
Complex Networks
Problem Sheet 5

∗∗ Please hand in solutions to questions 3 and 4 on this sheet. ∗∗

1. Consider the following modification of the classical voter model on the complete graph
Kn. Nodes can be in one of two states, 0 or 1, and change state as follows. Each node v
becomes active at the points of a Poisson process of rate λ, independent of all other nodes.
It then contacts a node w chosen uniformly at random from among all n nodes (including
itself). If w has the same state as v, nothing happens. Otherwise, v copies the state of
w with probability p, independent of everything in the past; with the residual probability
1− p, it retains its current state. (You can think of this as modelling an attachment to one’s
current opinion / preference /affiliation.)

Suppose that initially, at time zero, k nodes are in state 1 and n − k nodes are in state 0.
Let T denote the random time that the process hits one of the absorbing states, either the
all-zero state, denoted 0, or the all-one state, denoted 1.

(a) Compute the probability of hitting the all-one state.

(b) Compute the expectation of T , the random time to absorption.

Hint. You may, if you wish, use the following facts for the classical voter model; the
first was derived in lectures, the second is a known result. These facts are that, for the
classical voter model, Pk(hit 1) = k/n, and Ek[T ] = 1

λ
nh(k/n), where, for x ∈ [0, 1],

h(x) = −x log x− (1− x) log(1− x) denotes the entropy of a Bern(x) random variable.

2. LetG = (V,E) be a graph on 4 nodes with the following 5 edges (1, 2), (2, 3), (3, 4), (4, 1)
and (1, 3); in other words, it is a square with one diagonal. Think of each of these edges
as two directed edges. Now consider the voter model on this graph where contacts along
each directed edge happen according to independent unit rate Poisson processes. Suppose
the voter model starts with nodes 1 and 3 in state 1, and nodes 2 and 4 in state 0. Compute
the probability that all nodes eventually reach consensus on the value 1.
Hint. If you need to find an invariant distribution, see if the local balance equations have a
solution.

3. Let Sn denote the star graph, which consists of a hub connected to each of n − 1 leaves;
there are no edges between leaves. Consider the following voter model on Sn. Each node
becomes active at the points of a Poisson process of rate 1, independent of all other nodes.
When it becomes active, it chooses a neighbour uniformly at random from the set of all its
neighbours (i.e., excluding itself), and copies the state of that neighbour.

Denote by Xv(t) ∈ {0, 1} the state of node v at time t. Let M(t) = (n − 1)Xhub(t) +∑
v 6=hubXv(t).
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(a) Show that M(t) is a martingale.

(b) Suppose that initially the hub and k − 1 leaves are in state 1, while n − k leaves are
in state 0. What is the probability of being absorbed into the all-1 state?

4. In this problem, we compute an upper bound on the time to reach consensus for the voter
model on a star graph, described in Problem 3.

(a) We would like to describe the voter model, backwards in time, in terms of coalescing
random walks. For a single one of these random walks, what are the transition rates
(from a leaf to the hub, and from the hub to each leaf)?

(b) Next, let us consider two of these random walks, started at different leaves, say. We
only need to keep track of the distance between the particles performing these random
walks. This distance is either 0, 1 or 2, and when it becomes 0, the particles are at the
same node and coalesce. Describe the evolution of this distance as a Markov process.

(c) Compute the expected time for this Markov process to hit state (distance) 0 starting
in state 2. This is the expected time for two random walks to meet, and hence for two
particles to merge.

(d) We are interested in the time until each of n − 1 other particles has merged with
a given particle. This is an upper bound on the time to consensus. Using the fact
that the expectation of the maximum of non-negative random variables is bounded
by the expectation of their sum, obtain an upper bound on the expected time to reach
consensus in the voter model on the star.

5. Consider n nodes arranged in a ring, with an edge between each node and its two neigh-
bours. In other words, if the nodes are numbered 0, 1, 2, . . . , n − 1, node i has edges to
nodes i− 1 and i+ 1 modulo n. Consider the voter model on this graph, where each node
becomes active at the points of a unit rate Poisson process (independent of other nodes),
chooses one of its two neighbours with equal probability (independent of everything else),
and adopts the state of that neighbour. We want to bound the time to consensus in this
model.

(a) Consider two particles, starting at nodes i and j, and performing independent random
walks until they meet. Let Yt denote the clockwise distance from i to j; suppose that
initially j lies clockwise of i so that Y0 ∈ {1, 2, . . . , n− 1}. The two particles merge
when this distance becomes 0 or n, i.e., at the time T = inf{t > 0 : Yt = 0 or n}.
Show that Mt = Y 2

t − 2t is a martingale on the time period [0, T ].

(b) Compute ET , the expected time until the two particles coalesce. You may use the fact
that

P(YT = n) =
Y0
n
, P(YT = 0) = 1− Y0

n
.

(c) We are interested in the time until each of n − 1 other particles has merged with
a given particle. This is an upper bound on the time to consensus. Using the fact
that the expectation of the maximum of non-negative random variables is bounded
by the expectation of their sum, obtain an upper bound on the expected time to reach
consensus in the voter model on the cycle graph on n nodes.
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