
decreasing components, and by A*¥ C LF the set of those paths with ab-
solutely continuous components starting at zero. The following hypotheses
are employed in [10].

(H1) For all v € IR, sup, E[exp v(X + Ci)] < .

(H2) For each A\ € R4, the limit

.1
AR = Jim = log Blexp() - 8,(1)] (5)
exists as an extended real number and is finite in a neighborhood of the
origin. The sequence S,, satisfies the large deviation principle (LDP)
in £471 with good rate function I given by

1(4) = { [} A*(P)ds, if p € A% (6)

00, otherwise
where A* is the convex conjugate of A.

(H3) The arrival and service processes are asymptotically independent in
the sense that

A*(x,¢) = Ay(x) + Ag(c) (7)

We refer to the hypothesis (H2) as the ‘linear geodesic property’. It
follows from (H2), the convexity of A* and Jensen’s inequality, that the
optimal path from point to point is a straight line. Such an LDP has been
shown to hold quite generally by Dembo and Zajic [6]: roughly speaking, it
holds provided the sequence is, in some sense, stationary and mixing. Under
the above hypotheses, it was shown in [10] that the sequence R,, satisfies
the LDP in £% with good rate function given by

1a() = inf{I(¢) : A(¢) =} (8)



where A : C4t!1 — C? is defined by

A(g) = (4", ¢ (9)

D(¢)(t) = infocy<t [A(@)(vE) — g™ (wh)] + 6741 (1) (10)
T()(t) = inf{r: A(9)(r) = D(¢)(t)} (11)

A(9) = A(¢) o T(¢) (12)

Here, (9) follows from (2), (10) from (3) and (11) from (4). A(¢) denotes
the (scaled) joint arrival process, while A(¢) = ¢' + ... + ¢ denotes the
aggregate arrival process. For the scaled processes, T'(¢)(t) denotes the last
time, arrivals up to which depart by time ¢. Since the queue was assumed
to be empty at time 0 and the service discipline is FIFO, the departures
in all the streams up to time ¢, denoted A(¢)(t), is precisely the arrivals
in all the streams up to time T'(¢)(t). A(¢p) describes the scaled departure
process corresponding to the scaled arrival and service processes described
by ¢. By expressing the object of interest, the scaled departure process, as
a continuous function, A, of the arrival and service processes, (12) sets the
stage for applying the contraction principle. The contraction principle then
yields the LDP in (8) for the sample paths of the departure process. Using
the contraction principle once more, we obtain an LDP for the departure
rate: Dy, /n satisfies the LDP in IR? with good rate function

Ay(z) = inf{I4(4) : 9(0) = 0,%(1) = 2}, (13)

for I as in (8). From this, it was derived in [10] that

Aj(z) = inf{BA%(x/f) +aA;;< >+ﬁAZ(c) +(1-B)A} (f:'I) :
B,o0€[0,1],ce R, f+0 <1,z < fc}. (14)

Z — X
o

The last result has the interpretation that the most likely path of the
arrival and service processes which results in the departure process having
mean rate z on the interval [0, n] is as follows. The arrival process has rate
x/0 on the interval [0, On] and rate (z — x) /o on [Bn, (6+ o)n]. The service
rate during [0, Bn] is ¢, which is greater than the aggregate arrival rate during
this period. So the queue is empty during [0, fn]. The queue is non-empty
throughout [n,n|, during which period the service rate, at (z —z)/(1 — (),
is no larger than the total arrival rate, which is (z — z)/o. Therefore, the
aggregate departure rate is equal to the aggregate arrival rate, x/3, during



the first phase, [0, On], when the queue is empty, and equal to the service
rate, (z — z)/(1 — (), during the second phase, [#n,n], when the queue is
never empty. The rigorous statement underlying this intuition, proved in
[10], is the following:

Ag(z) = La(¥), (15)
where ¥(t), 0 < ¢ <1 is specified by,
. X, 0<t<p,
_ _JB
$(0) =0, (1) = {_ﬂ PO (16)

Here 3, x are those achieving the infimum in (14), and I; is as defined in
(8).

