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1. (a) If (i, j) /∈ E, then aij = 0 by definition. We have

xTLGx =
∑
i,j∈V

xiLG(i, j)xj =
∑
i∈V

dix
2
i −

∑
i 6=j

aijxixj

=
∑
i∈V

x2i
∑
j∈V

aij − 2
∑

(i,j)∈E

aijxixj . (1)

We have used the fact that aij = 0 for (i, j) /∈ E and the definition of di to obtain the last
equality. The factor of 2 in front of the last sum comes from the fact that, when summing over
edges, we don’t count (i, j) and (j, i) as two different edges, but in summing over pairs of
vertices, we have two terms, aijxixj and ajixjxi, which are equal since aij = aji.
On the other hand, we have∑

(i,j)∈E

aij(xi − xj)2 =
∑

(i,j)∈E

aij(x
2
i − 2xixj + x2j )

=
∑
i∈V

x2i
∑

j:(i,j)∈E

aij − 2
∑

(i,j)∈E

aijxixj . (2)

The second equality holds because for each i ∈ V , there is an aijx2i term in the sum above
corresponding to each (i, j) ∈ E. Comparing (1) and (2), we see that they are identical since
aij = 0 whenever (i, j) /∈ E.
For all x ∈ Rn, x2LGx is a weighted sum of squares with positive weights, and hence is
non-negative. Thus, LG is positive semi-definite.

(b) We have

LG =

 3 −1 −2

−1 2 −1

−2 −1 3

 and xTLGx = 3x21 + 2x22 + 3x23 − 2x1x2 − 4x1x3 − 2x2x3,

while ∑
(i,j)∈E

aij(xi − xj)2 = (x1 − x2)2 + (x2 − x3)2 + 2(x3 − x1)2.

Clearly, the two right-hand sides are equal.

2. (a) We have 〈x,y〉 =
∑

i∈S πixiy
∗
i and 〈y,x〉 =

∑
i∈S πiyix

∗
i by definition. As πi, being a

probability, is real for all i, it follows that 〈x,y〉 = 〈y,x〉∗. Likewise, linearity is easy to
check. Finally, 〈x,x〉 =

∑
i∈S πixix

∗
i =

∑
i∈S πi|xi|2. Clearly, this quantity is non-negative,

as it is a weighted sum of squared absolute values with positive weights. Moreover, if x is
non-zero, then at least one of the |xi| is strictly positive. Also, all the πi are strictly positive,
for the reason stated in the question. Hence,

∑
i∈S πi|xi|2 is strictly positive.

(b) Note that (Qx)i =
∑

j∈S qijxj . Hence,

〈Qx,y〉 =
∑
i,j∈S

πiqijxjy
∗
i =

∑
i,j∈S

πjqjixjy
∗
i ,
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where we have used reversibility to get the last equality. On the other hand,

〈x, Qy〉 =
∑
i,j∈S

πixi(qijyj)
∗ =

∑
i,j∈S

πjxjq
∗
jiy
∗
i .

But all the qji are real (rates are obtained from probabilities by taking differences and then a
limit), so q∗ji = qji, and we see that the above expressions are equal.

(c) Let λ be an eigenvalue of Q and x a corresponding eigenvector. Then,

〈x, Qx〉 = 〈x, λx〉 = λ∗〈x,x〉,

whereas
〈Qx,x〉 = 〈λx,x〉 = λ〈x,x〉.

As these two quantities must be equal by part (b), and as 〈x,x〉 > 0 by part (a), it follows that
λ = λ∗, i.e., that λ is real.

3. (a) Let S be any subset of Ω. Now,
∑

i∈S pi +
∑

i∈Sc pi = 1, and the same for qi, because p and
q are probability distributions. Hence

|p(S)− q(S)| =
∣∣ ∑
i∈S

pi −
∑
i∈S

qi
∣∣=∣∣ ∑

i∈Sc

pi −
∑
i∈Sc

qi
∣∣ . (3)

Morevoer, ∣∣ ∑
i∈S

pi −
∑
i∈S

qi
∣∣≤∑

i∈S
|pi − qi|, (4)

by the triangle inequality. Hence, it follows from (3) that

|p(S)− q(S)| ≤ 1

2

(∑
i∈S
|pi − qi|+

∑
i∈Sc

|pi − qi|
)

=
1

2

n∑
i=1

|pi − qi|. (5)

Since this inequality holds for every subset S, it also holds for the maximum over all subsets,
and so dTV (p,q) ≤ 1

2

∑n
i=1 |pi − qi|.

In order to show that equality holds, we need to find a subset S for which equality holds in (4),
as equality will then hold in (5) as well. Take

S = {i : pi ≥ qi}, Sc = {i : pi < qi}.

It is easy to verify that equality holds in (4) and (5). Since we have found a specific set S for
which

|p(S)− q(S)| =
∑
i∈S

pi − qi =
∑
i∈Sc

qi − pi =
1

2

n∑
i=1

|pi − qi|,

we have dTV (p,q) ≥ 1
2

∑n
i=1 |pi − qi|. Combining this with the reverse inequality shown

earlier yields dTV (p,q) = 1
2‖p− q‖1.

