
Complex Networks
Solutions to Problem Sheet 2

1. Let T1, T2, T3, . . . denote the increment times of the process {Xt, t ≥ 0}. Since Yt = Xct, the
increment times of the process Yt are when ct takes the values T1, T2, T3, . . ., i.e., at times T1/c, T2/c
and so on.

Since Xt is a Poisson process with intensity λ, we know that T1, T2−T1, T3−T2, and so on are iid
Exp(λ) random variables. Hence, by the answer to Q2(a) in Problem Sheet 1, the random variables
T1/c, (T2 − T1)/c, (T3 − T2)/c are Exp(λc) random variables. That they are mutually independent
follows from the fact that functions of independent random variables are independent (see remark
below).

It also remains to check that the process Yt has independent increments, i.e., that for any 0 < s < t,
Yt−Ys is independent of {Yu, u ≤ s}. But this assertion is the same as the assertion that Xct−Xcs

is independent of {Xu, u ≤ cs}, which we know to be true because Xt is a Poisson process, and
hence has independent increments.

Remark What does it mean to say that a collection of random variables, {Xi, i ∈ I} are mutually
independent?

Recall what it means for a collection of events {Ai, i ∈ I} to be mutually independent. (The index
set I could be finite or infinite.) It means that, for any finite subcollection i1, i2, . . . in of distinct
events (you can’t pick the same index twice),

P(Ai1 ∩Ai2 ∩ · · · ∩Ain) = P(Ai1)P(Ai2) · · ·P(Ain).

Similarly, we say that a collection of random variables are mutually independent if any events in-
volving these random variables are mutually independent. As a concrete example, X1, X2 and X3

are mutually independent if the events X1 ∈ B1, X2 ∈ B2 and X3 ∈ B3 for any subsets B1, B2

and B3 of the real numbers. So, by asserting independence of these three random variables, we are
actually asserting the independence of infinitely many events. It is a very strong assumption.

Given this definition, it is easy to see that functions of independent random variables are indepen-
dent. If f1, f2 and f3 are three functions, then

P(fi(Xi) ∈ Bi, i = 1, 2, 3) = P(Xi ∈ f−1i (Bi), i = 1, 2, 3)

=
3∏
i=1

P(Xi ∈ f−1i (Bi)) =
3∏
i=1

P(fi(Xi) ∈ Bi).

Here, f−1(B) denotes the pre-image of B in f , namely, the set {x : f(x) ∈ B}. There is no
assumption that the function f is invertible, and f−1 does not denote the inverse of f .

Important qualification for those who know measure theory: I said “any subsets” above. This is not
quite right. We need to restrict ourselves to subsets which are “measurable”, and that in turn depends
on what measure space structure we impose on the real numbers. I will not assume knowledge of
measure theory in this course. Suffice it to say that just about any subset of R you are likely to
encounter, in this course or most others, will be measurable!
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2. As X1
t , t ≥ 0 and X2

t , t ≥ 0 are independent Poisson processes, we have for all s, t > 0 that
X1
t+s − X1

s and X2
t+s − X2

s are independent Poisson random variables, with means λ1t and λ2t
respectively (by one of the definitions of a Poisson process). Hence, by Question 4 of Homework 1,
Xt+s −Xs is a Poisson random variable with mean (λ1 + λ2)t.

Moreover, the increments of the X1 process are independent of the past of the X1 process because
it is a Poisson process, and independent of the past of the X2 process, because these processes are
mutually independent. Hence, the increments of the X1 process are independent of the past of the
X process. Likewise for the increments of the X2 process. Putting these together, the increments of
the X process are independent of the past of the X process. This is the other property we need to
complete the proof that Xt, t ≥ 0 is a Poisson process.

3. Denote the successive events in the Poisson processes X1
t , t ≥ 0 and X2

t , t ≥ 0 by T 1
n , n ∈ N and

T 2
n , n ∈ N respectively, and the events in the superposition Xt, t ≥ 0 by Tn, n ∈ N. What can

we say about T1, the time until the first event in the superposition of the two Poisson processes?
Clearly, it is the minimum of T 1

1 and T 2
1 . Since X1 and X2 are Poisson processes, T 1

1 and T 2
1

are exponentially distributed with parameters λ1 and λ2 respectively. Moreover, T 1
1 and T 2

1 are
independent random variables since the corresponding Poisson processes are independent. Hence,
by the answer to HW1, Question 5, T1 is exponentially distributed with parameter λ = λ1 + λ2.

Next, irrespective of whether T = T1 or T2, the times until the next event of the two Poisson
processes are exponentially distributed with parameters λ1 and λ2, independent of each other and of
the past of theX1 andX2 processes (using the memoryless property of the exponential distribution).
Hence, by the same reasoning, T2 − T1 is also an Exp(λ) random variable. The same reasoning
applies to subsequent event times in the Poisson process Xt, t ≥ 0.

