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How does gossip spread? How do technologies diffuse within or across so-
cieties? How do fads and fashions take hold? How do people learn about
job opportunities or recruit workers? All these are examples of information
spread over social networks, networks of friendship, family and acquaintance.
They play a role in everything from the smooth functioning of economies
to the maintenance of social and cultural groupings. Those are some of
the questions that motivate our study of rumour/information spread in net-
works. Another motivation comes from synthetic networks like the Internet
or peer-to-peer networks, where it may be important to disseminate infor-
mation rapidly; for example, security updates or routing tables. Rumour
spreading mechanisms provide a template for many distributed algorithms
on such networks. In these lectures, we shall look at some highly simplified
mathematical models of information spread, with the goal of addressing pre-
cise questions about the spped of spread. But first, we familiarise ourselves
with some terminology.

1 A very brief introduction to graphs

We shall use the terms graph and network interchangeably to refer to a
finite set of nodes or vertices, some of which may be connected by edges
or arcs. We write G = (V,E) to denote a graph G with vertex set V and
edge set E. An edge is a pair of vertices. Thus, E is a subset of V × V ,
the Cartesian product of the vertex set with itself. An edge (i, j), i, j ∈ V
is called undirected if the order of the vertices doesn’t matter, i.e., if (i, j)
and (j, i) are the same, and is called directed otherwise. If (i, j) ∈ E is a
directed edge, we say it is directed from i to j. A graph is called directed
or undirected if all its edges are directed or undirected respectively. In this
course, all graphs will be either one or the other. If (i, j) ∈ E, then j is called
a neighbour of i. If the graph is undirected, the degree of i is defined as the
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number of neighbours it has. If it is directed, we use the terms in-degree
and out-degree, with the obvious meanings (number of edges directed to i
and from i respectively).

A path is a sequence v1, v2, . . . , vk of nodes such that (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for each i between 1 and k− 1. If v1 = vk, the path is called a
cycle. The path or cycle is called directed if the underlying graph is directed
and (vi, vi+1) ∈ E for each i between 1 and k − 1. We use the term simple
path and simple cycle to mean that the path (cycle) does not contain a
proper subset which is itself a cycle.

A graph which contains no cycles is called acyclic. A graph is said to be
connected if, for any two nodes u, v ∈ V , there is a path between u and v
(i.e., ∃n and v1, v2, . . . , vn such that v1 = u, vn = v and (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for all i between 1 and n − 1). A connected, acylic graph is
called a tree. Observe that if a tree has k nodes, it must have exactly k− 1
edges. (Show this by induction on k.) An undirected graph G = (V,E) is
called a complete graph if E = V × V , i.e., there is an edge between every
pair of nodes.

Let G = (V,E) be a graph and let V ′ ⊆ V . The subgraph induced by the
nodes in V ′ is defined as the graph G′ = (V ′, E′) where E′ = {(i, j) ∈ E :
i, j ∈ V ′}. In other words, it is the graph consisting of the nodes in V ′ as
well as those edge in the original graph which connect these nodes. If a
subgraph is a complete graph (on its node set), then it is called a clique. A
set of nodes V ′ ⊆ V is called an independent set if, for any two nodes in V ′,
the edge between them is absent (whereas in a clique, for any two nodes,
the edge between them is present).

2 Rumour spreading on the complete graph

Consider the following model of rumour spreading on a complete graph.
There are n nodes, a single one of which initially knows the rumour. There
are n independent unit rate Poisson processes, one associated with each
node. At a time when there is a jump of the Poisson process Ni(t) associated
with node i, this node becomes active, and chooses another node j uniformly
at random with which to communicate. If node i knows the rumour at this
time and node j doesn’t, then i informs j of the rumour; otherwise there is
no change. This is called the “push” model as information is pushed from i
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to j. It should be obvious what is meant by the pull and push-pull models.
Start time at 0 and let T denote the first time that all nodes know the
rumour. Then T is a random time and we can ask about its expected value
or its distribution, and how this depends on n, the size of the graph.