The result in (14) applies to a queue started empty. A similar but
more involved expression was derived for a queue in equilibrium. Under
the above hypotheses, we can derive an expression for the asymptotics of
the queue length distribution. The problem of extending this derivation
to an arbitrary queue in a feed-forward queueing network remains open.
The arrival process into any queue in such a network is an aggregate of the
departure processes from its predecessors (or splittings thereof) and possibly
of an external arrival process. Therefore, the result above suggests that we
approach this problem using the LDP for the departure process. This would
work if the departure process also satisfied hypotheses (H1)-(H3). In the
next section we give examples to show that there are situations where the
departure process fails to satisfy (H2), both for the queue initially empty
and for the system started in equilibrium.

2 Counterexamples

2.1 Single customer class

Consider a queue with a stochastic server and a single class of customers (so
d = 1). Then, (14) simplifies to

Z—T

Ni(z) = int(BN(a/8) + o () + 600 + (1 - AN (=)

B,oe0,1],ce R, B+0 <1,z < Pe}. (17)

where now z and z are scalars.
Let EX = A}(0) denote the mean number of arrivals, and EC = Aj}(0)
the mean number of services in each time slot. The following properties of



A}, A} are well-known, see [5] for instance. A} (respectively, A}) is non-
negative, and zero only at EX (respectively EC). Both A} and A} are
convex, and finite on a non-empty interval, in the interior of which they are
analytic. We assume that the queue is stable, namely £X < EC. Suppose
that for some « € [0, EX],

Ag(e) = Ay(a) (18)

and also that these functions are finite in a neighborhood of a. Without loss
of generality, we can take a to be the largest number in [0, EX] for which
(18) holds. Then, since A}(EX) =0 < Aj(EX), we have A} (z) < Aj(z) for
all z € (o, EX], and consequently that (A}) () < (A})'(«). It follows from
this that

de>0: Aj(z) <Aj(z) <400 Vzela—e¢a], (19)

and also that

Af Af
30<x1<a<x2<EX:‘“;x2:m bw”; 2(2) A, (20)

We shall show that in this case, the most likely departure path having
mean rate « is not linear. Let ¢(t) = (¢'(t), ¢*(¢)), be defined on [0, 1] by
#(0) =0 and

i1 o T2, 0<t<%, ) o EC, 0<t<%,
¢(t)_{EX, T<t<l. p() = T, $<t<l, (21)

where z1, 2 are as in (20). Then, since EX < EC, we have from (9)-(12)
that

¢ o<t<i
A(B)(t) =4 120 =t=w 22
(@) {%$2+(t—%)$1, 3 <t<1l (22)
and in particular that A(¢)(1) = a. Therefore, by (8) and (13),

Ajfa) < I(9)
1 . 1 .
= [ @ s+ [ A s)ds
0 0
2 L vz .
= [ MiGaa)ds + /1 | NaEX)ds £ [N (E0ds + /1 |, Nitan)ds
= S5 + i)
< A (o) (23)



The first equality above follows from (6) and (7), the second from the defi-
nition of ¢ in (21), and the last from the fact that A}(EX) = A;(EC) =0,
see [5] for example. The last inequality above holds because of (20). Notice
that the departure process A(¢) in (22), corresponding to the arrival process
¢! and service process ¢?, is not linear but has different slopes x5 and z; in
two different periods of equal length.

Next, let 1(¢) be linear on [0,1] with ¢(0) = 0 and ¥ (1) = «, so that
$(t) = a for all t € (0,1). Consider any ¢ € A? such that 1) = A(¢4). That
is, (¢!, ¢?) is any pair of arrival and service processes (excluding those whose
rate function is +00), corresponding to which 1 is the departure process.
Then, by (9)-(12),

. 1 2 2
() = it [01(s) = ()] + (0, (24)
from which it is clear that 1(t) < ¢'(¢). In particular, ¢'(1) > . If
¢'(1) = a, then, by (6),

1 .
16) = [ K@ (s)ds
> A (/Olgil(s)ds>
= Ao (25)

The first inequality is due to the non-negativity of A}, Ay, the second holds
because of Jensen’s inequality and the convexity of A, while the equality is
because ¢!(1) was assumed to be a. If ¢'(1) > «, define

T =sup{t € [0,1] : ¢'(t) < at} (26)
and note that 7 < 1. Hence, by continuity of ¢, ¢'(7) = ar.

