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1. (a) K4 is the square with both its diagonals present.

(b) Every subset of 4 nodes can support exactly one copy ofK4. There are
(
n
4

)
ways of choosing a

subset of 4 nodes; K4 is present on these nodes if the corresponding 6 edges are present, which
has probability p6. Hence, by the linearity of expectation, the expected number of copies of
K4 in G(n, p) is exactly

(
n
4

)
p6.

(c) Let A1, A2, . . . , A(n4)
denote all the possible 4-node subsets of V . Let χ(Ai) denote the in-

dicator that the subgraph of G(n, p) induced by Ai is K4, or equivalently, that all six edges
between pairs of nodes in Ai are present in the random graph. Thus, χ(Ai) is a random vari-
able. Let N4 denote the number of copies of K4 in G(n, p), which is also a random variable.
We then have

N4 =

(n4)∑
i=1

χ(Ai).

Consequently,

Var(N4) =

(n4)∑
i,j=1

Cov(χ(Ai), χ(Aj)). (1)

Now, if the node sets Ai and Aj have only zero or one nodes in common, then they have no
edges in common, and the random variables χ(Ai) and χ(Aj) are independent. Consequently,
their covariance is zero. On the other hand, if these node sets have two nodes in common, then
they have one edge in common, and

Cov(χ(Ai), χ(Aj)) = E[χ(Ai)χ(Aj)]− E[χ(Ai)]E[χ(Aj)] = p11 − p12.

To see the last equality, note that the expectation of the indicator χ(Ai) is the probability of
the event for which it is the indicator, namely that K4 is present on Ai; for this to happen,
six edges need to be present, the probability of which is p6. On the other hand, the product
of the indicators is 1 if and only if both indicators are 1, i.e., if K4 is present on both Ai and
Aj . Hence, the expectation of the product is the probability that both copies of K4 are present.
But for this to happen, we need 11 edges to be present, as one edge is common. Hence, the
probability of this event is p11.
Similarly, we next look at the case whenAi andAj have 3 nodes in common. In this case, they
have

(
3
2

)
= 3 edges in common (edge between each pair of these 3 nodes). Hence, reasoning

similarly to above, we get

Cov(χ(Ai), χ(Aj)) = E[χ(Ai)χ(Aj)]− E[χ(Ai)]E[χ(Aj)] = p9 − p12.

The first term is p9 because 3 edges being in common means that we need 9 distinct edges to
be present in order for there to be a copy of K4 on each of Ai and Aj . Finally, if Ai and Aj
have all 4 nodes in common, i.e., they are the same set, then they have all six edges in common,
and

Cov(χ(Ai), χ(Aj)) = E[χ(Ai)χ(Aj)]− E[χ(Ai)]E[χ(Aj)] = p6 − p12.
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We need to substitute these different estimates for the covariance into (1), counting the number
of contributions of each type. The number of ways we can choose two sets of 4 nodes over-
lapping in two nodes is the number of ways we can choose 6 nodes in total, and then choose
which 2 of them are going to belong to both sets, and then how to split the remaining 4 nodes
into two sets. This can be done in

(
n
6

)
×
(
6
2

)
×
(
4
2

)
ways. Ignoring constants, this term is n6.

Similarly, the number of ways in which we can choose two sets of 4 nodes overlapping in three
nodes is

(
n
5

)
×
(
5
3

)
×
(
2
1

)
ways. Again ignoring constants, this term is n5. Finally, the number

of ways of choosing two sets of 4 nodes having 4 nodes in common is clearly the number of
ways of choosing 4 nodes, which is

(
n
4

)
. Ignoring constants, this is n4. Putting together these

estimates, and substituting in (1), we get

Var(N4) = n4(p6 − p12) + n5(p9 − p12) + n6(p11 − p12). (2)

Which of these terms is dominant depends on the value of p.

