
Complex Networks
Solutions 5

1. There is an easy way and a hard way to do this.

The easy way is to note that the modified voter model is identical to the original voter
model, but with contacts between nodes happening according to a Poisson process of rate
λp. This is because the contacts that result in a node copying its neighbour are obtained
by a Bernoulli(p) thinning of the Poisson process of all contacts. (The Poisson process of
contacts between nodes in the same state should be thinned by the same parameter p for
our claim to be justified. This isn’t stated in the problem, but as such contacts don’t have
any effect, we may as well assume they are similarly thinned.)

Hence, the probability of reaching a particular absorbing state, and the time to absorption,
are the same as in the original voter model, but with λ replaced by λp. The probability of
reaching n was k/n, which doesn’t depend on λ, and so stays the same. The time to hit
an absorbing state was n

λ
h( k

n
), which therefore changes to n

λp
h( k

n
); here h(·) is the binary

entropy function.

The hard way to solve this problem is to repeat the analysis of the voter model from lectures,
modifying the jump rates appropriately.

2. The contact rates are qij = 1 whenever (i, j) ∈ E, and zero otherwise (for j 6= i). Hence,
the Q matrix is

Q =


−3 1 1 1

1 −2 1 0

1 1 −3 1

1 0 1 −2

 .

As each of the columns sum to zero, it is easy to see that π =
(
1 1 1 1

)
/4 solves the

global balance equations πQ = 0. Alternatively, the local balance equations are πi · 1 =
πj · 1 whenever (i, j) ∈ E, i.e., πi = πj if there is an edge between i and j. Consequently,
πi = πj if there is a path between i and j. As the graph is connected, πi = πj for all i and
j. In other words, the uniform distribution solves the local balance equations, and hence
is invariant. Moreover, π is the unique invariant distribution as it is the only probability
vector satisfying either the global or local balance equations.

Let X(t) ∈ {0, 1}V denote the vector of states of all nodes at time t, which evolves as a
Markov process. By the results in the lecture notes, M(t) = π ·X(t) is a martingale, i.e.,

E[M(t+ τ)|X(s), s ≤ t] =M(t) for all τ > 0 and all t.

Note that we need to condition on the past of X(t); it may not be enough just to condition
on M(s), s ≤ t.

(More precisely, the definition of a martingale has to state what we are conditioning on -
and the martingale has to be measurable with respect to that - but we are going to be less
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formal and avoid measure-theoretic terminology. However, you do need to have the right
intuition about what to condition on in order to get the martingale property.)

Using the expression for π, this says that M(t) =
∑4

i=1Xi(t)/4 is a martingale. The
random time T at which consensus is reached is a stopping time, and the martingale is
bounded (by 1), so we can use the optional stopping theorem to conclude that EM(T ) =
M(0). But M(0) = 2/4 as we start with two of the nodes in state 1, and so

EM(T ) = 1 · P(X(T ) = 1) + 0 · P(X(T ) = 0) =M(0) =
1

2
.

Hence, P(X(T ) = 1) = 1/2 is the probability of reaching consensus on the all-1 state.

3. (a) Suppose that at time t the hub and k−1 leaves are in state 1, for some k ∈ {1, 2, . . . , n−
1}. Then, either one of the n − k leaves in state 0 flips to state 1, which happens at
aggregate rate n− k (the total rate at which one of these n− k leaves becomes active,
since it then necessarily copies the hub), or the hub flips from state 1 to state 0, which
happens at rate (n − k)/(n − 1) (the probability that, when the hub becomes active,
it chooses one of the leaves in state 0 to copy). Hence, in this case,

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] = 1 · (n− k)dt− (n− 1) · n− k
n− 1

dt = 0,

neglecting o(dt) terms.
The analysis is identical if the hub is in state 0, since the two states are perfectly sym-
metrical. Hence, we have shown that the expectation of M(t) remains constant so
long as all the nodes aren’t in the same state. But once all nodes are in the same state
(0 or 1), they remain in that state for ever. Hence, M(t) remains constant, determin-
istically, from then on; trivially, so does its expectation. Thus, we have shown that
M(t) is a martingale.

(b) For the given initial state, we have M(0) = (n− 1) + (k− 1) = n+ k− 2. Let T be
the random time to hit one of the two absorbing states, the all-0 or all-1 states. Then
T is a stopping time. Moreover, M(T ) = (n− 1)+ (n− 1) on the event that the all-1
state is reached at time T , while M(T ) = 0 on the event that the all-0 state is reached.
Hence,

E[M(T )] = 2(n− 1) · Pk(X(T ) = 1) + 0 · Pk(X(T ) = 0).

By the Optional Stopping Theorem, E[M(T )] = E[M(0)] =M(0), i.e.,

2(n− 1) · Pk(X(T ) = 1) = n+ k − 2,

which implies that

Pk(X(T ) = 1) =
n+ k − 2

2(n− 1)
.

4. (a) Each leaf copies the hub at rate 1. The hub copies each leaf at rate 1/(n− 1), adding
up to rate 1 for activity. Hence, the random walk has rate 1 of moving from a leaf to
the hub, and rate 1/(n− 1) of moving from the hub to any given leaf.