Lemma 1 Suppose that (t) = at for all t € [0, 1], where 1 is defined by
(24), and that ¢ € A%. Then, with T given by (26),

() — p*(1) =alt—7) Vte[n1]

Proof : As noted above, ¢'(7) = ar = (1), the latter equality holding
by hypothesis regarding 1. ;From this, we see that the infimum in (24)
corresponding to ¢ = 7 is achieved at s = 7. Consequently, (24) implies that

$(t) = inf [¢'(s) = *(s)] + 4*(1) Vi (27)

T7<s<t



If the infimum above is achieved at 7 for all ¢ € [r,1], then, for all ¢ in
this interval, ¢?(t) — ¢?(7) = ¥(t) — (1) = a(t — 7), and so the lemma
is established. Otherwise, because ¢ is absolutely continuous, one of the
following must hold:

Fe>0:¢'(s) —¢%(s) <0 Vse(r,7+e), (28)
T2 inf{s > 7: ¢*(s) — ¢(s) < ¢' (1) — ¢*(7)} € (1,1). (29)

In the former case, the infimum in (27) corresponding to t = 7+ € is achieved
at s =7 + ¢, and so

DT+ €) = (1) = (7 +€) — ¢! (1) > ae, (30)

where the inequality follows from the definition of 7 in (26). In the latter
case, we see from the continuity of ¢ that the infimum in (27) corresponding
to t =T is achieved at s = T. So 9(T) = ¢'(T) and

P(T) = (1) = $1(T) = $'(1) > a(T — 7), (31)

where the inequality follows from (26). Now, both (30) and (31) contradict
the hypothesis that ¢(t) = ot for all ¢ € [0,1]. Therefore, neither (28) nor
(29) can hold, implying that the infimum in (27) must be achieved at 7 for
all ¢t € [7,1]. This completes the proof of the lemma.

a
From the above lemma and (26), we obtain using (6) that
16) = [ Aud')ds + / A ()
0
> 1A (a) + (1 —7)A}(a
= Aj(a). (32)

The first inequality is due to the non-negativity of A; and Aj, and the second
is due to their convexity and Jensen’s inequality (note that ¢'(7) = ar,
while ¢?(1) — ¢?(7) = a(1 — 1) by Lemma 1). The equality follows from the
definition of « in (18).

Let 1 be given by ¢(t) = at, t € [0,1]. Since either (25) or (32) applies
to any ¢ € A? for which A¢ = 1, observe from (8) that I;(v)) > AX(a).
Therefore, by (23), ¢ does not achieve the infimum in (13) corresponding



to z = «. In other words, the departure process with constant rate « is not
the most likely to achieve an average departure rate «; this is achieved by a
process with a nonlinear path. This implies that I; cannot be expressed in
the form

1a(6) = [ N6y

for any convex function A* and so the departure process does not satisfy
hypothesis (H2).

The above conclusion applies to a queue started empty. We now consider
a queue in stationarity. Let Qo denote the queue length at time 0. It is shown
in [10] that the scaled queue lengths (QQo/n satisfy an LDP in IR with rate
function L, which is explicitly computed. For our purposes, it is enough to
note that L(0) = 0 and that L(g) > 0 for all ¢ > 0. Suppose the scaled
initial queue length is ¢, and that the scaled process of arrivals and services
is described by ¢ = (¢!, ¢?). Then, the scaled departure process up to time
t is given by

D(g,¢)(t) = ¢*(t) A odnf g+ ¢l (vt) — ¢*(vt) + ¢*(1)], (33)

where = A y denotes min{z,y}. Notice that since ¢(0) = 0, we recover (10)
for the departure process from an empty queue by substituting ¢ = 0. We
shall show that for any ¢ > 0 and ¢ € £? such that D(q, ¢(t)) = at for all
t €[0,1], we have L(q) +I(¢) > A*(a). This will enable us to conclude that
the departure process does not have linear geodesics, even in equilibrium.