(d) We saw in part (a) that E[N4], the expected number of copies of K4 in G(n.p) is n4p6. Take
αc = 4/6 = 2/3. Then, if p = n−α, it is easy to see that E[N4] tends to zero as n tends to
infinity if α > αc, and to infinity if α < αc.
It follows by Markov’s inequality that, if α > αc, then

P(N4 ≥ 1) ≤ E[N4]

1
→ 0

as n tends to infinity.
Suppose next that α < αc. We know that E[N4] tends to infinity, but is this enough to guarantee
that there is at least one copy of K4 in G(n, p), with high probability? To answer this, we need
to use Chebyshev’s inequality, which gives us

P(N4 = 0) = P(N4 ≤ 0) ≤ P(|N4 − EN4| ≥ EN4) ≤
Var(N4)

(EN4)2
.

Now, substituting for Var(N4) in the above from (2), with p = n−α, we get

P(N4 = 0) ≤ n4(p6 − p12) + n5(p9 − p12) + n6(p11 − p12)
(n4p6)2

= n−4+6α(1− n−6α) + n−3+3α(1− n−3α) + n−2+α(1− n−α).

Now, if α < αc = 2/3 (and α > 0), then it is clear that the expression above tends to zero as
n tends to infinity. Hence P(N4 ≥ 1) tends to 1, as we are asked to show.

2. (a) K2,2 consists of two sets X ′ and Y ′ of 2 nodes each; there are 4 edges, one between each node
in X ′ and each node in Y ′.

(b) There are
(
n
2

)
ways of choosing 2 nodes from X and an equal number of ways of choosing 2

nodes from Y . There is exactly one way of placing a copy ofK2,2 on these 4 nodes. Moreover,
the copy is present with probability p4, the probability that all 4 possible edges are present.
Hence, by linearity of expectation, the expected number of copies of K2,2 in G(n, n, p) is
exactly

(
n
2

)2
p4.

(c) Let H denote the subgraph K2,2; we use Hi, Hj etc. to denote possible copies of H that might
appear in G(n, n, p). Let NH denote the random number of copies of H present in G(n, n, p),
and χi the indicator that the ith copy (in some ordering) is present. Then,

NH =

(n2)
2∑

i=1

χi,
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and so,
Var(NH) =

∑
i,j

Cov(χi, χj). (3)

Now, the covariance depends on how the copiesHi andHj overlap. If they are non-overlapping,
then their indicators are clearly independent random variables, and their covariance is zero.
This is still true if the ovelap involves some nodes, but no edges. The only non-zero terms in
the sum correspond to overlaps that contain one or more edges.
The graph defined by the overlap is necessarily some sub-graphH ′ ofH . What are the possible
subgraphs containing one or more edges? They areK1,1 (which is just a single edge),K1,2 and
K2,2. We don’t write K1,2 and K2,1 separately, but we will count both possibilities, that one
of the nodes is in X and two are in Y , or the other way round. For each of these subgraphs,
we can count the number of possible copies of Hi and Hj intersecting in H ′ that can appear in
G(n, n, p).
For example, for H ′ = K1,1, we are asking for two copies of K2,2 that share one edge in
common. This means choosing 3 nodes in each of the sets X and Y , choosing how the nodes
are paired, and which pairing is common to both graphs. This can be done in(

n

3

)2(3
1

)2

2 ≈ n6

ways. As usual, the approximate count only depends on the number of vertices chosen.
Similiarly, if the intersection is K1,2, the number of ways this could occur is the number of
ways of choosing either 3 nodes in X and 2 in Y (or the other way round), then picking one
distinguished vertex in X and 2 in Y that will support the shared copy of K1,2 (or the other
way round). The number of ways of doing this is

2

(
n

3

)(
n

2

)(
3

1

)
≈ n5.

Again, the power of n is just the number of vertices to be chosen.

