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1 Random walks in continuous time

In this section, we shall study continuous time random walks on graphs.
The parallels with discrete-time random walks are close, so we won’t repeat
the analysis for them. However, we will go on to discuss the Page Rank
metric for web pages, and point out its connection to discrete-time random
walks.

Let G = (V,E) be a connected, undirected graph. We shall consider the
following model of a random walk on G. The walk starts out at time 0 in
some initial distribution on the vertex set V ; the initial condition may be
deterministic, which corresponds to the distribution assigning probability 1
to a single vertex. The random walk is constructed as follows. There are
independent unit rate Poisson processes associated with each edge of the
graph. If the random walk is at some vertex v ∈ V at time s, its next jump
occurs at the first time t > s at which there is an increment of the Poisson
process on some edge (v, w) incident on V . If this increment occurs on edge
(v, u), then the random walk moves to vertex u at time t. (The process is well
defined because the probability of the next increment happening at exactly
the same time on two different edges is zero.) Equivalently, if the random
walk is at vertex v, it samples independent Exp(1) random variables for
each edge (v, w) incident on v, and moves along the edge with the minimum
value of these random variables; the time spent at v is equal to this minimum
value. From this description, and the fact that the minimum of independent
exponential random variables is exponential with the sum of their rates,
it is clear that the time spent at a vertex v on each visit has an Exp(dv)
distribution, where dv denotes the degree of the vertex v. Moreover, the
next vertex to be visited after v is chosen uniformly at random from the
neighbours of v.
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Question Suppose that, in the description of the random walk, the Poisson
processes associated with different edges had different rates, λ(v, w) for edge
(v, w), but were still mutually independent. Then what would be the distri-
bution of the time spent at vertex v during a visit, and what would be the
probability of next going to a vertex w?

Let Xt denote the location of the random walk at time t. It should be clear
from the description above, and the memorylessness property of Poisson
processes, that Xt is a Markov process with state space V , the vertex set.
Moreover, every vertex is accessible from every other vertex since the graph
G is connected, and so the Markov chain is irreducible. Since it is a finite
state chain, it follows that it has a unique invariant distribution, which we
shall denote π. Let us now write down the rate matrix for this chain and
then work out its invariant distribution. The probability of moving from
a vertex v to a vertex w during some small time interval of size δ is the
probability the clock on the edge (v, w) goes off during this time interval,
and that no other clock on an edge incident on v does so. (If there is no edge
between v and w, the probability of moving from v to w during this interval
is negligible, o(δ)). As the clocks are indepent Exp(1) random variables, we
can work out this probability to be δ(1 − δ)dv−1 + o(δ), which reduces to
δ + o(δ). Hence, the rate associated with this move is 1 if (v, w) is an edge,
and 0 otherwise. As the sum applies to all vertices, we conclude that the
rate matrix Q has elements

qvw =


1, if (v, w) ∈ E,
0, if (v, w) /∈ E and v 6= w,

−dv, if v = w.

It is easy to see from this that the rate matrix Q is precisely −LG, the
negative of the Laplacian of the graph G.

Let p(t) denote the distribution of the random variable X(t), i.e., let p(t)
be a vector of length n = |V | with elements px(t) = P(Xt = x) for x ∈ V .
Likewise, let p(0) denote the initial condition, the distribution of X0, the
position of the random walk at time 0. Since Xt is a Markov process with
rate matrix Q = −LG, we have

p(t) = p(0)eQt = p(0)e−LGt.

Moreover, π = πeQt = πe−Lgt for all t, since π is invariant. To see this, note
that π satisfies the global balance equations πQ = 0, and use the Taylor
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expansion of eQt. Hence, we have

p(t)− π = (p(0)− π)e−Lgt.

We know from the ergodic theorem for Markov chains, and the uniqueness of
the invariant distribution π (which, in turn, follows from the fact that G is
connected and, consequently, that the Markov chain Xt is irreducible), that
p(t) converges to π as t tends to infinity. We want to know how quickly this
convergence happens. First, we shall study the convergence treating p(t)
and π as vectors in Euclidean space and using the usual Euclidean distance
between the vectors. Subsequently, we shall introduce a commonly used
distance measure between probability distributions known as total variation
distance, and restate our results in terms of this metric.

