
Complex Networks
Problem Sheet 3

∗∗ Please hand in solutions to question 4 on this sheet. ∗∗

1. Let G = (V,E) be the complete, undirected graph on n nodes. The simple epidemic on
G is described as follows. There is an initial set S ⊆ V of infected nodes, and all other
nodes are healthy. Each infected node attempts to spread infection at the points of a unit
rate Poisson process. The Poisson processes corresponding to distinct nodes are mutually
independent.

When a node attempts to spread infection, it chooses a node from V uniformly at random
(including itself), independent of the Poisson processes of spreading times and past node
choices of itself or of other nodes. If the chosen node is healthy, it becomes infected at this
time. If it is already infected, nothing changes. Once a node becomes infected, it remains
infected forever.

In answering the questions below, think of n as large. You may replace sums by integrals,
ignore terms of smaller order than the dominant term, and make any other reasonable ap-
proximations required, so long as you get the correct dominant term as a function of n.

(a) Suppose a single node is initially infected. Compute the mean time until at least
√
n

nodes are infected. Call this E[T (
√
n)].

(b) What is the mean time until at least n/2 nodes are infected? Call this E[T (n/2)].
What is the smallest constant c such that E[T (n/2)] ≤ cE[T (

√
n)] for all n suffi-

ciently large?
Hint. Replacing sums by integrals and making other reasonable approximations may
help you estimate c.

(c) Next, suppose that
√
n nodes are initially infected. (Assume that n is a perfect

square.) What is the mean time until all n nodes are infected? Call this E[T̃ (n)].
What is the smallest constant c such that E[T (n/2)] ≤ cE[T̃ (n)] for all n sufficiently
large?

2. Consider the complete undirected graph G = (V,E). Suppose each edge (v, w) has a
random length drawn from an Exp(1) distribution, and that the lengths of different edges
are mutually independent. Fix a node s ∈ V . For any other node v ∈ V , the distance from
s to v, denoted d(s, v), is defined as the minimum of the lengths of all paths between s and
v. The length of a path is the sum of the lengths of the edges constituting the path. The
distance d(s, s) is defined to be zero. Finally, let Ds = maxv∈V ds,v denote the maximum
distance from s to any another node in the graph.

Compute the mean of the random variable Ds (or a good bound on it) by reducing the
problem to one you know how to solve. Explain your reasoning carefully.
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3. Let G = (V,E) be a directed graph on n nodes. Consider the following rumour-spreading
model on G. There are n independent Poisson processes, {Nv(t), t ≥ 0}, one associated
with each node v ∈ V . The Poisson process at node v has rate λv. If there is an increment
of the process Nv(·) at time t, then node v chooses ones of its neighbours w at random,
with probability pvw, which is the vwth element of a stochastic matrix P . If node v knows
the rumour at time t, then node w learns it at this time; if neither or both nodes know the
rumour, there is no change.

Let Tk be the first time that exactly k nodes know the rumour, and suppose that T1 = 0,
i.e., a single node knows the rumour to start with.

(a) The above ‘node-driven’ model is equivalent to the following ‘edge-driven’ model.
There are independent Poisson processes on the edges, with rij denoting the rate of
the process on edge (i, j). Whenever there is an increment of the Poisson process on
edge (i, j), node i informs node j of the rumour if i already knows it and j does not.
If both or neither of i and j know the rumour, there is no change.
Explicitly compute the value of rij for each (i, j), in terms of the rates λv and matrix
P given above, so that the equivalence holds. You don’t have to prove the equivalence.

(b) For the model in part (a), let R denote the matrix with elements rij , and define its
generalised conductance

Ψ(R) = min
S⊂V :S 6=∅

∑
i∈S,j∈Sc rij

1
n
|S| · |Sc|

,

where Sc denotes the complement of the subset S.
Show that for each k between 1 and n−1, Tk+1−Tk is stochastically dominated by an
Exp

(
1
n
k(n− k)Ψ(R)

)
random variable. You may use the fact that if α ≥ β, then an

Exp(α) random variable is stochastically dominated by an Exp(β) random variable.

(c) Use the answer to part (b) to obtain an upper bound on E[Tn], the time until all nodes
learn the rumour. Specifically, show that

E[Tn] ≤ 2(1 + log n)

Ψ(R)
.

You may use the fact that
n−1∑
k=1

1

k
≤ 1 + log(n).

(All logarithms are natural.)

4. Let Sn be the star graph on n nodes consisting of a single hub node connected to each of
n− 1 leaves; there are no edges between leaves. Consider the rumour-spreading model of
Question 1, with λv = 1 for all v, pij = 1/n if i is the hub and j is a leaf, pij = 1 if i is a
leaf and j is the hub, and pij = 0 if i and j are both leaves.

(a) Suppose that only the hub node knows the rumour at time 0. Compute E[Tk+1 − Tk]
exactly, and use this to compute E[Tn] exactly.
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(b) Compute Ψ(R), defined in Question 1(b), for the star graph with the rates and proba-
bilities specified above, and the corresponding upper bound on E[Tn], and compare it
with the exact answer.

(c) Repeat the exact analysis when only a single leaf node initially knows the rumour.

5. Let Cn be the cycle graph on n nodes numbered {1, 2, 3, . . . , n}, where there are two
directed edges out of each node i. These go to nodes i − 1 and i + 1 for 2 ≤ i ≤ n − 1.
The edges out of node 1 go to nodes 2 and n, while the edges out of node n go to nodes
n − 1 and 1. Consider the rumour-spreading model of Question 1, with λv = 1 for all v
and pij = 1/2 if for every (i, j) ∈ E.

(a) Suppose that only a single node knows the rumour at time 0. Compute E[Tk+1 − Tk]
exactly, and use this to compute E[Tn] exactly. (Hint. Observe that, at any time, the
set of nodes that knows the rumour has to be a contiguous set.)

(b) Compute Ψ(R) for the cycle graph with the rates and probabilities specified above,
and the corresponding upper bound on E[Tn], and compare it with the exact answer.
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