The model description above takes a node-centred perspective. But it is
equivalent to a description where the clocks sit on the edges rather than
the nodes. Let’s consider a node i and ask what the probability is that it
chooses to communicate with node j during the time interval ([t, t + dt).
For this to happen, node i should become active during this time interval,
and it should choose node j to communicate with. The first of these events
corresponds to Ni(t + dt) − Ni(t) = 1 (the Poisson process at node i has
an increment during this time period), which has probability 1 · dt (since
the Poisson process has unit rate) independent of the past at all nodes. The
second event has probability 1

n−1 , independent of everything else, since node
i chooses another node to communicate with uniformly at random. Hence,
the probability that the time period [t, t + dt) sees a communication event
from i to j is 1

n−1dt, independent of the past. In other words, the model
can be recast as follows: there are n(n−1) independent Poisson processes of
rate 1/(n− 1), one associated with each directed edge (i, j) in the complete
graph on n nodes. When there is a jump in the Poisson process on edge
(i, j), the rumour is pushed from node i to node j if node i is informed at
this time. Otherwise, nothing happens.

Remarks

1. Note that, in both models above, the Poisson processes on all nodes
and edges start at time zero. Would it not be more natural to start
the process at node i only when this node first learns of the rumour?
Indeed it would, but it makes no difference. Can you see why?

2. A discrete-time version of the model was studied by Boris Pittel (On
spreading a rumor, SIAM J. Appl. Math., 1987, pp. 213–223). In
this version, time proceeds in rounds. In each round, each informed
node picks another node uniformly at random and pushes the rumour
to it. The models are very similar. We have chosen to work with the
continuous time model because it is somewhat easier to analyse.

We now want to analyse the model described above, and find out how long it
takes for all nodes to learn the rumour. Observe from the verbal description
that, if we let St denote the set of informed nodes at time t, then St, t ≥ 0
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evolves as a continuous time Markov chain. The state space of this Markov
chain is the set of all subsets of the node set {1, 2, . . . , n}, which is of size 2n.
This is a rather large state space. In fact, from the symmetry in the problem,
we can see that it is enough to keep track of the number of informed nodes,
rather than of exactly which nodes are informed. Even for this reduced state
descriptor, the evolution is Markovian. This reduces the size of the state
space to n, and makes the problem more tractable.

Let Ti denote the first time that exactly i nodes are informed, so that T1 = 0
and Tn = T . Then, Ti+1 − Ti is the random additional time it takes for the
(i + 1)th node to be informed, after the ith node has been. Let STi denote
the set of nodes that are informed at time Ti. There are i nodes in this set,
and n− i nodes in its complement, so that there are i(n− i) edges between
STi and ScTi . There are independent Poisson processes of rate 1/(n − 1)
associated with each of these edges, according to which some node in STi
contacts some node in ScTi and informs it of the rumour. (Communications
taking place on edges with STi or ScTi have no effect.)

Now, using the fact that the superposition of independent Poisson processes
is a Poisson process with the sum of their rates, we conclude that the time
to inform a new node is the time to the first jump in a Poisson process of
rate i(n − i)/(n − 1). In other words, Ti+1 − Ti is an Exp( i(n−i)n−1 ) random
variable, independent of Ti, and of the past of the rumour spreading process.
Hence, recalling the formulas for the mean and variance of an exponential
random variable, we have,

E[Ti+1 − Ti] =
n− 1

i(n− i)
, Var(Ti+1 − Ti) =

( n− 1

i(n− i)

)2
. (1)

Using a partial fraction expansion, we can rewrite the above as

E[Ti+1 − Ti] =
n− 1

n

(1

i
+

1

n− i

)
,

Var(Ti+1 − Ti) =
(n− 1

n

)2( 1

i2
+

1

(n− i)2
+

2

n

(1

i
+

1

n− i
))
. (2)

Next, we note that the time until all nodes know the rumour is given by
Tn =

∑n−1
i=1 (Ti+1 − Ti) since T1 = 0. Hence, by (2) and the linearity of
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expectation, we have

E[Tn] =
n−1∑
i=1

E[Ti+1 − Ti] =
n− 1

n

n−1∑
i=1

(1

i
+

1

n− i

)
= 2

n− 1

n

n−1∑
i=1

1

i
∼ 2 log n. (3)

Notation: For two sequences fn and gn, we write fn ∼ gn (read fn is
asymptotically equivalent to gn) to mean that limn→∞ fn/gn = 1.