We begin by obtaining bounds on ‖p(t)−π‖2, the squared Euclidean distance
between p(t) and π. Recall that the dot product of a vector with itself is
the square of its norm. Noting that p(t) and π are row vectors, we can write

‖p(t)− π‖2 = (p(t)− π) · (p(t)− π) = (p(t)− π)(p(t)− π)T

= (p(0)− π)e−LGt
(

(p(0)− π)e−LGt
)T

= (p(0)− π)e−2LGt(p(0)− π)T . (1)

We have used the fact that LG is symmetric to deduce that the same is true
of e−LGt, and hence to obtain the last equality.

Let us denote the eigenvalues of the Laplacian matrix LG by 0 = λ1 < λ2 ≤
. . . ≤ λn. Recall that 0 is always an eigenvalue of the Laplacian, with corre-
sponding eigenvector 1, the all-1 vector. We saw in an earlier chapter that
the Laplacian of any graphG is positive semi-definite, and that the multiplic-
ity of the eigenvalue 0 is the same as the number of connected components
in the graph G. In particular, if G is connected, then all other eigenvalues
are strictly positive, so the inequalities claimed above hold. Next, it is easy
to see that if v is an eigenvector of LG corresponding to the eigenvalue λ,
it is also an eigenvector of e−2LGt, with eigenvalue e−2λt. Hence, the eigen-
values of e−2LGt are 1 = e−2λ1t > e−2λ2t ≥ . . . ≥ e−2λnt. The all-1 vector 1
is an eigenvector corresponding to the eigenvalue 1. Recall from an earlier
chapter that the second largest eigenvalue of the symmetric matrix e−2LGt

is given by

e−2λ2t = max
x∈Rn:x⊥1

xT e−2LGtx

xTx
. (2)
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Now p(0) and π are both probability distributions and sum to 1, so p(0)·1 =
π · 1 = 1. Hence, (p(0) − π) · 1 = 0, i.e., p(0) − π is orthogonal to 1. It
follows from (2) that

(p(0)− π)T e−2LGt(p(0)− π) ≤ e−2λ2t(p(0)− π)T (p(0)− π).

Substituting this in (1), we conclude that

‖p(t)− π‖2 ≤ e−2λ2t‖p(0)− π‖2. (3)

Since λ2 is strictly positive, the Euclidean distance between the vectors
p(t) and π decays exponentially as t tends to infinity. In that sense, p(t)
converges to π.

We can also establish this convergence in a more commonly used measure
of distance between probability distributions, which we now introduce.

Defintion: Let p and q denote two probability distributions on a finite sam-
ple space S. The total variation distance between them, denote dTV (p,q)
is defined as

dTV (p,q) = max
A⊆S

p(A)− q(A),

where, as usual, p(A) =
∑

x∈A p(x) denotes the probability of the set A and,
with some abuse of notation, we write p(x) for p({x}).

Note that the total variation distance between any two probability distri-
butions is a number between 0 and 1. If X and Y are random variables
with distributions p and q, we may write dTV (X,Y ) instead to denote the
same quantity. The definition can be extended to sample spaces S that are
countably or uncountably infinite.

It is easy to see that the maximum is attained by the set A = {x ∈ S :
p(x) ≥ q(x)}, that p(Ac)− q(Ac) = q(A)− p(A), and hence that

dTV (p,q) =
1

2

∑
x∈S
|p(x)− q(x)|.

The sum on the RHS is called the `1 norm of the vector p−q. If the sample
space S is uncountable, then p and q can be taken to be probability density
functions, and the sum replaced by an integral.

You can verify that the total variation distance is symmetric (dTV (p,q) =
dTV (q,p)), that dTV (p,q) ≥ 0, with equality if and only if p = q, and
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that it satisfies the triangle inequality dTV (p,q) + dTV (q, r) ≥ dTV (p, r)
for any three probability distributions p, q and r. These three properties
imply that the total variation distance is a metric on the space of probability
distributions (for a given sample space - it is not defined for two probability
distributions on two different sample spaces).