Since 0 ≤ p(S) ≤ 1 and 0 ≤ q(S) ≤ 1, |p(S) − q(S)| ≤ 1 for all subsets S, and hence
also for the maximum over all subsets. In other words, dTV (p,q) ≤ 1 for any two probability
distribution p and q. Hence ‖p−q‖1 ≤ 2. For any example where equality holds, take n = 2,
p = (1 0) and q = (0 1).
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(b) We have

‖p− q‖1 =
n∑
i=1

|pi − qi| = (p− q) · sgn(p− q),

where the sgn function is defined for x ∈ R by sgn(x) = +1 if x is positive, −1 if x is nega-
tive, and zero if x is zero. We define the sgn function on a vector to be applied componentwise.
Finally x · y denotes the dot product or inner product of two vectors x and y.
Hence, by the Cauchy-Schwarz inequality,

‖p− q‖1 ≤ ‖p− q‖2‖sgn(p− q)‖2. (6)

But

‖sgn(p− q)‖2 =

√√√√ n∑
i=1

(sgn(pi − qi))2 ≤
√
n,

since every element of the vector sgn(p− q) is either +1 or −1 or 0. Substituting this in (6)
gives ‖p− q‖1 ≤

√
n‖p− q‖2‖, as we are asked to show.

(c) We have

‖p− q‖22 =
n∑
i=1

(pi − qi)2 ≤
n∑
i=1

(p2i + q2i ),

because the piqi terms are all non-negative since probabilities are non-negative. But p2i ≤ pi
since 0 ≤ pi ≤ 1, and similarly for qi. Hence,

n∑
i=1

(p2i + q2i ) ≤
n∑
i=1

(pi + qi) = 2.

Therefore, ‖p− q‖22 ≤ 2, which is what we are asked to show.
Equality holds for the same example as in the answer to the first part.

4. Using the fact that for any two probability distributions p and q, the total variation distance between
them is half the L1-norm of p− q, as shown in Question 4(a), we get:

(a)

dTV =
1

2

(∣∣∣ 1

4
− 1

3

∣∣∣ +
∣∣∣ 1

2
− 1

3

∣∣∣ +
∣∣∣ 1

4
− 1

3

∣∣∣) =
1

6
.

(b)

dTV =
1

2

(∣∣∣ 1

4
− e−1

∣∣∣ +
∣∣∣ 1

2
− e−1

∣∣∣ +
∣∣∣ 1

4
− 1

2
e−1

∣∣∣ +
∞∑
k=3

1

k!
e−1
)
.

(c) The idea is exactly the same here, but finding the L1-norm involves integration rather than
summation as we are working with continuous random variables. So we have

2dTV =

∫ 1

0

∣∣ e−x − 1
∣∣ dx+

∫ ∞
1

∣∣ e−x − 0
∣∣ dx

=

∫ 1

0
(1− e−x)dx+

∫ ∞
1

e−xdx = 2e−1.

(d) As for the last part,

2dTV =

∫ ∞
0

∣∣ e−x − 2e−2x|dx

=

∫ log 2

0

(
2e−2x − e−x

)
dx+

∫ ∞
log 2

(
e−x − 2e−2x

)
dx =

1

2
.
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5. (a) The rate for moving from v to w is 1 if (v, w) ∈ E and 0 otherwise. Hence, the transition rates
are qvw = 1((v, w) ∈ E for v 6= w. Moreover, qvv = −

∑
w 6=v qvw = −dv, where dv denotes

the degree of v. Thus, the transition rate matrix for the star graph is

Q =


−(n− 1) 1 1 . . . 1

1 −1 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1


This is the negative of the Laplacian matrix.

(b) All row sums of Q are zero, and Q is symmetric, so all column sums are also zero. Therefore,
the all-1 row vector is an eigenvector with eigenvalue zero. Consequently,

1

n
1TQ = 0.

This says that 1
n1

T is a probability vector which solves the global balance equations. Hence,
it is an invariant distribution of the Markov chain. It is unique because the graph is connected,
which implies that the Markov chain is irreducible (it is possible to go from any state/node to
any other).

(c) Let S be a subset of V consisting of k leaves. Then, |E(S, Sc)| = k, and so

|E(S, Sc)|
1
n |S| · |Sc|

=
k

1
nk(n− k)

=
n

n− k
.

Minimising this over all subsets S, equivalently, over all k between 1 and n−1, gives Φ(G) =
n
n−1 .

(d) Cheeger’s inequality says that Φ(G) ≤
√

8dmaxλ2, where dmax is the maximum node degree,
which is n− 1 for the star graph. Hence,

λ2 ≥
Φ(G)2

8dmax
=

n2

8(n− 1)3
.

(e) If
√
ne−λ2t is smaller than ε, then so is dTV (p(t), π). So we want to choose t such that

eλ2t ≥
√
n

ε
, i.e., t ≥ 1

λ2

(1

2
log n+ log

1

ε

)
.

Using the bound for λ2 from the last part, this is ensured if we choose

t ≥ 8(n− 1)3

n2

(1

2
log n+ log

1

ε

)
.
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