
Introduction to spectral graph theory

c©A. J. Ganesh, University of Bristol, 2015

1 Linear Algebra Review

We write M ∈ Rn×n to denote that M is an n×n matrix with real elements,
and v ∈ Rn to denote that v is a vector of length n. Vectors are usually
taken to be column vectors unless otherwise specified. Recall that a real
matrix M ∈ Rn×n represents a linear operator from Rn to Rn. In other
words, given any vector v ∈ Rn, we think of M as a function which maps
it to another vector w ∈ Rn, namely the matrix-vector product. Moreover,
this function is linear: M(v1 + v2) = Mv1 + Mv2 for any two vectors v1
and v2, and M(λv) = λMv for any real number λ and any vector v. The
perspective of matrices as linear operators is important to keep in mind
throughout this course.

If there is a λ ∈ C such that Mv = λv, then we say that v is an (right)
eigenvector of M corresponding to the eigenvalue λ. Likewise, w is a left
eigenvector of M with eigenvalue λ if wTM = λwT . Here wT denotes the
transpose of w. We will write M † and w† to denote the Hermitian conjugates
of M and w, namely the complex conjugate of the transpose of M and w
respectively. For example,

M =

(
1 2 + i

3− i i

)
⇒M † =

(
1 3 + i

2− i −i

)
.

In this course, we will mainly be dealing with real vectors and matrices; for
these, the Hermitian conjugate is the same as the transpose.

We now recall some basic facts about eigenvalues and eigenvectors. The
eigenvalues of M ∈ Rn×n are the zeros of its characteristic polynomial,
det(M−xI). Since this polynomial is of degree n, it has n roots, which may
be real or complex, and which may be repeated. Is there an eigenvector
corresponding to each eigenvalue? If λ is an eigenvalue, then det(M −
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λI) = 0 and so the matrix M − λI is singular. Hence, there is at least one
non-zero vector v solving (M − λI)v = 0, which implies that Mv = λv.
Thus, v is an eigenvector of M corresponding to the eigenvalue λ. However,
if an eigenvalue is repeated, say has multiplicity k > 1, then there may
not necessarily be k linearly independent eigenvectors corresponding to it.
Consider, for example, the matrix

M =

(
0 1
0 0

)
,

which has eigenvalues 0 and 0. However, all eigenvectors corresponding to

this eigenvalue are of the form

(
c
0

)
, i.e., there aren’t two linearly indepen-

dent eigenvectors.

Definitions

1. Vectors v1, . . . , vm ∈ Rn are called orthonormal if they are mutually
orthogonal (vi · vj = 0 whenever i 6= j), and each of them has unit
norm (‖vi‖ =

√
vi · vi = 1). Here, vi · vj denotes the inner product or

dot product of vi and vj .

2. A square matrix V ∈ Rn×n is called orthogonal if V V T = I.

Note that there can be at most n mutually orthogonal vectors in Rn, and
that if a set of n vectors is orthogonal, then they constitute a basis of Rn.
If a matrix V is orthogonal, then its rows are orthonormal, hence constitute
an orthonormal basis (ONB) of Rn. In particular, the rows are linearly
independent, so that V has full rank and hence is invertible. Since V V T = I,
it follows that V T = V −1 and hence that V TV = I as well. (In general, V
and V T need not commute, but they do for orthogonal matrices.) Thus, the
columns of V also make up an ONB of Rn.

Remark. A matrix U ∈ Cn×n is said to be unitary if UU † = I. All the prop-
erties stated above for orthogonal matrices also hold for unitary matrices,
which are important in their own right but will not play much part in this
course.

A matrix M ∈ Rn×n is called symmetric if mij = mji for all i and j, i.e., if
M = MT . A matrix M ∈ Cn×n is called Hermitian if mij = m∗ji for all i and

j, i.e., if M = M †. Here, z∗ denotes the complex conjugate of a complex
number z.
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Theorem 1 (Spectral theorem for Hermitian matrices) Let M be an
n × n Hermitian matrix with real or complex elements. Then its eigen-
values λ1, . . . , λn are real, and it has an orthonormal basis of eigenvectors
v1, . . . , vn. Moreover, M =

∑n
i=1 λiviv

†
i .