Suppose the sample space S has cardinality n. We can bound the total
variation distance between any two probability distributions p and q on S
in terms of the Euclidean distance between those vectors, as follows:

dTV (p,q) =
1

2

∑
x∈S
|p(x)− q(x)|

=
1

2
(p− q) · sign (p− q)

≤ 1

2
‖p− q‖‖ sign (p− q)‖ ≤

√
n

2
‖p− q‖,

where · denotes the dot product between vectors, sign (x) denotes the
{−1, 0, 1}-valued vector whose elements are the sign of the corresponding
elements of x, and we have used the Cauchy-Schwarz inequality to obtain
the first inequality above. Combining this bound with (3), we get

dTV (p(t), π) ≤
√
n

2
e−λ2t‖p(0)− π‖.

It can be shown that ‖p− q‖ ≤
√

2 for any two probability distributions p
and q. Substituting this above, we conclude that

dTV (p(t), π) ≤
√
n

2
e−λ2t, (4)

for arbitrary initial conditions.

Now, given an arbitrary ε > 0, we can ask how long we need to wait before
the random walk is within ε of the invariant distribution π in total variation
distance. More precisely, we can ask how large we need to choose T such
that, for any t > T , we have dTV (p(t), π) < ε. We see from (4) that choosing

T =
1

2λ2
log

n

2ε

sufficies to guarantee the desired bound on the total variation distance.

The time T is called the mixing time. The main things to take away from
the above result are the scalings. The mixing time grows in the size of
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the graph as log n. It grows in the stringency of the desired closeness to
the invariant distributation as log(1/ε). And finally, its dependence on the
shape of the graph is captured by the second eigenvalue λ2 of the Laplacian.
More commonly, this is expressed as saying that it depends on the spectral
gap, λ2 − λ1 = λ2 − 0. The reason for using the terminology of a spectral
gap is that similar results hold for general Markov processes, and not just
for random walks. In general, the eigenvalues of the rate matrix may be
complex, but there is always a real eigenvalue of 0 (with 1 as the right
eigenvector). In the general case, the mixing time depends on how far the
remaining eigenvalues are from the imaginary axis, i.e., the gap between the
imaginary axis and the other eigenvalues. Similarly, for general discrete-
time Markov chains, there is always an eigenvalue at 1, and the mixing
time depends on the gap between the remaining eigenvalues, which have
to lie within the unit circle in the complex plane (by the Perron-Frobenius
theorem, which we shall encounter later), and the boundary of this circle.

2 Bounds on the spectral gap

If we are given a graph on n nodes, then it is quite straightforward to com-
pute the eigenvalues of its Laplacian matrix (to a desired accuracy). There
are well-known numerical algorithms for this purpose, whose computational
complexity is polynomial in n, growing no faster than n3. In this section,
we provide bounds on the spectral gap λ2 in terms of geometric proper-
ties of the graph, specifically its conductance. These bounds are not very
useful computationally, as there is no known polynomial-time algorithm for
computing the conductance (though the bounds could be turned around to
bound the conductance in terms of the spectral gap). The reason for pro-
viding these bounds is that, while the conductance can’t be computed easily
for a general graph, it can be for graphs with special structure, like the star
or cycle graph we have seen earlier in the course. It is also possible to get
bounds on the conductance for various models of random graphs, which are
widely used as models of complex networks. We shall state our bounds after
defining the conductance.

Definition: We define the conductance of a graph G = (V,E) on n nodes
as

Φ(G) = min
S⊂V,S 6=∅

|E(S, Sc)|
1
n |S||Sc|

, (5)
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where, for any proper subset S of the vertex set, E(S, Sc) denotes the set of
edges crossing from S to Sc, namely edges (i, j) such that i ∈ S and j ∈ Sc
or vice versa.

Example. If G is the triangle with nodes denoted 1, 2, 3 and S = {1}, then
E(S, Sc) = {(1, 2), (1, 3)}. For this graph, it is easy to check that Φ(G) = 3,
since for any S consisting of either 1 or 2 nodes, |E(S, Sc)| = 2.