Let 1 be linear on [0, 1] with ¢(¢) = at for all ¢ € [0,1]. Fix ¢ > 0 and
let ¢ € C? be such that D(q,$) = 1. Then, by (33), either ¢?(t) = at for
all t € [0,1], or ¢+ ¢*(s) — ¢*(s) < 0 for some s € [0,1]. In the former case,
we have by (6), (7) and the non-negativity of the A* that

1) 2 [ A e)ds = A (3
In the latter case, we have by the continuity of ¢ that
7= inf{s € [0,1] : ¢ + ¢*(s) — #*(s) <0} € [0,1).
It follows that D(q, ¢(t)) = ¢*(t) for all t € [0, 7], whereas, for ¢ € [, 1],

Dlg,$)(t) = Dla. )(r) = $*(t) = $*(r) +_in€ [a+¢'() = ()

10



because q + ¢'(s) — $?(s) takes its minimum value on [0, 7] at 7, and this
value is zero. Hence, we can rewrite the above as

D(g,$)(t) — D(g, $)(7)
= inf [(¢(s) = ¢'(1) = (6*(s) = *(1)] + #*(t) — #*(7). (35)

T7<s<t
Define ¢(t) = ¢(t) — ¢(7), t € [r,1]. Then, we have from above that

b0 ¢*(t), ift €10,7], (36)
~ infras<r [¢1(s) = %(s)] + G2() + ¢2(r), it € (r,1].
Comparing this with (24), we see that the departure process on [7,1] is
identical to that from an empty queue with arrival and service processes
given by ¢. This is not surprising because the queue does, in fact, become
empty at time 7 by definition of 7. Since ¢, restricted to [1,1], is merely

a shifted version of ¢ on this interval, I(¢) = I(¢) for ¢ restricted to this
interval. Therefore,

I($) > /0 " AL (B2 (s))ds + 1(@).

Now, since 9(t) = at, ¢*(s) = a for all s € [0,7]. Also, by the same

derivation as leads to (25) and (32), we have I(¢) > (1 — 7)A}(c). Finally,
since A} («) = Aj(a) by definition of «, and L(g) > 0 for all ¢, we get

L(q) + 1(¢) = Ay(e).

This holds for all initial queue lengths ¢ > 0, and arrival and service pro-
cesses ¢, that result in a linear departure process ¢ (t) = at. Note that (23)
continues to hold for departures in equilibrium because it was derived for
departures from an empty queue, and we have L(0) = 0, see [10]. Therefore,

Ag(e) < inf{L(q) + I(¢) : D(q, $)(t) = ot V¢ € [0,1]}, (37)

which implies that, conditional on a mean departure rate of a, the most
likely path is not linear. Thus, even in equilibrium, the departure process
does not necessarily have linear geodesics.

We end this subsection with some comments about the scope and im-
plications of the above results. A careful look at the proof shows that the
result relied on « being less than £ X and on the rate functions of the arrival

11



and service processes intersecting at «. If the service process is determin-
istic, the latter cannot happen, and in this case it can be shown that the
departure process has linear geodesics. This makes it possible to analyze
networks of deterministic server queues, as in Chang [3]. Likewise, if we
consider only o > E X, then too it can be shown that the departure process
conditioned on having mean rate « is linear. Since we are typically inter-
ested in the problem of queue lengths exceeding some large threshold, and
since in well-designed networks this requires departure rates exceeding their
mean, we are usually only interested in the rate function of departures for
a > EX. Since we have linear geodesics in this region, the study of networks
of queues using a recursive approach is again feasible. Such an approach has
been taken in Bertsimas et al., [1]. We shall next show that neither of these
features comes to our rescue when dealing with multi-class queues. In this
case, the joint departure process can have non-linear geodesics even if the
server is deterministic, and even if we consider departures whose aggregate
rate exceeds their mean.

2.2 Two customer classes

Consider a queue multiplexing two customer classes, and served determinis-
tically at rate c. Suppose that customers from the first class arrive determin-
istically at rate a, while those of the second have a stochastic arrival process
satisfying hypotheses (H1)-(H3) with the rate function A%. We assume that
the mean aggregate arrival rate is strictly less than the service rate, c. Note
that the two arrival streams are trivially independent, as are the arrival and
service processes. We denote the large deviations rate function of the first
arrival process by Aj and that of the service process by A;. So

<\ _ [0, if r =a, v _ [0, ifz=c,
Alw) = {—i—oo, else. Aj(z) = {—i—oo, else. (38)

For some € > 0 and b < c+e—a, let z = (a—¢, b) and consider the departure
process conditioned to have mean rate z. We shall show that this departure
process does not have linear geodesics.

