
Complex Networks
Problem Sheet 6

∗∗ Please hand in solutions to Question 5 on this sheet. ∗∗

1. (a) A weighted graph G has a weight aij > 0 associated with each edge (i, j) ∈ E. If the
graph is undirected, we take aji = aij . The weighted degree of node i is defined as
di =

∑
j∈V aij , and the matrix DG is taken to be diag(di). The weighted adjacency

matrixAG has elements aij , and the weighted Laplacian is defined as LG = DG−AG.
Now show that, for any x ∈ R|V |,

xTLGx =
∑

(i,j)∈E

aij(xi − xj)2.

Explain why LG is a positive semi-definite matrix.

(b) Consider the graph with weighted adjacency matrix

AG =

0 1 2

1 0 1

2 1 0

 .

Compute xTLGx and
∑

(i,j)∈E aij(xi − xj)
2 and verify that they are equal. Also

compute the eigenvalues of the Laplacian and verify that they are non-negative.

2. A Markov chain with rate matrix Q and invariant distribution π is said to be reversible if
πiqij = πjqji for all i and j in the state space. Consider a reversible irreducible Markov
chain on a finite state space S, with |S| = n. Define an inner product on Cn by setting

〈x,y〉 =
∑
i∈S

πixiy
∗
i ,

where we use the superscript ∗ to denote the complex conjugate of a number.

(a) Check that the definition above is a valid inner product, i.e., that the following hold
for all x,y, z ∈ Cn and all c ∈ C:

〈x,y〉 = 〈y,x〉∗,
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, 〈cx,y〉 = c〈x,y〉,
〈x,x〉 ≥ 0, with equality only if x = 0.

You may use the fact that πi > 0 for all i ∈ S, which holds because the Markov chain
is irreducible.
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(b) Show that the rate matrix Q is “self-adjoint” for the above inner product, i.e., show
that

〈Qx,y〉 = 〈x, Qy〉,

for all x and y ∈ Cn.

(c) Use the answer to the last part to show that all eigenvalues of Q are real. The proof
follows along the same lines as the proof in lectures that all eigenvalues of a symmet-
ric matrix are real. You may assume that there is an eigenvector associated with each
eigenvalue.

3. Let p and q be discrete probability distributions on a finite set Ω = {1, 2, . . . , n}. Recall
that the total variation distance between p and q is defined as

dTV (p,q) = max
S⊆Ω
|p(S)− q(S)|,

where p(S) =
∑

i∈S pi and q(S) is defined similarly.

(a) Show that dTV (p, q) = 1
2
‖p−q‖1, where ‖p−q‖1 is defined as

∑n
i=1 |pi−qi|. (Hint.

Show that the maximum in the definition of total variation distance is attained by the
set S = {i : pi ≥ qi}.)

(b) Using the answer to the last part or otherwise, show that ‖p− q‖1 ≤ 2 for all proba-
bility distributions p and q. Give an example where equality holds.

(c) Show that ‖p− q‖1 ≤
√
n‖p− q‖2, where ‖x‖2 is defined as

√
x2

1 + . . .+ x2
n.

(Hint. Use the Cauchy-Schwarz inequality.)

(d) Show that ‖p−q‖2 ≤
√

2 for any probability distributions p and q. Give an example
where equality holds.

4. Compute the total variation distance between the two distributions in each of the following
examples:

(a) Binomial(2, 1
2
) and uniform on {0, 1, 2}.

(b) Binomial(2, 1
2
) and Poisson(1).

(c) Exponential(1) and Uniform[0,1].

(d) Exponential(1) and Exponential(2).

5. Let Sn be the star graph on n nodes consisting of a single hub node connected to each of
n − 1 leaves; there are no edges between leaves. Consider the continuous time random
walk on this graph generated as follows: there are n − 1 independent Poisson processes,
{Ne(t), t ≥ 0}, one on each edge of the graph. Each of these Poisson processes has rate 1.
If the Poisson process Ne(·) has an increment at time t and the walker is at the vertex on
one end of this edge, it moves to the vertex at the other end. An equivalent description is
that, if the walker is at a leaf, it moves to the hub at rate 1; if it is at the hub, it moves at
rate n− 1, choosing a leaf uniformly at random to move to.
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(a) The position Xt of the random walk evolves as a continuous time Markov chain on
the set of vertices. Write down the transition rate matrix of this Markov chain. How
is it related to the Laplacian matrix of the graph Sn?

(b) Show that the uniform distribution on all nodes is an invariant distribution for the
Markov chain in part (a), and hence that it is the unique invariant distribution.

(c) The conductance of a graph G is defined as

Φ(G) = min
S⊂V :S 6=∅

|E(S, Sc)|
1
n
|S| · |Sc|

,

whereE(S, Sc) denotes the set of all edges consisting of one vertex in S and the other
in its complement Sc, and the minimum is taken over all subsets of the vertex set V
other than the empty set and the set of all vertices.
Compute the conductance of the star graph.

(d) Obtain a lower bound on λ2, the second smallest eigenvalue of the Laplacian of Sn,
using Cheeger’s inequality and the answer to part (c).

(e) It is known that the total variation distance between the distribution of the random
walk position at time t, which we denote p(t), and the invariant distribution π is
bounded as follows:

dTV (p(t), π) :=
1

2

n∑
i=1

|pi(t)− πi| ≤
√
ne−λ2t.

Let ε > 0 be a given constant. Using the lower bound on λ2 computed in part (d), find
the smallest value of t for which you can guarantee that dTV (p(t), π) ≤ ε.
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