Remark. The definition above is similar to the definition we gave earlier for
the conductance of a non-negative matrix P . Indeed, it is the same definition
applied to the adjacency matrix of the graph. An alternative definition of
conductance in widespread use has the same numerator, but min{|S|, |Sc|}
in the denominator. These two definitions differ by at most a factor of 2
from each other, and yield very similar bounds. We shall stick with the
definition above.

Theorem 1 The second smallest eigenvalue of the Laplacian is related to
the conductance as follows:

λ2 ≤ Φ(G) ≤
√

8dmaxλ2. (6)

Here dmax denotes the maximum node degree of all nodes in G.

The second inequality in (6) is called Cheeger’s inequality. We shall give a
proof of the first inequality below, but will take the second one for granted
as its proof is more involved. We begin with the following lemmas.

Lemma 1 The conductance of the graph G can be expressed as the solution
of an integer programming problem, as follows:

Φ(G) = min
x∈{0,1}n

∑
(i,j)∈E(xi − xj)2

1
2n

∑
i,j∈V (xi − xj)2

, (7)

where the minimum is restricted to vectors which aren’t identically 0 or 1,
so that the ratio is well defined.

Proof. Fix a subset S of V . Let x be the vector with components xi = 1 if
i ∈ S and xi = 0 if i ∈ Sc. Therefore, for (i, j) ∈ E, if i ∈ S and j ∈ Sc or
vice versa, then (xi − xj)2 = 1, whereas this quantity is zero if i and j are
both in S or both in Sc. Hence, the numerator of the right hand side of (7)
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is just |E(S, Sc)| as an edge is counted only if it crosses the cut between S
and Sc. Likewise, (xi − xj)2 is equal to 1 if i ∈ S and j ∈ Sc or vice versa,
and equal to 0 if i and j are both in S or both in Sc. As the number of ways
of choosing a pair i ∈ S and j ∈ Sc is |S| · |Sc|, the sum in the denominator
is 2|S| · |Sc|/n (with the factor of 2 because each pair of nodes is counted
twice, once with i ∈ S and j ∈ Sc, and once with j ∈ S and i ∈ Sc).

Conversely, given any 0-1 vector of length n, we can identify it with a subset
S of V . We have thus established a one-to-one correspondence between
subsets of V and 0-1 vectors, and shown that the ratio in the statement of
the lemma is equal to the statement in the definition of conducatance. This
establishes the claim of the lemma. �

Lemma 2 The second smallest eigenvalue of the Laplacian of G is given by
the solution of the following optimisation problem:

λ2 = min
x∈Rn,x 6=0

∑
(i,j)∈E(xi − xj)2

1
2n

∑
i,j∈V (xi − xj)2

. (8)

Proof. Recall that λ1 = 0 is an eigenvalue of the Laplacian, with eigenvector
1, the all-1 vector. Hence, by the variational characterisation of eigenvalues,

λ2 = min
x∈Rn,x⊥1

xTLGx

xTx
. (9)

We saw in an earlier section that xTLGx =
∑

(i,j)∈E(xi − xj)2. Moreover,

1

2n

∑
i,j∈V

(xi − xj)2 =
1

2

(∑
i∈V

x2i +
∑
j∈V

x2j

)
− 1

2n

∑
i∈V

xi
∑
j∈V

xj .

Now, if x ⊥ 1, then
∑

i∈V xi = 0, and so

1

2n

∑
i,j∈V

(xi − xj)2 =
∑
i∈V

x2i = xTx.

Thus, for x ⊥ 1, the quantity being minimised on the right hand side of (8)
is just xTLGx/xTx.

On the other hand, suppose x is not orthogonal to 1. Note that neither
the numerator or the denominator on the RHS of (8) is changed if add or
subtract a constant vector from x. If we define

y = x− (xT1)

n
1,
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then y is orthogonal to 1 and the RHS of (8) has the same value for y as for
x. Thus, minimising this quantity over all of Rn\0 is the same as minimising
it over {x ∈ Rn : x ⊥ 1. In the latter case, the quantity being minimised
is the Rayleigh quotient, xTLGx/x

Tx. Hence, the minimum is the second
smallest eigenvalue λ2. This completes the proof of the lemma. �

The proof of the first inequality in Theorem 1is straightforward from the
above two lemmas. They show that Φ(G) and λ2 both involve the min-
imisation of the same expression. However, Φ(G) involves its minimisation
only over 0-1 vectors while λ2 involves its minimisation over all vectors. As
λ2 involves taking the minimum over a larger set, it cannot be bigger than
Φ(G).