Let ¢ € A2 be linear with 1(0) = 0 and (1) = z, so ¥ = z. We show
that there is no ¢ € A% with I(¢) < +oo such that A(¢) = 1. In other
words, there is no process of arrivals and services whose rate function is finite,
corresponding to which ¢ is the departure process. Suppose otherwise. Let
¢ € A3 have I(¢) < 400, so that

¢(t) = at, $(t) =ct, (39)

12



and suppose that

A(@)(t) = p(t) = ((a —e)t,bt), (40)
where € > 0 and a + b — € < ¢. Observe from (9)-(12) that
A)®) = (¢ (T(@®), 8*(T(9)®))) (41)

Therefore, by (39) and (40), T'($)(t) = (a—e€)t/a, and so 62 ((a—e)t/a) = bt.
In addition, by (11),

D(¢)(t) = " (T()(1)) + ¢*(T($)(1)) = (a +b—e)t. (42)
But, by (10),
D(¢)(t) = inf [¢'(s) +¢*(s) — ¢*(s)] + &7 (1),

0<5<t

and so, by (39) and the fact, noted above, that ¢*(s) = abs/(a — €), we get

) abs
D(p)(t) = Oér;fg[as + P cs)+ct
(e, if 2(a+b—¢€)>c,
o { “_(a+b—e)t, else.

Because of our hypothesis that a +b— e < ¢, we have D(¢)(t) > (a+b—€)t
in either case above, contradicting (42). We have thus shown that, if 1(¢) <
+00, then A(¢) = 1 is impossible for 1 (t) = zt with z = (a—¢, b). Therefore,
by (8), L4(t$) = +oc.

We now show that A%(z) < 4oo for z as above. Since e > 0 was arbitrary,
we assume without loss of generality that a — 2¢ > 0 and define

z1=a+2(b—€)—c, z2= a

(c—a+ 2e). (43)

a— 2¢

Since the only requirement we imposed above was that a + b — e < ¢, it is
clear that b and e can be chosen so that z; > 0. Also, zo > 0 since it was
assumed that c is larger than a. Let ¢ € A? be defined by

o0 =0, g = {{oereh DO (44)

(a,$2,C),

Since 1 and z9 are non-negative, ¢ has non-decreasing components as re-
quired by the definition of A3. Note that

a+z1=2a+b—€ —c<c

13



by the hypothesis that a + b — ¢ < ¢, whereas

ac

a+x9 = > c.

a — 2
In other words, the aggregate arrival rate a + x; is less than the service
rate ¢ during [0, 1/2] whereas, at a + x9, it is greater than ¢ during [1/2,1].
Therefore, the joint departure process A(¢) is given by

d (a,21), 0<t<1/2,
A(¢)(0) =0, EA(Qb)(t) = { (afw' c, ajﬂr?v C) ’ 1/2 <t<l. (45)

This is intuitively clear from the description of the queue, but can also be
formally established using (9)-(12). Hence, we have from (43) that

8@ = e+ ) —a-e
AP = 5 () =

Therefore, by definition of z, A¢p(1) = z. Furthermore, by (44), (6) and
(38), we have

A*(9) = 5 (A3(1) + A3() (16)

for =1, o as in (43). Therefore, A*(¢) is finite if A5(z1) and A5(z2) are,
as is true if, for instance, the second arrival process is Poisson. It now
follows from (8) and (13) that Aj(z) < +oo. But we showed earlier that
I;(¢p) = +o0o for v given by (t) = zt. Therefore, the departure process
with linear path does not achieve the infimum in (13), implying that the
departure process does not satisfy a large deviations principle with action
functional that is the integral of a convex rate function. In other words, it
is not true that

1) = [ A*(e(s))ds

for any convex function A*. Consequently, the joint departure process
does not satisfy hypothesis (H2), and so a recursive approach to estimating
asymptotics of the queue lengths in a network does not appear feasible.
We now consider the same queueing system in stationarity, rather than
started empty. It is shown in [10] that in stationarity, the scaled queue
lengths Qo/n satisfy an LDP in IR? with a rate function L that can be
computed explicitly. Here Qo = (Q}, Q%) denotes the number of customers
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of each of the two types in the queue at time zero. It suffices for our purposes
to note that L(q) > 0 for all q > 0, with equality if ¢ = 0.