Remark. We will present a partial proof of this theorem, showing that all
eigenvalues are real, and that eigenvectors corresponding to distinct eigen-
values are orthogonal. If all eigenvalues are distinct, this completes the
proof; if some eigenvalues are repeated, then some more work is required.
If M is a real matrix, then all eigenvectors can also be chosen to be real,
and Hermitian conjugates can be replaced with transposes throughout the
following proof. Though we will only be working with real matrices, we
present the more general statement and proof as it is no more difficult and
has exactly the same structure.

Proof. Suppose λ is an eigenvalue of M and v a corresponding eigenvector,
so that Mv = λv. Then, v†(Mv) = λv†v. On the other hand,

v†(Mv) = (v†M)v = (v†M †)v = (Mv)†v = (λv)†v = λ∗v†v,

where λ∗ is the complex conjuage of λ. We’ve used the fact that M = M †

to obtain the second equality above, and that (λv)† = λ∗v† to obtain the
last equality. We have thus shown that λv = λ∗v. Hence, λ = λ∗ (as the
zero vector is not considered an eigenvector), which implies that λ is real.

Suppose v1 and v2 are eigenvectors corresponding to distinct eigenvalues λ1
and λ2. Then, v†1(Mv2) = v†1λ2v2 = λ2v

†
1v2. On the other hand, using the

fact that M = M †, we have

(v†1M)v2 = (v†1M
†)v2 = (Mv1)

†)v2 = (λ1v1)
†v2 = λ∗1v

†
1v2.

Thus, we obtain that λ2v
†
1v2 = λ∗1v

†
1v2, i.e., (λ2 − λ∗1)v

†
1v2 = 0. But λ∗1 = λ1

since all eigenvalues are real, and is different from λ2 by assumption. Hence,
it follows that v†1v2 = 0, i.e., that v1 and v2 are orthogonal to each other.

Finally, suppose all n eigenvalues λ1, . . . , λn are distinct. Then, the cor-
responding eigenvectors v1, . . . , vn are mutually orthogonal, which implies
that they are linearly independent. (Exercise: prove this.) Hence, they con-
stitute a basis of Rn. Without loss of generality, we may assume that they
all have unit norm, so that we obtain an orthonormal basis.

Now, to show that the linear operators M and
∑n

i=1 λiviv
†
i are equal to each

other, we need to show that Mv =
∑n

i=1 λiviv
†
i v for all v ∈ Rn. Clearly,
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it suffices to show that equality holds for all v in some basis of Rn. Let us
consider the basis of eigenvectors above. Then, Mvj = λjvj , whereas

n∑
i=1

λiviv
†
i vj =

n∑
i=1

λivi(v
†
i vj) = λjvj(v

†
jvj) = λjvj .

To obtain the second equality above, we have used the fact that v†i vj = 0
whenever i 6= j, since the vectors vi, i = 1, . . . , n, are mutually orthogonal.
The last equality relies on the fact that v†jvj = ‖vj‖2 = 1. �

Variational principle: Let M be a real, symmetric matrix. Then, its
eigenvalues can be expressed in terms of the solution to an optimisation
problem. The term ‘variational problem’ is also used for optimisation prob-
lems (especially in infinite dimensions), whence the name for this way of
describing eigenvalues. It is also referred to as the Rayleigh-Ritz principle.

Theorem 2 Let λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of a symmetric
matrix M ∈ Rn×n. Then,

λ1 = min
x∈Rn\{0}

xTMx

xTx
, λn = max

x∈Rn\{0}

xTMx

xTx
,

where 0 denotes the zero vector in Rn. Moreover, if v1, . . . , vn are an ONB
of eigenvectors of M associated with eigenvalues λ1, . . . , λn, then

λk+1 = min
x⊥v1,...,vk

xTMx

xTx
,

i.e., the minimum is taken over non-zero vectors which are orthogonal to all
the first k eigenvectors (and hence to the k-dimensional subspace spanned
by them).