3 Coupling

We now study a different technique for bounding the mixing time of Markov
chains. The idea of coupling is that, given two random variables X and Y (or
two probability distributions) which may be defined on different probability
spaces, it is possible to construct two other random variables X̃ and Ỹ on
the same probability space such that X̃ has the same distribution as X, and
Ỹ has the same distribution as Y . The same can also be done with random
processes. The point is that it might be possible to jointly construct X̃ and
Ỹ in such a way as to easily prove statements about X and Y .

Example Suppose X has a Bin(n, p) distribution and Y a Bin(m, p) dis-
tribution, where n > m. Let 0 ≤ k ≤ m. Show that P(X > k) ≥ P(Y > k).

It is not that easy to explicitly compare the expressions for probabilities of
the two events. However, it is very easy to show this by coupling. We con-
struct the random variables X̃ and Ỹ with the same probability distributions
as X and Y respectively, as follows. Let ξ1, ξ2, ξ3, . . . be a sequence of iid
Bern(p) random variables. Set X̃ =

∑n
i=1 ξi and Ỹ =

∑m
i=1 ξi. Since n > m

and the ξi are non-negative, it is clear by construction that P(X̃ ≥ Ỹ ) = 1.
Hence, for any fixed k, P(X̃ > k) ≥ P(Ỹ > k). As X̃ has the same distribu-
tion as X, and Ỹ has the same distribution as Y , P(X > k) ≥ P(Y > k).

Let µ and ν denote two probability distributions on a countable set S. The
following lemma bounds the total variation distance between the distribu-
tions in terms of a coupling between them. In fact, the result holds for an
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arbitrary measurable space (S,S), but a countable set suffices for conveying
the intuition, without requiring knowledge of measure theory.

Lemma 3 Let X and Y be S-valued random variables defined on the same
probability space, such that X has distribution µ and Y has distribution ν,
denoted X ∼ µ, and Y ∼ ν. In other words, (X,Y ) is a coupling of the
distributions µ and ν. Then,

dTV (µ, ν) ≤ P(X 6= Y ). (10)

Proof. We have

dTV (µ, ν) = max
A⊆S
|µ(A)− ν(A)| = max

A⊆S
µ(A)− ν(A)

= max
A⊆S

P(X ∈ A)− P(Y ∈ A)

≤ max
A⊆S

P(X ∈ A)− P(X ∈ A, Y ∈ A)

= max
A⊆S

P(X ∈ A, Y ∈ Ac)

≤ max
A⊆S

P(X ∈ A,X 6= Y ) ≤ P(X 6= Y ).

�

Remark In fact, there is a coupling, namely a pair of random variables
X and Y defined on the same probability space, for which equality holds
in (10). Such a pair is called a maximal coupling, as they maximise the
probability that X = Y .

We now turn from random variables to random processes, and specifically
to Markov processes. Let (Xt, t ≥ 0) be an irreducible Markov process on a
finite state space S, starting in some initial state X0 = x. Let π denote the
(unique) invariant distribution of this Markov process. Let (Yt, t ≥ 0) be a
Markov process with the same probability law (i.e., same generator matrix)
as Xt, but started in the invariant distribution π, so that the marginal
distribution of Yt at any fixed t is π. Suppose that Xt and Yt are constructed
on the same probability space, and define the random time

Tcpl = inf{t ≥ 0 : Xt = Yt},

which we call the coupling time. Extend the coupling such that Xt = Yt for
all t > Tcpl, i.e., ensure that the two processes have exactly the same jumps
after they meet.
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Lemma 4 At any time t > 0, the total variation distance between the proba-
bility distribution of Xt, which we denote p(t), and the invariant distribution
π, is bounded as follows:

dTV
(
p(t), π

)
≤ P(Tcpl > t). (11)

Remark Note that the claimed inequality holds for any way of construct-
ing the processes Xt and Yt on the same probability space. The goal is to
construct them cleverly so that Tcpl is as small as possible, which then gives
the best possible bound on the mixing time. An obvious construction is
to make the processes Xt and Yt independent, but this will give very poor
bounds. Instead, we need to make them dependent in the right way, as we
did in the example with binomial random variables.