To show that
∑n

i=1
1
i ∼ log n, note that the sum is bounded below by∫ n

0
1

x+1dx and above by 1 +
∫ n
1

1
xdx.

Thus, we have shown that the mean time needed for the rumour to spread
to all nodes in a population of size n scales as 2 log n. We shall show that, in
fact, the random time concentrates closely around this value. In order to do
so, we first need to compute its variance. Recall that the random variables
Ti+1 − Ti for successive i are mutually independent. Hence, Var(Tn) =∑n−1

i=1 Var(Ti+1 − Ti), and we obtain using (2) that

Var(Tn) =
(n− 1

n

)2 n−1∑
i=1

( 1

i2
+

1

(n− i)2
+

2

n

(1

i
+

1

n− i
))
∼ π2

3
. (4)

We have used the fact that
∑∞

i=1 1/i2 = π2/6 to obtain the last equivalence.
In order to use this variance estimate to show that the random variable Tn
concentrates around its mean value, we will Chebyshev’s inequality, which
is an example of a probability inequality.

Probability Inequalities What can we say about the probability of a
random variable taking values in a certain set if we only know its moments,
for instance, or its generating function? It turns out that they give us some
bounds on the probability of the random variable taking values in certain
specific sets. We now look at some examples.

Let X be a non-negative random variable with finite mean EX. Then, for
all c > 0, we have

Markov’s inequality: P(X ≥ c) ≤ EX
c
.

The proof is straightforward. Suppose X has a density, and denote it by f .
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Then

EX =

∫ ∞
0

xf(x)dx ≥
∫ ∞
c

xf(x)dx ≥
∫ ∞
c

cf(x)dx = cP(X ≥ c).

Re-arranging this gives us Markov’s inequality. (Why does X have to be
non-negative?)

Next, let X be a random-variable, not necessarily non-negative, with finite
mean EX and finite variance Var(X). Then, for all c > 0, we have

Chebyshev’s inequality: P(|X − EX| ≥ c) ≤ Var(X)

c2
.

The proof is an easy consequence of Markov’s inequality. Note that the
event |X − EX| ≥ c is the same as the event (X − EX)2 ≥ c2, and apply
Markov’s inequality to the non-negative random variable Y = (X − EX)2.
Note that EY = Var(X).

Finally, let X be a random-variable, not necessarily non-negative, and sup-
pose that its moment-generating function E[eθX ] is finite for all θ. Then, for
all c ∈ R, we have

Chernoff’s inequality: P(X ≥ c) ≤ inf
θ>0

e−θcE[eθX ].

The proof follows by noting that the event X ≥ c is identical to the event
eθX ≥ eθc for all θ > 0 (the inequality gets reversed for θ < 0), applying
Markov’s inequality to the non-negative random variable Y = eθX , and
taking the best bound over all possible θ.

Now, let’s apply Chebyshev’s inequality to the random variable Tn, the time
for the rumour to reach all nodes. Using the estimates for the mean and
variance of Tn in (3) and (4), we find that the statement

P(|Tn − 2 log n| ≥ c) ≤ π2

3c2

is approximately true for large n. More precisely, for every ε > 0, it holds
for all n sufficiently large that

P(|Tn − 2 log n| ≥ c) ≤ (1 + ε)π2

3c2
,

which tends to zero as c tends to infinity. In words, what this says is that
the random variable Tn grows roughly like 2 log n. The fluctuation around
this mean value does not grow unboundedly with n, but remains bounded.
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3 Rumour spreading on general graphs

In the last section, we saw that the time it takes for a rumour to spread on
the complete graph (for the specific model considered) grows logarithmically
in the population size. What can we say more generally? How does the shape
of a graph affect the spreading time?

Let G = (V,E) be a directed graph on n nodes, and let P be an n × n
stochastic matrix with the property that pij = 0 if (i, j) /∈ E (i.e., the
non-zero entries in P correspond to edges in the graph G). We consider
the following rumour spreading model. There are n independent unit rate
Poisson processes, one associated with each node. At an increment time
of the Poisson process at node i, this node becomes active and picks a
neighbour j with probability pij , the ijth element of the matrix P . If i
knows the rumour at this time and j doesn’t, then i pushes the rumour to
j. Otherwise, nothing happens. Note that if G is the complete graph, and
P is the matrix with zero diagonal elements and all off-diagonal elements
equal to 1/(n− 1), then we recover the model of the previous section.