Remark. The ratio xTMx/xTx is referred to as the Rayleigh quotient or the
Rayleigh-Ritz ratio. Analogous to the last part of the theorem, λk can also
be expressed as the maximum of the Rayleigh quotient over the subspace
orthogonal to the eigenvectors corresponding to the n−k largest eigenvalues.

Proof. Since the eigenvectors v1, . . . , vn of M constitute an ONB, any x ∈ Rn
can be expressed as a linear combination of them, x =

∑n
i=1 aivi. Moreover,

ai = xT vi. (Why?) Hence, using the spectral decomposition of M from the
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previous theorem, we have

xTMx =

n∑
i=1

xTλiviv
T
i x =

n∑
i=1

λia
2
i ,

whereas

xTx =

n∑
i,j=1

aiajv
T
i vj =

n∑
i=1

a2i .

But
∑n

i=1 λia
2
i ≥

∑n
i=1 λ1a

2
i , so it follows from the above that xTMx ≥

λ1x
Tx for all x ∈ Rn. Moreover, equality holds for x = v1. This establishes

the first claim of the theorem.

The second claim follows similary, by observing that
∑n

i=1 λia
2
i ≤

∑n
i=1 λna

2
i ,

and hence that xTMx ≤ λnxTx for all x ∈ Rn, with equality for x = vn.

The proof of the last part is very similar, starting from the fact that if
x ∈ Rn is orthogonal to v1, . . . , vk, then the coefficients a1, . . . , ak are all
zero. Hence,

n∑
i=1

λia
2
i =

n∑
i=k+1

λia
2
i ≥

n∑
i=k+1

λk+1a
2
i .

The rest of the proof is identical and so is omitted. �

2 Matrices associated with graphs

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
Its adjacency matrix, AG is defined as

AG(i, j) =

{
1, (i, j) ∈ E
0, otherwise.

Note that AG is symmetric. Let di =
∑

j∈V AG(i, j). Then di is the degree
of node i. Recall that node j is called a neighbour of node i if (i, j) ∈ E,
and that the degree of a node is defined as the number of neighbours it has.
Define

DG = diag(di) =

d1 . . .

dn

 .
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The diffusion operator or random walk operator on G is defined as WG =
D−1G AG. If di = 0, we take WG(i, i) = 1 and WG(i, j) = 0 for all j 6= i.
Why the name? Observe from the definition that all rows of WG are non-
negative and sum to 1, i.e., they are probability distributions on V . Now,
consider a discrete time random walk on G where, at each time step, the
walker moves to one of the neighbours of its current node, chosen uniformly
at random independent of its past. The position of such a random walk is a
discrete time Markov chain on the state space V , and the matrix WG is the
transition probability matrix of this Markov chain.

The Laplacian of G is defined as the matrix LG = DG − AG. (This is the

definition that we will use, though the definition LG = I −D−1/2G AGD
−1/2
G

is also in vogue. Properties of the Laplacian derived using either defini-
tion can be easily related to each other.) The row sums of LG are all zero.
The Laplacian matrix also admits a random walk interpretation. Consider
a continuous time random walk where the walker has unit rate of moving
along each edge. Thus, if the walker is at a vertex v, it stays there for a ran-
dom time which is exponentially distributed with parameter dv (and hence
mean 1/dv) before moving to one of the neighbours of v chosen uniformly at
random, independent of the past and of the time spent in v. This random
walk is closely related to the discrete time random walk above, the main
difference being that the time spent at each node during a visit is random,
and it is smaller on average at high degree nodes than at low degree nodes.
The position of this random walk is a continuous time Markov chain on the
state space V , with rate matrix or infinitesimal generator Q = −LG.