In order to complete the proof thatXt is a Poisson process of rate λ, we need to show thatXt+u−Xt

is independent of Xs, s ≤ t for arbitrary t, u > 0. The corresponding property is true of each of
the processes X1

t and X2
t since these are Poisson processes. Moreover X2

t+u −X2
t is independent

of X1
s , s ≤ t, and the same with superscripts 1 and 2 interchanged, since the X1 and X2 processes

are independent of each other. Summing X1 and X2, it follows that the required independence
properties hold for the Xt process.

4. First, the moment generating function of each Ti is given by

Mi(θ) := E
[
eθTi

]
=

∫ ∞
0

eθtλe−λtdt

=

{
λ
λ−θ , if θ < λ,
+∞ otherwise.

Hence, we obtain the conditional expectation

E
[
eθT

∣∣∣ N = n
]
= E

[
eθ(T1+T2+...+Tn

∣∣∣ N = n
]
=

n∏
i=1

E
[
eθTi

]
.

To obtain the last equality above, we have used the fact that the Ti are mutually independent, and
independent of the random variable N ; hence, we can drop the conditioning on N , and replace the
expectation of the product of eθTi by the product of their expectations. Now, substituting for Mi(θ)
above, we get,

E
[
eθT

∣∣∣ N = n
]
=Mi(θ)

n,
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i.e.,

E
[
eθT

∣∣∣ N] =Mi(θ)
N =


(

λ
λ−θ

)N
, if θ < λ,

+∞ otherwise.
(1)

Next, observe that the generating function of the random variable N is given by

GN (z) := E
[
zN
]
=

∞∑
k=1

p(1− p)k−1zk =

{
pz

1−(1−p)z , if z < 1/p,

+∞, otherwise.

Hence, on taking expectations with respect to N in (1), we obtain the moment generating function
of T as

MT (θ) := E
[
eθT
]
= E

[
E
[
eθT |N

]]
= GN (Mi(θ)) =

{(
λp
λ−θ

) / (
1− λ(1−p)

λ−θ

)
, if θ < λ and λ

λ−θ <
1
p ,

+∞ otherwise.

Simplifying the above expression, we finally have

MT (θ) =

{
λp
λp−θ , if θ < λp,

+∞, otherwise.

We recognise this as the moment generating function of an Exp(λp) random variable. Hence, using
the fact that there is a one-to-one correspondence between probability distributions and moment
generating functions (which we shall take for granted without proof), we conclude that T is an
exponential random variable with parameter λp.

5. Let T1, T2, . . . be the times of successive events in the Poisson process Xt, t ≥ 0, and let T 1
1 , T

1
2 , . . .

denote the same for the process X1
t , t ≥ 0. Then,

P (T 1
1 ≥ t) =

∞∑
n=1

P (Tn ≥ t, Y1, Y2, . . . , Yn−1 = 0, Yn = 1)

=

∞∑
n=1

P (Y1, Y2, . . . , Yn−1 = 0, Yn = 1)P (Tn ≥ t|Y1, Y2, . . . , Yn−1 = 0, Yn = 1)

=

∞∑
n=1

P (Y1, Y2, . . . , Yn−1 = 0, Yn = 1)P (Tn ≥ t),

since the Yi are independent of the Poisson process Xt, t ≥ 0.

Now, the first i for which Yi = 1 is a geometric random variable, and Ti+1 − Ti for successive
i are independent Exp(λ) random variables. Hence, T 1

1 is the sum of a Geom(p) number of iid
copies of an Exp(λ) random variable. Hence, by the answer to Question 4, T 1

1 is an Exp(λp) random
variable. The same argument applies to T 1

2 −T 1
1 , T 1

3 −T 1
2 and so on, which are also clearly mutually

independent (due to the mutually independence of times between events in the Xt process, and the
fact that the Bernoulli sequence Yi is iid). To show that X1

t , t ≥ 0 is a Poisson process of rate λp,
it remains only to show that X1

t+u −X1
t is independent of X1

s , s ≤ t. But this is obvious from the
discussion above.
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6. Recall that P (t) = eQt. Using the diagonalisation of Q, we have

P (t) = eQt = I +Qt+
Q2t2

2!
+
Q3t3

3!
+ . . .

= I +A(Dt)A−1 +A
(Dt)2

2!
A−1 +A

(Dt)3

3!
A−1 + . . .

= A
(
I +Dt+

(Dt)2

2!
+

(Dt)3

3!
+ . . .

)
A−1 = AeDtA−1.

The point of this is that powers of a diagonal matrix simply correspond to taking the powers of the
diagonal entries, element by element. Consequently, eDt is also a diagonal matrix, with jjth element
equal to edjjt.
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