Again, we start with a single node s (called the source node) which is initially
informed of the rumour, and are interested in the random time T until all
nodes become informed. The dynamics can be modelled as a Markov process
if we take the state to be the set of informed nodes at that time. It is
not enough to keep track of the number of informed nodes, as the future
dynamics depend on where in the network these nodes are located. Likewise,
the distribution of the random variable T may well depend on which node
we start with as the source of the rumour. As mentioned in the last section,
the state space becomes very large (of size 2n) if we have to use the subset
of infected nodes as the state variable. This makes it a lot harder to obtain
estimates of the mean and the variance that are sharp. What we shall do in
this section instead is derive an upper bound on the rumour spreading time
T based on some simple properties of the graph G and the matrix P that
determines the choice of communication contacts.

As in the previous section, it is helpful to go from a node-centric to an edge-
centric description. Pick a directed edge (i, j) ∈ E. What is the probability
that i attempts to push the rumour to j in some infinitesimal time interval
dt? Two things need to happen for this: node i has to be activated, and
it has to choose j as its contact. The first event has probability 1 · dt (as
the Poisson process at node i is of unit rate), the second has probability pij ,
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and they are independent of each other and of the past of all processes. In
other words, the process of communications along the directed edge (i, j) is
a Poisson process of rate pij , and communications along different edges are
mutually independent. We shall make use of the following definition in our
analysis of the rumour spreading time.

Definition. The conductance of the non-negative matrix P is defined as

Φ(P ) = min
S⊂V,S 6=∅

∑
i∈S,j∈Sc pij
1
n |S| · |Sc|

. (5)

The minimum is taken over all non-empty proper subsets S of the vertex
set V , Sc denotes the complement of S, and |S| denotes the size of the set
S.

As in the analysis for the complete graph, let Tk denote the first time that
exactly k nodes are informed of the rumour. Thus, T1 = 0 and Tn is the
time that all nodes are informed. Let Sk denote the (random) subset of
nodes that are informed at time Tk. What can we say about Tk+1−Tk? For
each node i ∈ Sk and j ∈ Sck, the events of i contacting j occur according to
a Poisson process of rate pij . Moreover, these are mutually independent for
distinct ordered pairs of nodes. Thus, using the fact that the superposition
of independent Poisson processes is a Poisson process with the sum of their
rates, we see that the total rate at which an informed node contacts an
uninformed node and informs it of the rumour is given by

∑
i∈Sk,j∈Sc

k
pij .

(Contacts between nodes within Sk, or within Sck, result in no change of
the system state, so we can ignore them.) Hence, conditional on Sk, the
time Tk+1 − Tk until an additional node becomes informed is exponentially
distributed with parameter

∑
i∈Sk,j∈Sc

k
pij . Consequently,

E[Tk+1 − Tk|Sk] =
1∑

i∈Sk,j∈Sc
k
pij
. (6)

In order to compute E[Tn] exactly, we would have to consider every possible
sequence of intermediate sets along which the system can go from just the
source being informed to all nodes being informed, computing the probabil-
ity of the sequence and using the conditional expectation estimate above.
This is impractical for most large networks. Instead, we shall use the con-
ductance to bound the conditional expectation of Tk+1 − Tk. Observe from
(5) and (6) that

E[Tk+1 − Tk|Sk] ≤
1

Φ(P )

n

k(n− k)
=

1

Φ(P )

(1

k
+

1

n− k

)
. (7)
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We have used the fact that |Sk| = k by definition, and so |Sck| = n − k.
Note that while the exact conditional expectation of Tk+1 − Tk depends on
the actual set Sk of informed nodes at time Tk, the bound does not; it only
depends on k, the number of informed nodes at this time.