We shall now look at a few specific examples of graphs and compute the
eigenvalues of their Laplacian matrix. Similar calculations can be made for
the diffusion matrix. The examples we choose are very simple graphs for
which it is possible to calculate the eigenvalue spectrum explicitly in closed
form. We will use these specific graphs as recurring examples throughout
this course. In general, no such closed form solutions are available for the
spectrum of the Laplacian, and eigenvalues have to be computed numerically.
The computational complexity of determining the eigenvalues of an n × n
matrix is O(n3) in general, but can be significantly smaller if the matrix is
sparse. While a graph on n nodes can have up to

(
n
2

)
≈ n2/2 edges, many

graphs encountered in practice have far fewer edges, of order n or close to
n rather than n2. In this case, their Laplacians are also sparse and the
computation of their eigenvalues correspondingly easier.
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2.1 Examples

Complete graph

The complete graph on n nodes, denoted Kn, is the graph where the edge
between every pair of nodes is present, i.e., (i, j) ∈ E for all i, j ∈ V such
that i 6= j. Thus, each vertex has degree n− 1. The Laplacian of this graph
is thus given by

LKn =


n− 1 −1 · · · −1 −1
−1 n− 1 · · · −1 −1
...

...
. . .

...
...

−1 · · · −1 n− 1

 = nI − 11T ,

where I denotes the identity matrix in n dimensions and 1 the all-1 column
vector of length n.

Claim: The eigenvalues of LKn are λ1 = 0 and λ2 = λ3 = . . . = λn = n.

Proof. Since all the rows of LKn sum to zero, the all-1 vector 1 is an
eigenvector, and the corresponding eigenvalue is 0, i.e., LKn1 = 0 = 0 · 1.

Now, let x ∈ Rn be any non-zero vector orthogonal to 1, i.e, xT1 = 0. Then,

LKnx = nIx− 11Tx = nx,

since 1Tx = 0. But this implies that x is an eigenvector of LKn with
eigenvalue n. Since this holds for all vectors x orthogonal to 1, and the
subspace of Rn consisting of such vectors is (n − 1)-dimensional, it follows
that there are n − 1 mutually orthogonal vectors spanning this subspace.
Thus the geometric multiplicity of the eigenvalue n (defined as the number of
linearly independent eigenvectors corresponding to this eigenvalue) is n− 1.
It is known that the algebraic multiplicity of any eigenvalue (the number of
times it appears as a root of the characteristic equation) is at least as big as
the geometric multiplicity.

Hence, the eigenvalue n has (algebraic) multiplicity at least equal to n− 1,
while the eigenvalue 0 has multiplicity at least equal to 1. But the charac-
teristic polynomial is of degree n, and therefore has exactly n zeros. This
implies that the eigenvalue n must have multiplicity exactly equal to n− 1,
and the eigenvalue 0 must have multiplicity exactly equal to 1. This com-
pletes the proof of the claim. �
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Star graph

The star graph on n nodes, denoted Sn, consists of a central hub and n− 1
leaves. There is an edge between the hub and each leaf, but no edges between
leaves. Thus, its adjacency matrix and Laplacian are

ASn =

(
0 1Tn−1

1n−1 )n−1

)
and LSn =

(
n− 1 −1Tn−1
−1n−1 In−1,

)
where 1n−1 denotes the all-1 vector of length n − 1, while On−1 and In−1
denote the (n−1)× (n−1) all-zero matrix and identity matrix respectively.

Claim: The eigenvalues of LSn are λ1 = 0, λ2 = . . . = λn−1 = 1 and λn = n.

Proof. As before, 1 is an eigenvector of the Laplacian with eigenvalue 0,
because all row sums of the Laplacian are zero. It can also be easily verified
that vn = (n− 1 − 1 . . .− 1)T is an eigenvector with eigenvalue n.

Let ei denote the ith unit vector, namely the vector with a 1 in the ith

position and zeros elsewhere. Now, for i ≥ 2, LSnei = −e1 + ei. So, for
i, j ≥ 2 with i 6= j, LSn(ei − ej) = ei − ej . In other words, all the vectors
ei − ej with 2 ≤ i, j ≤ n and i 6= j are eigenvectors with eigenvalue 1.
There are (n− 1)(n− 2) such vectors, but clearly they can’t all be linearly
independent. So, let’s first find a maximal linearly indepedent subset of
them. It is easy to see that the vectors e2 − e3, e3 − e4, . . ., en−1 − en form
a linearly independent set, of cardinality n− 2. Hence, the eigenvalue 1 has
multiplicity at least n− 2. As there are n eigenvalues in total, and we have
already found two of them (namely 0 and n), it follows that these are all
the eigenvalues, which completes the proof of the claim. �

Cycle graph

The cycle on n nodes, denoted Cn, has n nodes arranged in a ring, with
each node being connected to its two immediate neighbours, one on each
side. Its adjacency matrix is given by

ACn(i, j) =

{
1, if |i− j| = 1 or n− 1,

0, otherwise

and its Laplacian by LCn = 2I −ACn since all nodes have degree 2.