Likewise, the number of ways of choosing vertices is
(
n
2

)2 ≈ n4 if the intersection is K2,2.
Next, let us work out Cov(χi, χj) in each of these cases. If Hi and Hj intersect in K1,1, then
E[χiχj ] = p7 as 7 edges need to be present (twice 4 edges, less 1 in common), and so

Cov(χi, χj) = p7 − p8 ≈ p7,

where the p8 term is E[χi]E[χj ], and is negligible in comparison as p tends to zero.
Similarly E[χiχj ] is equal to p6 if Hi and Hj intersect in K1,2 (as two edges are common to
both, and so a total of 6 edges are required), and to p4 if the intersection is K2,2. In each case,
E[χi]E[χj ] = p8, and is negligible in comparison to the E[χiχj ] term.
Putting together these expressions for the covariance, and combining them with approximate
counts for the various possibilities, we obtain from eq. (3) that

Var(NH) ≈ n6p7 + n5p6 + n4p4.

Substituting p = n−α in the above expression, we get

Var(NH) ≈ n6−7α + n5−6α + n4−4α.

(d) We saw in part (b) that E[NH ] ≈ n4p4 = n4−4α for H = K2,2. Hence, if α > 1, then E[NH ]
tends to zero, and it follows by Markov’s inequality that P(NH ≥ 1) tends to zero, as n tends
to infinity. Consequently, for α in this range, G(n, p) does not contain K2,2, whp.
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Next, suppose 0 ≤ α < 1. By Chebyshev’s inequality,

P(NH = 0) = P(NH ≤ 0) ≤ P(|NH − ENH | ≥ ENH) ≤
Var(NH)

(ENH)2

≈ n6−7α + n5−6α + n4−4α

(n4−4α)2

= nα−2 + n2α−3 + n2α−3 + n4α−4,

which tends to zero as n tends to infinity if α < 1. Consequently, NH ≥ 1 whp if 0 ≤ α < 1,
i.e., G(n, p) contains at least one copy of K2,2.
Thus, αc = 1.

3. (a) The star graph Sk has k nodes and k − 1 edges, and so its edge density is (k − 1)/k. Now
consider any subset of m nodes from the vertex set of Sk. If this subset contains the hub, then
the induced subgraph hasm−1 edges, and the edge density is (m−1)/m. But this is no more
than (k − 1)/k because m ≤ k. On the other hand, if the node subset does not contain the
hub, then the induced subgraph contains no edges, and its edge density is zero. In either case,
the edge density is no more than that of Sk. In other words, Sk contains no subgraph which is
denser than Sk. Hence, it is balanced.

(b) By the results from lectures, the threshold for appearance of Sk is at nkpk−1 = 1 (or a
constant), i.e., when nk−α(k−1) = 1, i.e. α = k/(k − 1). More precisely, if we take
αk = k/(k − 1), then

P(G(n, n−α) ⊇ Sk)→

{
0, if α > αk,

1, if α < αk.

(c) Suppose that dmax+1 colours are available. Consider the greedy algorithm, as described in the
question. The algorithm isn’t precise on what to do if several choices of colour are available
when it comes to colouring a node. (Some choices will be ruled out by those of its neighbours
that have already been assigned colours.) It is not important how such ties are broken. You
could, for example, pick one of the permissible colours uniformly at random. Alternatively,
you could pick the one that would appear first in a dictionary., or in your list of favourite
colours. No matter how these choices are made, when it comes to colouring some node v, at
most deg(v) colours will be ruled out, one for each neighbour of v. In fact, some of these
neighbours may have been assigned the same colour, so the number of colours ruled out could
be smaller than deg(v). But it cannot be bigger. In particular, at most dmax colours could have
been ruled out. But dmax + 1 colours are available, so we can always find a colour that can be
used to colour v.

(d) Note that the maximum degree of a graph is dmax if and only if it contains a copy of Sdmax+1

but does not contain a copy of Sdmax+2.
We know χ(G) ≤ dmax + 1, so we can guarantee that χ(G) ≤ k if dmax ≤ k − 1. In other
words, χ(G) ≤ k if G does not contain a copy of Sk+1. Hence, from the above, we can write

P(χ(G(n, n−α) ≤ k)→ 1 if α >
k

k − 1
.

Note that we can only give an upper bound on the chromatic number using this approach, and
cannot give a lower bound. To see this, suppose G = Sn. Then dmax = n − 1, but this graph
can be coloured with just two colours: assign one of the colours to the hub, and the other to
each of the leaves!
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