We can use this bound to easily obtain a bound on the expected time to
inform all nodes, following the same steps as in the analysis of the complete
graph. First, write Tn =

∑n−1
i=1 Ti+1−Ti since T1 = 0. Next, use the linearity

of expectation, and the bound in (7), to get

E[Tn] ≤
n−1∑
k=1

1

Φ(P )

(1

k
+

1

n− k

)
=

2

Φ(P )

n−1∑
k=1

1

k
∼ 2 log n

Φ(P )
. (8)

The above expression is a bound on the expected value of the random vari-
able Tn. Can we also something about the distribution of the random vari-
able. Using Markov’s inequality, we obtain

P
(
Tn >

c log n

Φ(P )

)
≤ Φ(P )E[Tn]

c log n
≤ 2

c
,

which tends to zero as c tends to infinity. In other words, the random
variable Tn is of order log n/Φ(P ) in probability.

Example. Let G = (V,E) be the complete graph, and suppose pij = 1/(n−1)
for every ordered pair (i, j), i 6= j. This is exactly the model of rumour
spreading on a complete graph that we first analysed. What does the bound
tell us in this case? To answer that, we need to compute the conductance
Φ(P ) for this example. Fix a subset S of the node set consisting of k nodes,
where k is not equal to zero or n. For each node in this set, there are n− k
edges to nodes in Sc. The communication rate on each of these edges is
1/(n− 1). Hence, we get ∑

i∈S,j∈Sc

pij =
k(n− k)

n− 1
,

and so ∑
i∈S,j∈Sc pij
1
n |S| · |Sc|

=
n

n− 1
,

irrespective of the choice of S. Hence, taking the minimum over S gives us
Φ(P ) = n

n−1 . Substituting this in (8), we obtain that E[Tn] is bounded by
a quantity that is asymptotic to 2 log n, which is precisely the same as the
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exact analysis gave us. Thus, the bound is tight in this example. In general,
of course, it won’t be tight, but in many examples, it may be good enough
to be useful, and yield at least the right scaling in n of the rumour spreading
time, though not the exact constants. In your homework problems, you’ll
see examples both of when the bound is good and when it is not.

4 Stochastic ordering

In the last section, we observed that Tk+1 − Tk is exponentially distributed
with parameter λSk

=
∑

i∈Sk,j∈Sc
k
pij , which depends on the random set Sk

reached at the first time that k nodes are informed. We noted that the
parameter of this exponential is bounded from below by k(n − k)Φ(P )/n,
and hence that its mean is bounded from below by the reciprocal of this
quantity. Here Φ(P ) denotes the conductance of the matrix P . While it
sufficed for our analysis in the last section to bound the mean of Tk+1− Tk,
and thereby the mean time to inform all nodes of the rumour, we might
want to be able to say more. We might want to bound the random variable
Tn in some probabilistic sense. Stochastic ordering is a way of comparing
random variables.

Definition. We say that X is stochastically dominated by Y , denoted
X � Y , if FX(a) ≥ FY (a) for all a ∈ R.

A relation R on a set S is called a partial order if it is reflexive (xRx for
all x ∈ S) and transitive (xRy and yRz implies xRz), and if xRy and yRx
together imply that x equals y. It is a total order if any two elements of
the set are comparable, i.e., for all x and y in S, either xRy or yRx (or
both). The set S together with the relation R is called a partially ordered
set or (totally) ordered set accordingly. For example, the real numbers
with the usual relation ≤ is an ordered set, while R2 with the relation
(x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2 is a partially ordered
set.

It is easy to see that the stochastic order relation defines a partial order on
the set of probability distributions on the real numbers. With some abuse
of terminology, we will also call it a partial order on random variables. (The
distinction is that, while � is reflexive and transitive on the set of random
variables, the relations X � Y and Y � X together only imply that X and
Y have the same distribution. They may not be the same random variable,
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or even defined on the same sample space. (Recall that a random variable
is a function from a sample space Ω to the real numbers. As an example, let
Ω = {1, 2}, with P (1) = 1/2 and P (2) = 1/2, define the random variable X
by X(1) = 0, X(2) = 1 and the random variable Y by Y (1) = 1, Y (2) = 0.
These are different random variables because they are different functions,
but they have the same probability distribution.)) The following theorem
gives another description of the stochastic order relation.