Claim: The eigenvalues of LCn are λk = 2− 2 cos 2π(k−1)
n , k = 1, . . . , n.

Proof. As before, 1 is an eigenvector with eigenvalue 0. Next, for k =
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2, . . . , n, define zk ∈ Cn to be the vector with components

zk(`) = exp(i
2π(k − 1)`

n
), ` = 1, . . . , n,

where i =
√
−1. We have

(LCnzk)(`) = 2ei2π(k−1)`/n − ei2π(k−1)(`−1)/n − ei2π(k−1)(`+1)/n

= ei2π(k−1)`/n
(

2− e
i2π(k−1)

n − e−
i2π(k−1)

n

)
= zk(`)

(
2− 2 cos

2π(k − 1)

n

)
.

Hence, zk is an eigenvector of LCn with eigenvalue 2− 2 cos 2π(k−1)
n for each

k = 2, . . . , n. We have thus identified n distinct eigenvalues. This completes
the proof of the claim. �

2.2 Properties of the Laplacian

In all the examples above, we saw that 1 was an eigenvector of the Laplacian
with eigenvalue 0. Is this true of the Laplacian of any graph? The answer is
yes, and follows immediately from the fact that rows of a Laplacian always
sum to zero. This, in turn, follows from the definition LG = DG − AG, as
DG(i, i) = di =

∑
j∈V AG(i, j).

In the examples above, we also saw that all the other eigenvalues were strictly
positive. Is this also a general property valid for all graphs? Not quite, as
we shall in the next subsection, but all eigenvalues are non-negative. To see
why, observe that for all x ∈ Rn,∑

(i,j)∈E

(xi − xj)2 =
1

2

∑
i∈V

∑
j∈V :(i,j)∈E

(xi − xj)2

=
1

2

∑
i∈V

∑
j∈V :(i,j)∈E

(x2i − 2xixj + x2j )

=
1

2

(∑
i∈V

x2i di +
∑
j∈V

x2jdj

)
−
∑
i∈V

∑
j∈V

xiaijxj

=
∑
i∈V

dix
2
i −

∑
i,j∈V

aijxixj = xTLGx.

The first equality holds because the sum on the right counts each edge twice,
once as (i, j) and once as (j, i). The third equality uses the definition of aij
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as 1 if (i, j) ∈ E and 0 otherwise, and the fact that
∑

j:(i,j)∈E 1 = di. The
last equality follows from the definition of LG as DG −AG.

Thus, we have shown that xTLGx is a weighted sum of squares. Hence, it is
non-negative for all x ∈ Rn. Therefore, by the variational characterisation
of eigenvalues,

λ2 = min
x⊥1

xTLGx

xTx
≥ 0.

As the eigenvalues are arranged in increasing order, it follows that all other
eigenvalues are also non-negative.

Definition: A real symmetric matrix M is said to be positive semi-definite
(p.s.d.) if xTMx ≥ 0 for all x ∈ Rn, and positive definite (p.d.) if xTMx > 0
for all x 6= 0, where 0 denotes the zero vector.

A real symmetric matrix M is p.s.d. (respectively p.d.) if and only if all its
eigenvalues are non-negative (respectively positive). We have shown above
that the Laplacian matrix LG is always positive semi-definite.

2.3 Eigenvalues and connectivity

In this section, we show that Laplacian of a graph has as many eigenvalues
equal to zero as there are connected components in the graph. In particular,
if the graph is connected, i.e., it consists of a single connected component,
then the eigenvalue zero is simple, and all other eigenvalues are strictly
positive.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Their union is defined
as the graph G = (V,E) with V = V1 ∪ V2 and E = E1 ∪ E2. We say that
it is a disjoint union if V1 and V2 are disjoint sets.