Proof. Suppose the Xt and Yt process are coupled as described above, and
let Tcpl denote the first (random) time that the two processes are in the same
state; they remain in the same state for all t > Tcpl. Since the Yt process was
started in the invariant distribution, it remains in the invariant distribution
for all time, i.e., P(Yt = x) = πx for all x ∈ S and any fixed time t ≥ 0.
As p(t) denotes the distribution of the X process at time t, it follows from
Lemma 4 that

dTV
(
p(t), π

)
≤ P(Xt 6= Yt) = P(Tcpl > t).

This completes the proof of the lemma. �

Example A student has a stack of n different books on her desk. Every
day, she picks one book from the stack, uniformly at random, reads from
it, and replaces it at the top of the stack. Suppose that initially books
are ordered alphabetically by author. What is the steady state distribution
of the order of books, and after how many days is the distribution within
distance ε of the steady state, in total variation?

Number the books 1, 2, . . . , n in alphabetical order by author. Denote by
Xt the permutation of books from top to bottom at the start of day t,
and by p(t) the distribution of Xt. Then X1 is the identity permutation
{1, 2, . . . , n}, and Xt is a discrete-time Markov chain on the state space Sn,
the symmetry group of permutations of n objects. The question asks us
what the invariant distribution of this Markov chain is, and how many time
steps it takes to get within ε of the invariant distribution in total variation
distance.
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It should be clear by symmetry that the invariant distribution is uniform
over all permutations. This can also be checked from the global balance
equations. The Markov chain is not reversible, so local balance cannot be
used.

We now construct a coupling and use it to obtain a bound on the ε-mixing
time, defined as

Tmix(ε) = sup{t > 0 : dTV (p(t), π) ≥ ε}.

Let Yt be another Markov chain with the same transition probabilities, but
started in the invariant distribution π, namely the uniform distribution on
all permutations. We couple the two Markov chains as follows: if book i is
selected by the X process on day t, then the same book is selected by the
Y process on day t as well (note: the same book, not the book in the same
location). Note that this obeys the transition probabilities for the Y process
as the choice of book is uniform at each time step, and independent of the
past.

The coupling described above demonstrates that, on day t + 1, the same
book is on top in both processes, for each t ≥ 1, i.e., from day 2 onwards.
But how long does it take until the same book is second from top, third from
top and so on, all the way to the bottom of the pile? It is clear that, as soon
as book i is chosen in the X process, it is also chosen in the Y process and
moves to the top of the pile in both. At all subsequent times, it occupies the
same position in both piles, moving down by 1 whenever some other book
is selected, and moving to the top whenever it is selected. Thus, when each
book has been chosen at least once in the X process, the books are in the
same order in both processes. (It could happen that they reached the same
order even earlier, because some of the books were in an initial condition
that brought them to the same position even before they were selected for
reading.) Hence, an upper bound on Tcpl, the first time that all books are
in the same order in both processes, is the first time that every book has
been picked at least once in the X process. Determining the time until this
happens is called the coupon collector problem, which we study next. It
yields that Tcpl ≈ n log n.

The coupon collector problem Each box of cereal comes with a coupon
(e.g., a toy figure), chosen uniformly at random from a set of n coupons,
and independent of the contents of other boxes (for all practical purposes).
How many boxes must one open in order to collect a full set of n coupons?
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This number is clearly random, but what can we say about this random
variable? Let us denote by Xk the number of boxes that must be opened in
order to get k distinct coupons. Clearly, X1 = 1. Moreover, if we already
have k coupons, then each box yields a coupon distinct from these with
probability (n − k)/n, independent of how many boxes have already been
opened or the identities of the coupons held. Hence, the number of boxes
that have to be opened before the next success (new coupon) is geometrically
distribution with parameter (n− k)/n. In other words,

Xk+1−Xk ∼ Geom
(n− k

n

)
, i.e., P(Xk+1−Xk = j) =

(k
n

)j−1n− k
n

, j ≥ 1.

