Complex Networks
 Problem Sheet 7

Please hand in solutions to questions 2 on this sheet $* *$

1. Let K_{4} denote the complete graph on 4 vertices.
(a) Draw K_{4}.
(b) Compute exactly the expected number of copies of K_{4} in $G(n, p)$, the Erdős-Rényi random graph on n vertices where each edge is present with probability p, independent of the others.
(c) Compute the variance of the number of copies of K_{4} in $G(n, p)$ from first principles. It is enough if your answer gets the correct scaling in n and p. You can ignore any constants that don't depend on n or p in your calculations. You can also ignore terms in n and p that grow more slowly than the dominant term.
(d) Find an $\alpha_{c} \in(0, \infty)$ (or prove that none exists) such that the following is true:

$$
\mathbb{P}\left(G\left(n, n^{-\alpha}\right) \text { contains a copy of } K_{4}\right) \rightarrow \begin{cases}0, & \text { if } \alpha>\alpha_{c} \\ 1, & \text { if } \alpha<\alpha_{c}\end{cases}
$$

Justify your answer fully.
2. Recall that $G=(V, E)$ is bipartite if there exist vertex sets X and Y such that $V=X \cup Y$, $X \cap Y=\emptyset$ and $E \subseteq X \times Y$. In words, X and Y partition the vertex set, and there is no edge between two elements of X or two elements of Y.
The random bipartite graph $G(n, n, p)$ has $2 n$ vertices which can be partitioned as $V=$ $X \cup Y, X \cap Y=\emptyset$, with $|X|=|Y|=n$. Moreover, each edge in $X \times Y$ is present with probability p, independent of the others. There are no edges in $X \times X$ or $Y \times Y$.
(a) Let $K_{2,2}$ denote the complete bipartite graph on $2+2$ vertices. Draw $K_{2,2}$.
(b) Compute exactly the expected number of copies of $K_{2,2}$ in $G(n, n, p)$.
(c) Compute the variance of the number of copies of $K_{2,2}$ in $G(n, n, p)$ from first principles. It is enough if your answer gets the correct scaling in n and p. You can ignore any constants that don't depend on n or p in your calculations.
(d) Find an $\alpha_{c} \in(0, \infty)$ (or prove that none exists) such that the following is true:

$$
\mathbb{P}\left(G\left(n, n, n^{-\alpha}\right) \text { contains a copy of } K_{2,2}\right) \rightarrow \begin{cases}0, & \text { if } \alpha>\alpha_{c} \\ 1, & \text { if } \alpha<\alpha_{c}\end{cases}
$$

Justify your answer fully.
3. Let S_{k} denote the star graph on k nodes, consisting of a hub and $k-1$ leaves.
(a) Show that S_{k} is a balanced graph.
(b) Using the results in your notes for balanced graphs, find a value $\alpha_{k} \in(0, \infty)$ such that

$$
\mathbb{P}\left(G\left(n, n^{-\alpha}\right) \text { contains a copy of } S_{k}\right) \rightarrow \begin{cases}0, & \text { if } \alpha>\alpha_{k} \\ 1, & \text { if } \alpha<\alpha_{k}\end{cases}
$$

Clearly state the result you will use before using it.
(c) The chromatic number of a graph G, denoted $\chi(G)$, is defined as the minimum number of colours required to colour the nodes of the graph in such a way that no two nodes with an edge between them have the same colour. Show that $\chi(G) \leq d_{\max }+1$, where $d_{\text {max }}$ denotes the maximum degree of all nodes in G.
Hint. Consider a greedy algorithm that goes through the nodes in arbitrary order, assigning each node a colour distinct from that of all its already coloured neighbours. Show that, if $d_{\max }+1$ colours are available, then the greedy algorithm will never get stuck.
(d) Provide either an upper or a lower bound on $\chi(G)$ that holds with high probability for G drawn from $G(n, p)$. You should state your result precisely, and justify it fully.