Lemma 1 Suppose G is the disjoint union of the graphs G1, G2, . . . , Gk
and that each of the Gi is non-empty (contains at least one vertex). Then,
sp(LG) = sp(LG1∪. . .∪sp(LGk), where sp(M) denotes the set of eigenvalues
of M . The union above is taken with repeated eigenvalues being retained as
distinct. (Thus, for example, {0, 1} ∪ {1, 2} = {0, 1, 1, 2}.)

Proof. By the assumtion that the graphs G1, . . . , Gk are disjoint, the Lapla-
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cian LG is block-diagonal,

LG =


LG1 0 . . . 0

0 LG2 . . . 0
...

...
. . .

...
0 . . . 0 LGk

 .

Let v1i and v2j be eigenvectors of LG1 and LG2 respectively, corresponding
to the eigenvalues λ1i and λ2j (which could be the same). Then, it is clear
that 

v1i
0
...
0

 and


0
v2j
...
0


are eigenvectors of the matrix LG corresponding to the eigenvalues λ1i and
λ2j , and that they are orthogonal to each other. (Here, the same notation
0 is used to denote all-zero vectors of various sizes corresponding to the
different subgraphs G1, . . . , , Gk.)

By the same argument, any eigenvector of any of the LGi can be modified
(by padding zeros appropriately) to yield an eigenvector of LG with the same
eigenvalue. Moreover, if |Vi| = ni, then LGi has an ONB of ni eigenvectors
by the spectral theorem. Thus, the above procedure yields a set of n1+n2+
. . . + nk = n orthonormal eigenvectors of LG and n associated eigenvalues.
Since LG has exactly n eigenvalues, we have identified all of them, and they
are given by the union of the eigenvalues of the different LGi (respecting
multiplicity), as claimed. �

Our next result says that, if a graph is connected, all the eigenvalues of its
Laplacian except the smallest one (which is always zero) are strictly positive.

Lemma 2 Suppose G is connected, and let λ1 ≤ λ2 ≤ · · · ≤ λn denote the
eigenvalues of its Laplacian. Then λ2 > 0.

Proof. We saw earlier that xTLGx =
∑

(i,j)∈E(xi − xj)2 and also that 1 is
an eigenvector corresponding to the smallest eigenvalue, λ1 = 0. Hence, by
the variational characterisation of eigenvalues,

λ2 = min
x⊥1

xTLGx

xTx
= min

x⊥1,‖x‖=1
xTLGx.
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To obtain the second equality, note that the Rayleigh quotient is unchanged
if x is multiplied by any scalar c 6= 0, as both numerator and denominator
get scaled by the same factor c2. Hence, we may restrict the minimum to
the subset satisfying ‖x‖ = 1 without loss of generality. But, for such x,
xTx = ‖x‖2 = 1, and so the ratio becomes xTLGx.

Now, if x is non-zero and orthogonal to 1, then x can’t be a constant vector.
Hence, there must be some (i, j) ∈ E for which xi 6= xj . (This is where we
use the fact that the graph is connected.) But this implies that

∑
(i,j)∈E(xi−

xj)
2 > 0, and this is true for any vector x which isn’t a constant. It follows

that minx⊥1,‖x‖=1 x
TLGx is strictly positive, i.e., that λ2 > 0. (Formally, we

are using the fact that we are seeking the minimum of a continous function
over a compact set, and hence that the minimum is attained at some x in
this set. If you haven’t taken a course in Analysis that covers this result,
please take it for granted. Hopefully, it is intuitive enough.) �

We now put together the above two lemmas to describe the spectrum of the
Laplacian of an arbitrary graph. The proof is omitted as it is immediate
from the above two lemmas.

Lemma 3 Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of the Laplacian
of a graph G. If G consists of k connected components, then λ1 = λ2 =
. . . = λk = 0, and all other eigenvalues are strictly positive.
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