Now, recalling that the mean of a Geom(p) random variable is 1/p (verify
this, using generating functions or otherwise), we obtain that

E[Xn] =

n−1∑
k=1

E[Xk+1 −Xk] + E[X1]

=
n−1∑
k=0

n

n− k
= n

n∑
k=1

1

k
≈ n log n.

Thus, we need approximately n log n boxes in order to collect n coupons.

4 Page Rank

In the last part of this chapter, we shall study Google’s Page Rank metric,
which is a measure of the importance of a web page based purely on its
position in the web graph. Google uses this metric as one of the factors in
deciding how to rank results in web searches.

The web graph is a directed graph defined as follows. Each web page is a
node in the graph. If a page x has a hyperlink to a page y, this is represented
by the directed edge (x, y). (The graph may have loops, namely pages with
links to themselves, and multiple edges, namely multiple hyperlinks from
one page to another, but we will ignore them. It is not hard to generalise
the analysis to multigraphs, the term for graphs which may have loops and
multiple edges.)

We start with some intuitive ideas about what a measure of the rank, or
importance, of a node (web page) ought to capture. We will assume that
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we want the rank of each page to be a positive real number, and that we
want the rank of a page to be bigger if it is more important. This raises the
question of what we mean by important, and we will build up some intuitive
criteria. It is reasonable to expect that if a page is important, then many
other pages will have hyperlinks pointing to it. Thus, the in-degree of a
node could be one measure of its importance, and we could define the rank
of a node simply as its in-degree. But this measure is arguably “too local”.
It might be that a page should be assigned more importance if there are
many “important” pages linking to it. This suggests defining the rank rx of
a node x as

rx =
∑

y:(y,x)∈E

ry.

But there are disdvantages to this definition as well. There are some impor-
tant pages in the web graph which are “directory pages” for a domain, say
the University of Bristol. These pages have little content of their own but
have pointers to pages containing the information you may be seeking. It
is less informative that a web page is listed in some directory than that it
is linked to by another page on the same topic. For this reason, we might
want to give less importance to links from directory pages than to links from
pages with content. However, it is not possibly to automatically detect the
nature of a web page without looking at its content, which would be infea-
sible to do for the whole web graph! So we seek a proxy indicator that a
page might be a directory page. One obvious property of a directory page
is that it has a large number of hyperlinks pointing out from it. We exploit
this proxy information by distributing the “weight” of a page equally among
its outward hyperlinks. Thus, if a page with a rank (weight) of, say 12.6,
has hyperlinks to 3 pages, it will contributed 4.2 towards the rank of each
of those pages. This modification leads us to define the rank rx of a node x
as

rx =
∑

y:(y,x)∈E

ry
dy
, (12)

where dy denotes the out-degree of node y. This is the definition of Page
Rank that we shall use (and is very close to the definition used by Google).

The definition is somewhat circular, in that the rank of each page is defined
in terms of the rank of other pages. This raises the question of whether the
page rank is defined at all (do the equations in (12) have a solution?), and
then whether it is well defined (do they have a unique solution?). We now
attempt to address these questions.
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Let A denote the adjacency matrix of the web graph, with elements

aij =

{
1, if (i, j) ∈ E
0, otherwise.

Note that A need not be symmetric, since the graph is directed. Let D be
the diagonal matrix with di, the degree of node i, as the ith diagonal entry,
and let W = D−1A. Then, we can rewrite the linear equations in (12) in
matrix notation as

r = rW, (13)

where r denotes the vector of page ranks. The question of whether the above
equation has a unique non-negative solution for r is thus equivalent to asking
whether the matrix W has 1 as a non-repeated eigenvalue, and whether the
corresponding eigenvector is non-negative. The answers to these questions
are provided by the following theorem. A matrix is said to be non-negative
if all its elements are non-negative.

Theorem 2 (Perron-Frobenius theorem) Suppose that A ∈ Rn×n is a
non-negative matrix and that Ak is strictly positive for some k > 0. Then,
the following hold:

(i) A has a positive eigenvalue λ such that |λi| < λ for all other eigenval-
ues λi, which could be real or complex.