2



(b) Let Xt denote the distance between the two random walks at time t. From the answer
to the last part, we see that Xt is a Markov process with transition rates q21 = 2,
q12 = (n − 2)/(n − 1) and q10 = 1 + 1/(n − 1). All other off-diagonal transition
rates are zero. Note that for Xt to go from 2 to 1 (the event whose rate is denoted
q21, we must have the two random walks at different leaves at time t, and one of them
moving to the hub during the interval (t, t+ dt). As either of them could move at rate
1, the overall rate is 2. Likewise, Xt goes from 1 to 2 if one walk is at the hub, one
at the leaf, and the one at the hub moves to another leaf; the rate for this is the rate
that the walk at hub moves to any one of n − 2 leaves (but not the one occupied by
the other random walk). Finally, for Xt to go from 1 to 0, either the random walk at
the leaf should move to the hub, or the one at the hub should move to the specific leaf
occupied by the other walk.

(c) Let αx denote the expected time for Xt to hit state 0 starting in state x. We will obtain
simultaneous equations for the αx and solve them. Clearly, α0 = 0. To compute
α2, we note that Xt spends a random Exp(2) time, with mean 1/2, in state 2 before
moving to state 1, after which it needs expected time α1 to get to state 0. Hence,

α2 =
1

2
+ α1. (1)

To compute α1, we note that the total jump rate out of this state is q12 + q10 = 2. So
again, the mean time spent in this state is 1/2. Then, with probability (n−2)/2(n−1),
the next state is 2, from which it takes expected time α2 to get to zero, while with
probability n/2(n − 1), the next state is 0 and it takes α0 = 0 time to get to state 0
from there. Hence,

α1 =
1

2
+

n− 2

2(n− 1)
α2 +

n

2(n− 1)
α0 =

1

2
+

n− 2

2(n− 1)
α2. (2)

Solving (1) and (2) simultaneously, we get α2 = 2(n − 1)/n = 2 − (2/n) and
α1 = (3/2)− (2/n).

(d) We saw in the last part that the mean time for two random walks to meet is 2− (2/n)
if they start at different leaves, and (3/2)−(2/n) if one starts at the hub, and the other
at a leaf. Following the hint, this gives an upper bound of 2(n − 1) − 2(n − 1)/n
= 2(n−1)2/n for all walks to coalesce (if you add up the worst case bounds). Or you
could argue that it is enough if the walk started at each leaf coalesces with the one
started at the hub, which leads to the bound 3(n− 1)/2− 2(n− 1)/n. Either of these
is an acceptable answer as are the approximations 2n and 3n/2, neglecting terms of
smaller order in n.
Remark. The bounding technique used in this homework problem was for illustration.
It yields a very loose bound. A more careful analysis, using Chernoff bounds, yields
an upper bound on the time to consensus which is logarithmic in n rather than linear
in n.

5. (a) Suppose Yt lies between 1 and n − 1. Note that each particle moves at rate 1, and
moves left or right with equal probability. Hence, Yt+dt − Yt = ±1 with equal proba-
bility 1 · dt each. Hence,

E[Y 2
t+dt − Y 2

t |Yt] =
(
(Yt + 1)2 − Y 2

t

)
dt+

(
(Yt − 1)2 − Y 2

t

)
dt = 2dt,
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and so E[Y 2
t+dt − 2(t + dt) − Y 2

t + 2t] = 0, which establishes that Y 2
t − 2t is a

martingale.

(b) Note that T is a stopping time as we can determine whether T ≤ t by observing Yt
only on 0 ≤ s ≤ t. However, the martingale Y 2

t − 2t is not bounded; it is bounded
above by n2, but not bounded below. The statement of the optional stopping theorem
that we saw in lectures is not strong enough for our purposes in this problem, but it
turns out that the OST holds under weaker conditions than we stated in lectures, and
is applicable.
Using the optional stopping theorem, we get E[Y 2

T − 2T ] = Y 2
0 − 0 = |i − j|2. But

YT is either 0 or n by definition of T , so we also have

E[Y 2
T − 2T ] = E[Y 2

T ]− 2E[YT ] = n2P(YT = n) + 0 · P(YT = 0)− 2E[T ]
= n2P(YT = n)− 2E[T ].

Equating this to |i− j|2, and using the given expression, P(YT = n) = |i− j|/n, we
get E[T ] = |i− j|(n− |i− j|)/2.

(c) For i = 2, 3, . . . , n, let Ti denote the time until particle i has merger with particle 1 (i
and 1 could already be component parts of merged particles at this time). Then, the
time at which all particles have merged and there is just one partice left is maxni=2 Ti.
Clearly, the Ti are not independent. Nevertheless, using the hint in the question and
linearity of expectation, we have,

E
[ n
max
i=2

Ti
]
≤ E

[ n∑
i=2

Ti
]
=

n∑
i=2

E[Ti].

Now, from the answer to the last part, E[Ti] = k(n − k)/2 if the initial distance
between particles 1 and i is k. Now, both particle k + 1 and particle n + 1 − k are
at distance k from particle 1, and the largest possible distance is n/2. Hence, we can
rewrite the above as

E
[ n
max
i=2

Ti
]
≤ 2

n/2∑
k=1

k(n− k)
2

≈
∫ n/2

0

x(n− x)dx =
n3

8
− n3

24
=
n3

12
.
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