Consider the system starting at time zero with scaled queue length
Qo/n = q. Suppose the arrival and service processes are given by ¢ =
(', 9%, ¢%), and that ¢ = (', 1)?) is the corresponding departure process.
Let a and ¢ be defined as above to be the deterministic rate of the first
arrival process and the service process respectively. Let € € (0,a) and b > 0
be such that a + b — e < c. We shall show that if 1(¢) = =zt for all ¢ € [0, 1],
where z = (a — €,b), then L(q) + I(¢) = oc.

Analogous to (33), the scaled process of aggregate departures up to time
t is given by

D(q,$)(t) = ¢°(t) A [a + Ap)(vt) = H*(vt) + > (D)), (47)

inf

0<r<1
where ¢ 2 ¢' +¢? is the total number in queue at time zero, and A(¢) = ¢' +
¢? is the aggregate arrival process. Note that setting ¢ = 0 above recovers
(10) since ¢(0) = 0. Now, if 9 is to be the departure process, then we must
have D(q,$) = ' + 2. Since 9(t) = =zt, with z = (a — ¢,b), the above
implies that D(q, ¢) = (a + b —€)t for all ¢ € [0, 1]. Recall that if I(¢) is to
be finite, then we must have ¢'(t) = at and ¢>(t) = ct for all ¢t € [0, 1], since
the first arrival process and the service process are deterministic with rates
a, ¢ respectively. Therefore, for all such ¢, (47) implies that

(a+b—et=ctA Oigggt[q + A(p)(s) — cs] + ct.

Since a + b — € < ¢, the above implies that info<,<[q + A(¢p)(s) — cs] is
strictly negative for all ¢ > 0. Now A(¢)(s) = ¢'(s) + ¢%(s), ¢(0) = 0
and ¢ is continuous if I(¢) is finite. Therefore, it follows from the above
that g =0, i.e., the queue must start empty. Then, by the argument above
for departures from an empty queue, there is no process ¢ of arrivals and
services such that the departure process is 1) and I(¢) is finite. We have also
shown that this conclusion does not change if we allow any positive initial
queue size, q. This completes the proof that I;(1)) = oo even in equilibrium,
where I; denotes the rate function of the departure process.

We argued above that A%(z) < oo for departures from an empty queue.
Since L(0) = 0, see [10], this argument applies to departures in equilibrium
as well. Thus, the most likely path leading to a mean departure rate z
is not linear. This also implies that the rate function I;(v) for equilibrium
departures cannot be of the form fol A*(4))(s)ds, for any convex function A*.
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Therefore, the departure process does not satisfy Hypothesis H2, needed to
apply the results of [10] inductively to feed-forward multi-class queueing
networks.

3 Conclusion

We considered the problem of characterising the large deviations behaviour
of the departure process from a FIFO queue multiplexing several traffic
streams. Such a characterisation could, in principle, be used iteratively to
determine the large deviations behaviour of all processes of interest in net-
works of queues, and thereby to obtain the tail of the queue length and
waiting time distributions at each queue in the network. The starting point
of our analysis was the general description, in [10], of the rate function for
the cumulative departures as the solution of a variational problem. It was
shown in [10] that if, in addition, the arrivals satisfy a ‘linear geodesics’
condition, then the variational problem reduces to a finite-dimensional opti-
mization problem. Such a simplification is essential if an iterative approach
to analysing networks of queues is to be practical. This naturally leads to
the question of whether the departures also satisfy the ‘linear geodesics’ as-
sumption. We showed in this paper that this is not generally the case, even
when there is just one input stream. Nevertheless, in the case of a single
input stream, the departures do satisfy the linear geodesics requirement in
the regime leading to large queue sizes. So an iterative approach to obtain-
ing the tail of the queue length is possible, see [1]. However, such is not the
case for multiple traffic streams, even when the service rate is deterministic.
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