(ii) The eigenvector corresponding to λ is non-negative, and it is the only
non-negative eigenvector.

If A is non-negative and non-zero, but there is no k such that Ak is strictly
positive, then (i) holds with |λi| ≤ λ for all other eigenvalues λi. Moreover,
the only non-negative eigenvectors are those corresponding to the positive
eigenvalue λ, which could now have multiplicity bigger than one.

Remarks. The positive eigenvalue λ which has the largest absolute value
among all eigenvalues of A is referred to as the Perron root or Perron eigen-
value of A. Part (ii) refers to right eigenvectors, but also applies to left
eigenvectors, as can be seen by applying the theorem to AT .

We will not prove this theorem. A proof can be found in any book on
non-negative matrices, e.g., E. Seneta, Non-negative matrices and Markov
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chains, Springer, 2006, or R. B. Bapat and T. E. S. Raghavan, Non-negative
matrices and applications, Cambridge University Press, 1997.

Returning to page ranks, it is easy to see that the matrix W = D−1A is
non-negative. It can also be verified that the row sums of W are all 1, so
W is a stochastic matrix. In fact, it is the transition probability matrix of
the Markov chain describing the following discrete-time random walk on the
web graph. If the walk is currently at a node x, then in the next time step,
it moves to a node y chosen uniformly at random among nodes z such that
(x, z) ∈ E, i.e., nodes to which there are edges directed out of x. (We can’t
use the terminology of neighbours unambiguously as the graph is directed;
we have to distinguish between neighbours to whom there is an edge directed
outwards and from whom there is an edge directed inwards.)

For a stochastic matrix W , it is easy to check that the all-1 vector 1 is a
right eigenvector with eigenvalue 1. Since it is a non-negative eigenvector,
it must correspond to the Perron eigenvalue λ. In other words, λ = 1, and
|λi| ≤ 1 for all other eigenvalues. The page rank vector r is a left eigenvector
of W with eigenvalue 1. As we have established that 1 is an eigenvalue of
W , there is at least one such eigenvector. This addresses the question of
whether there are page ranks, but doesn’t yet tell us if they are uniquely
defined.

The requirement in the Perron-Frobenius theorem that W k be positive for
some k is met if the Markov chain with transition probability matrix W
is irreducible and aperiodic. It can be shown that this is equivalent to the
graph G being strongly connected and non-bipartite, terms which we explain
below.

A directed graph G is said to be strongly connected if, for any two nodes
u and v, there is a directed path from u to v. A graph G, directed or
undirected, is said to be bipartite if the vertex set V can be partitioned into
disjoint sets V1 and V2 (i.e., V1 ∩ V2 = ∅, V1 ∪ V2 = V ) such that there are
no edges between two vertices in V1 or two vertices in V2. In other words,
E ⊆ V1 × V2 ∪ V2 × V1, i.e., all edges either go from a node in V1 to a node
in V2 or the other way round.

If the graph is not strongly connected, then the discrete time random walk
on it is not irreducible.The multiplicity of the Perron root λ = 1 is equal
to the number of recurrent communicating classes in the Markov chain. It
could be bigger than 1, in which case page ranks are not well defined.

16



If the graph is strongly connected but bipartite, it turns out that the random
walk is irreducible and λ = 1 has multiplicity 1, so page ranks are well-
defined. What happens in this case is that the random walk is a periodic
Markov chain, with period 2, and there is an eigenvalue of −1, which has
the same absolute value as the Perron root. This has bad consequences for
the convergence of the algorithm to compute page ranks (which we don’t
study), but doesn’t affect the uniqueness of page ranks.

In practice, it is highly unlikely that the web graph would be bipartite
(finding a single triangle or odd cycle in it would rule that out), but it is
quite possible that it is not strongly connected. In order to get around this,
the actual Page Rank algorithm introduces a dummy node, and dummy
edges from it to all other nodes. It also works with a weighted rather than
unweighted adjacency matrix, with the dummy edges having very small
weights. But we won’t go into those details here.

17


