Complex Networks Problem Sheet 4

1. Let $G=(V, E)$ be an undirected graph. Initially, each node $v \in V$ is assigned a value $x_{v}(0)$ in the interval $[0,1]$. Time is discrete, and nodes update their values synchronously according to the linear recursion

$$
\begin{equation*}
x_{v}(t+1)=\frac{1}{\operatorname{deg}(v)} \sum_{u:(u, v) \in E} x_{u}(t) \tag{1}
\end{equation*}
$$

(a) Write down the set of linear equations in (1) in matrix form as $\mathbf{x}(t+1)=P \mathbf{x}(t)$, i.e., specify the elements of the matrix P.
(b) Compute an invariant distribution corresponding to the stochastic matrix P, i.e., find a solution of $\pi P=\pi$.
Hint: It turns out the Markov chain with transition probability matrix P is reversible, and you can compute an invariant distribution by solving the local balance equations, which state that

$$
\pi_{x} p_{x y}=\pi_{y} p_{y x} \quad \forall x, y \in V
$$

If these equations have a probability vector π as a solution, then it is an invariant distribution of the Markov chain.
(c) Assume that the graph G is connected and non-bipartite. (A graph is bipartite if the vertex set V can be partitioned into disjoint subsets V_{1} and V_{2}, i.e., with $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\emptyset$, such that there are no edges between two nodes of V_{1} or two nodes of V_{2}. In other words, $E \subseteq V_{1} \times V_{2}$.) In this case, it is known that the Markov chain with transition probability matrix P is irreducible and aperiodic. Comment on what happens to $\mathbf{x}(t)$ as t tends to infinity.
(d) What property of a node determines how influential that node is in determining the final outcome of the above process?
2. A graph $G=(V, E)$ is called bipartite if there exist vertex sets X and Y such that $V=$ $X \cup Y, X \cap Y=\emptyset$ and $E \subseteq X \times Y$. In words, X and Y partition the vertex set, and there is no edge between two elements of X or two elements of Y.
(a) Suppose G is a bipartite graph with $|X|=|Y|=n$, and that every vertex has the same degree d. Show that d and $-d$ are both eigenvalues of A_{G}. (Hint. Guess the corresponding eigenvectors of A_{G}. It may be helpful to write down a small example for yourself, say with $n=3$ and $d=2$.)
(b) Show that A_{G} violates one of the conclusions of the Perron-Frobenius theorem.
(c) Which of the conditions of the Perron-Frobenius theorem does the matrix A_{G} violate? Demonstrate on an example of your choice with at least 4 nodes and $d \geq 2$.
3. Let $X_{t}, t \geq 0$ be an asymmetric random walk on $\{0,1,2, \ldots, n\}$ in continuous time, with transition rates given by $q_{k, k+1}=\lambda$ and $q_{k, k-1}=\mu$ for all $k \in\{1,2, \ldots, n-1\}$. All other transition rates are zero. In particular, the states 0 and n are absorbing.
(a) Write down the rate matrix (also known as infinitesimal generator) for this Markov process.
(b) Show that $M_{t}=\left(\frac{\mu}{\lambda}\right)^{X_{t}}$ is a martingale.
(c) Find the probability that the random walk, started in some state $k \in\{0,1,2, \ldots, n\}$, hits state n before state 0 .
4. Recall the Wright-Fisher model, which is a discrete time model describing the evolution of a population of N genes. Each gene has two forms, or alleles, which we denote A and a. The population size stays fixed over time. If we let N_{t} denote the number of A alleles in generation t, then generation $t+1$ is obtained as follows. Each of the N genes in generation $t+1$ is sampled independently, and uniformly at random (with replacement), from the genes in generation t.
(a) Conditional on $N_{t}=n$, the number of A alleles in generation $t+1$ has a binomial distribution. What are the parameters of this binomial distribution?
(b) Use the answer to the last part to show that N_{t} is a martingale.
(c) If $N_{0}=k$, what is the probability that eventually there are only A alleles in the population? Explain your answer carefully.

