
Complex Networks
Solutions 4

1. (a) The elements of the matrix P are given by pij = 1/deg(i) if (i, j) ∈ E, and pij = 0
if (i, j) /∈ E. Hence, P is stochastic.

(b) The detailed (or local) balance equations say that πipij = πjpji for all i and j in V .
Since the graph is undirected, this equation reads 0 = 0 if there is no edge between i
and j; this is trivially true. If there is an edge, this equation gives

πi
deg(i)

=
πj

deg(j)
.

It follows that πi = cdeg(i), for some constant c, and for all i in the same connected
component. It is possible to have different constants for different components. If we
assume that the graph is connected, then a single constant c applies to all nodes in the
graph, and the invariant distribution is unique; otherwise, there are infinitely many
invariant distributions, of which this is one. To find the constant, we use the fact that
the πi should sum to 1. Hence,

c
∑
i∈V

deg(i) = 1, i.e., c · 2|E| = 1,

where |E| denotes the total number of edges in the graph. The sum of the degrees
is 2|E| because each edge (i, j) gets counted twice in the sum, once in the degree of
node i and once in that of j. Hence, we conclude that πi = deg(i)/(2|E|).

(c) If the Markov chain is irreducible, it has a unique invariant distribution, i.e., a unique
left eigenvector corresponding to the eigenvalue 1. In particular, this eigenvalue is not
repeated, and there is a unique right eigenvector with eigenvalue 1. As the matrix P
is stochastic, it is clear that the all-1 vector, denoted 1 is one such eigenvector. Hence,
it is the only one.
Aperiodicity guarantees that, starting from any initial distribution µ, the distribution
at time t, which is given by µP t, converges to the invariant distribution π as t tends
to infinity. This says that all other eigenvalues are strictly smaller than 1 in absolute
valuel. Consequently, for arbitrary initial conditions x(0), it follows that x(t) =
P tx(0) converges to some multiple of the right eigenvector 1 corresponding to the
largest eigenvalue in absolute value, namely 1. As we saw in lectures, this multiple is
given by πx(0), i.e., x(t) tends to (πx(0))1 as t tends to infinity.

(d) Substituting for π above, we see that x(t) tends to 1/(2|E|)
∑

i∈V deg(i)xi(0)1 as t
tends to infinity. Hence, the influence of a node on the final state is proportional to its
degree.
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2. (a) It is easy to check that 1, the vector that takes the value 1 on all v ∈ V is an eigen-
vector of AG with eigenvalue d. Likewise, the vector v2 that takes the value 1 for all
v ∈ X and the value −1 for all v ∈ Y is also easily seen to be an eigenvector of AG,
with eigenvalue −d. (If this is not obvious, observe that AG has the following block
form:

AG =

(
0 AXY

AXY 0

)
,

where AXY (i, j) = 1 if there is an edge between xi and yj , and 0 otherwise, and 0
denotes the all-zero block matrix of size |X| × |X|. Note also that |X| = |Y |; this
was not stated explicitly in the problem, but follows from the fact that the graph is
bipartite and all nodes haves the same degree. To see this, count the number of edges
between X and Y from each side.
Now, the matrix AXY has each of its row sums equal to d because all nodes have

degree d. Using this, it is easy to see that the vectors
(
1

1

)
and

(
1

−1

)
are eigenvectors

of AG with eigenvalues +d and −d respectively.)

(b) One of the conclusions of the Perron-Frobenius theorem is that a positive matrix A
satisfying its conditions has a positive principal eigenvalue which is strictly larger
in absolute value than all other eigenvalues, and is the only one with a non-negative
eigenvector. In this case, d has a non-negative eigenvector, the all-1 vector, so it is the
principal eigenvalue. However, there is another eigenvalue −d which is equally large
in absolute value.

(c) The condition that is violated is that Ak
G be strictly positive for some k. All powers of

AG have the block structure

Ak
G =

(
Ck Dk

Ek Fk

)
where Dk and Ek are zero for even k, and Ck and Fk are zero for odd k. Hence, there
is no k for which Ak

G is strictly positive.

3. (a) The rate matrix is given by

Q =



0 0 0 0 . . . 0

µ −(λ+ µ) λ 0 . . . 0

0 µ −(λ+ µ) λ . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . λ

0 0 0 0 . . . 0


(b) Suppose Xt ∈ {1, 2, . . . , n− 1}. Using the rates specified, we see that

E[Mt+t+dt −Mt|(Xu, u ≤ t)]

= λdt
((µ

λ

)Xt+1

−
(µ
λ

)Xt
)
+ µdt

((µ
λ

)Xt−1
−
(µ
λ

)Xt
)

=
(µ
λ

)Xt

(µ− λ+ λ− µ)dt = 0
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ignoring o(dt) terms. Hence E[Mt] remains constant while Xt ∈ {1, . . . , n − 1}.
Moreover, 0 and n are absorbing states, so Xt remains constant after hitting 0 or n.
Hence, so does Mt and, consequently, its expectation. This completes the proof that
Mt is a martingale. (You can also prove it by looking at the process at the jump times
of Xt.)

(c) Let T = inf{t ≥ 0 : Xt = 0 or n}. Then T is a stopping time, and we have by the
Optional Stopping Theorem that

Ek[MT ] =
(µ
λ

)n
Pk(XT = n) +

(µ
λ

)0
Pk(XT = 0) = Ek[M0] =

(µ
λ

)k
.

Noting that Pk(XT = 0) = 1− Pk(XT = n), we can rewrite the above as((µ
λ

)n
− 1
)
Pk(XT = n) =

(µ
λ

)k
− 1,

and so

Pk(XT = n) =
(µ/λ)k − 1

(µ/λ)n − 1
.

4. (a) Each gene in generation t+1 is sampled independently and uniformly from the genes
in the previous generation. Hence, each gene is an A allele with probability Nt/N ,
independent of all other genes. There are N genes again in generation t + 1. Conse-
quently, the number of A alleles in generation t+1 has a Bin(N,Nt/N) distribution.

(b) It follows from the answer to the last part, and the fact that the mean of a Bin(n, p)
distribution is np that the mean number of A alleles in generation t + 1, conditional
on the past, is Nt. More formally,

E[Nt+1|Nt = k,N0, N1, . . . , Nt−1] = E[Nt+1|Nt = k] = N · (k/N) = k.

The first equality above is due to the Markov property.
Thus, we have shown that (Nt, t = 0, 1, 2, . . .) is a discrete time martingale.

(c) Define T = inf{t ≥ 0 : Nt = 0 or N} to be the first time that all alleles are of the
same type, either A or a. This is clearly a stopping time as we can decide whether
T ≤ t only by knowing the process Nu for u ≤ t. Moreover, Nt is a bounded
martingale on {0, 1, 2, . . . , T}, bounded between 0 and N . Hence, we can apply the
optional stopping theorem. We obtain

E[NT ] = N(0) = k.

But
E[NT ] = P(NT = 0) · 0 + P(NT = N) ·N.

Substituting this above, we conclude that

P(NT = N) = k/N.

This is the probability that only A alleles are left in the population.
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