Theorem 1 The following statements are equivalent:

1. The random variable X is stochastically dominated by the random vari-
able Y , i.e., X � Y .

2. E[f(X)] ≤ E[f(Y )] for every monotone non-decreasing function f :
R → R for which the corresponding expectations are defined (possibly
infinite).

We will not prove this theorem. Taking f to be the identity function f : x 7→
x, an immediate corollary of the above theorem is that EX ≤ EY whenever
X � Y (provided the random variables X and Y have expectations).

Example. Let X and Y be exponential random variables with parameters λ
and µ respectively, and suppose λ ≥ µ. Then,

FX(a) = 1− e−λa ≥ 1− e−µa = FY (a)

for all a ≥ 0, while FX(a) = FY (a) = 0 for a < 0. Hence, X � Y .

In the last section, we showed that, conditional on the set of informed nodes
Sk reached at time Tk, the random variable Tk+1 − Tk is exponentially dis-
tributed with parameter

∑
i∈Sk,j∈Sc

k
pij . Moreover, we showed that this pa-

rameter is bounded from below by k(n− k)Φ(P )/n. Hence, by the example
above, the random variable Tk+1− Tk is stochastically dominated by an ex-
ponential with parameter k(n − k)Φ(P )/n. We want to go on from this to
claim that Tn is stochastically bounded by a sum of independent exponential
random variables with parameters k(n− k)Φ(P )/n, k = 1, 2, . . . , n− 1. To
argue this, we want to be able to reason as follows: if Y1 and Y2 are inde-
pendent random variables, if X1 � Y1 and X2|X1 � Y2 (for almost every
X1), then X1 +X2 � Y1 + Y2. Such reasoning would be justified if we could
replace the order relation X � Y which relates distributions, with an order
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relation X ≤ Y , which deterministically relates the corresponding random
variables. Recalling that random variables are functions on a sample space,
what X ≤ Y says is that the function X is dominated by the function Y
pointwise, i.e., X(ω) ≤ Y (ω) for all ω ∈ Ω. The following theorem says that
we can indeed think like this.

Theorem 2 (Strassen’s theorem) Let X and Y be random variables, pos-
sibly on different probability spaces, and suppose X � Y . Then, there exist
random variables X̃ and Ỹ defined on the same probability space such that
X̃ has the same distribution as X, Ỹ has the same distribution as Y , and
X̃ ≤ Ỹ almost surely (with probability 1).

Proof. Let FX and FY denote the cdfs of the random variables X and Y
respectively, and recall that these are monotone increasing functions, though
not necessarily continuous. For such a function F : R→ [0, 1], we define the
generalised inverse

F−(y) = inf{x ∈ R : F (x) ≥ y}, y ∈ (0, 1).

Note that, if F is strictly increasing and continuous, then it is invertible,
and the generalised inverse defined above coincides with the usual inverse,
where F−1(y) is defined as the unique x solving F (x) = y. We have been
careful to only define F− on (0, 1); it is well-defined on [0, 1] if F (x1) = 0
and F (x2) = 1 for somex1, x2 ∈ R, but will not be defined if F (x) only tends
to 0 and 1 as x tends to −∞ and +∞ respectively.

Let U be a random variable uniformly distributed on (0, 1), and define X̃ =
F−X (U), Ỹ = F−Y (U). Then, X̃ and Ỹ are defined on the same probability
space, namely the one on which U is defined.

Now, as X � Y , we have FX(a) ≥ FY (a) for all a ∈ R, by definition.
Consequently, {a : FY (a) ≥ b} ⊆ {a : FX(a) ≥ b}, and hence F−Y (b) ≥
F−X (b), for all b ∈ (0, 1). In particular, Ỹ ≥ X̃, for any realisation of the
random variable U . This completes the proof of the theorem. �

The theorem extends to random vectors (joint distributions) as well. The
notion of stochastic ordering for random vectors is similar to that for random
variables: we say (X1, . . . , Xn) � (Y1, . . . , Yn) if E[f(X)] ≤ E[f(Y)] for all
non-decreasing functions. Here, a function f : Rn → R is said to be non-
decreasing if f(x) ≤ f(y) whenever x ≤ y in the usual partial order on Rn.
Equivalently, f is called non-decreasing if it is non-decreasing in each of its
n variables.

12


