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The spread of a rumour is one example of an absorbing Markov process on
networks. It was a purely increasing process and so it reached the absorb-
ing state rapidly, in time growing logarithmically in the number of nodes.
We shall now consider two models related to agreement between interacting
agents. Such models can be used to describe a number of situations - both
those in which the agents actively seek to achieve consensus, and those in
which consensus corresponds to the outcome of competition between differ-
ent ideas.

Examples of the latter include competition between different video recording
formats (VHS vs. Betamax), or operating systems (Windows vs. Apple
Mac, or iPhone vs. Android), or social networks (Facebook vs. MySpace).
In some of these cases, there is a substantial switching cost (buying new
hardware), while in others the switching cost may be small (time to set up a
new account and upload material). There are often “network externalities”
- benefits to adopting one of the competing technologies that don’t have to
do with its intrinsic qualities, but only to do with who and how many have
adopted it. In the examples above, developers are more likely to produce
films or software for the more popular platform, where they can expect to
sell more copies. In the social network example, you would prefer to be on
the network that most of your friends are on, because that would make it
easier to communicate with them. Thus, the question of which technology
gets adopted may depend not just on its quality, but also on the random
decisions of early adopters.

Examples of consensus seeking come from biological problems such as quo-
rum sensing, which informs the decisions of bioluminescent bacteria, for
example, or flocking, whereby a group of birds move collectively in a co-
ordinated manner. These decisions involve some form of consensus regard-
ing an action, or a direction of movement. It is more complex than simply
following a leader, as there may be no leader involved, or the identity of
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the leader may change over time without a formal process of leader election.
Further examples and applications of consensus models come from computer
science, where they form a building block of many distributed computing
algorithms.

1 The de Groot model

The first model we look at involves agents who start out with an initial
preference that is real-valued, and who want to reach a consensus on a real
number that is a (possibly weighted) average of these initial values. An
example from above is the case of a flock of birds agreeing on a direction.
(In this case, the values are in R3, but the idea is the same.) The de
Groot model is very simple, but was one of the first formal models of “social
learning”.

The model can be stated precisely as follows. There are n agents, who each
have an initial preference or value in R. We denote these initial values by
the vector x = (x1, x2, . . . xn). The agents are located on the nodes of a
directed graph G = (V,E), and can only communicate directly with their
neighbours in this graph. Time is discrete, and the agents update their
values synchronously as follows. Agent i updates its value in time step t+ 1
to

xi(t+ 1) =
∑

j∈V :(i,j)∈E

pijxj(t).

Here, the pij are fixed weights, describing how much weight i gives to the
opinion of j in updating its own opinion. We assume that the pij are non-
negative and sum to 1, so that xj(t+1) is a weighted average of the opinions
of j’s neighbours at time t. In other words, P is a stochastic matrix, and
we can describe the evolution of opinions by the linear recursion

x(t+ 1) = Px(t). (1)

The process is deterministic. We are interested in its long-term behaviour.
Do the opinions of each of the agents converge in the long run, i.e., does
xj(t) tend to some xj as t tends to infinity? Morever, do the agents reach (or
approach) agreement in that their opinions all converge to the same value x?
If so, we can say that the agents asymptotically reach consensus. Another
question we could ask is how quickly this consensus is reached.
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The long-term behaviour of the process x(t) described by (1) is determined
by the eigenvalues of the matrix P . Let us denote the eigenvalues by
λ1, λ2, . . . , λn, and order them so that |λ1| ≤ |λ2| ≤ . . . ≤ |λn|. Denote
the corresponding eigenvectors by v1,v2, . . . ,vn. We are implicitly assum-
ing that there are n linearly independent eigenvectors, i.e., that the matrix
P is not defective. In that case, these eigenvalues form a basis of Rn, and
we can express the initial condition x(0) in this basis as

x(0) =
n∑
i=1

αivi,

where the αi are constants. Suppose all other eigenvalues are strictly smaller
in absolute value than the largest, i.e., |λn−1| < |λn|. Suppose, too, αn 6=
0, i.e., that the initial condition cannot be expressed just in terms of the
remaining eigenvectors. Then,

x(t) = P t
n∑
i=1

αivi =
n∑
i=1

αiP
tvi =

n∑
i=1

λtiαivi. (2)

It follows that λ−tn x(t) → cv, where c is some constant that depends only
on the initial condition.

Now, we know that P is a stochastic matrix. Hence, it has an eigenvalue
1 corresponding to the all-1 eigenvector, which we denote 1, i.e., P1 = 1.
What can we say about the other eigenvalues and eigenvectors? The answer
is given by the Perron-Frobenius theorem, which we state below. A matrix
is said to be non-negative if all its elements are non-negative.

Theorem 1 (Perron-Frobenius theorem) Suppose that A ∈ Rn×n is a
non-negative matrix and that Ak is strictly positive for some k > 0. Then,
the following hold:

(i) A has a positive eigenvalue λ such that |λi| < λ for all other eigenval-
ues λi, which could be real or complex.

(ii) The eigenvector corresponding to λ is non-negative, and it is the only
non-negative eigenvector.

If A is non-negative and non-zero, but there is no k such that Ak is strictly
positive, then (i) holds with |λi| ≤ λ for all other eigenvalues λi. Moreover,
the only non-negative eigenvectors are those corresponding to the positive
eigenvalue λ, which could now have multiplicity bigger than one.
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Remarks. The positive eigenvalue λ which has the largest absolute value
among all eigenvalues of A is referred to as the Perron root or Perron eigen-
value of A. Part (ii) refers to right eigenvectors, but also applies to left
eigenvectors, as can be seen by applying the theorem to AT .

We will not prove this theorem. A proof can be found in any book on
non-negative matrices, e.g., E. Seneta, Non-negative matrices and Markov
chains, Springer, 2006, or R. B. Bapat and T. E. S. Raghavan, Non-negative
matrices and applications, Cambridge University Press, 1997.

We now apply the theorem to our stochastic matrix P . Since the eigenvector
corresponding to the eigenvalue 1 is the all-1 vector, which is non-negative,
it follows that 1 must be the Perron eigenvalue of P . Consequently, all other
eigenvalues are smaller than or equal to 1 in absolute value.

If the matrix P corresponds to an irreducible Markov chain, then the eigen-
value 1 is simple; otherwise, it is repeated with multiplicity equal to the
number of closed communicating classes of the Markov chain. If the Markov
chain is both irreducible and aperiodic, then it has a single eigenvalue of 1
and all other eigenvalues are strictly smaller than 1 in absolute value.

We now confine ourselves to the most interesting case, that of a stochas-
tic matrix P corresponding to an irreducible, aperiodic Markov chain. In
graphical terms, this corresponds to a strongly connected graph (one with a
directed path between any two nodes), where the greatest common divisor
of the lengths of all cycles is 1. In this case, the eigenvalue 1 is simple and
all other eigenvalues are strictly smaller than 1 in absolute value. Hence,
x(t) = P tx(0) converges to a constant multiple of the all-1 vector 1. Call
this constant c. What this says is that the opinions of all agents converges
to this same constant c as t tends to infinity, i.e., that they asymptotically
reach consensus.

It remains to determine the value c to which the agents converge, and to say
something about the speed of convergence. Let π denote the unique equilib-
rium distribution of the Markov chain with one-step transition probability
matrix P . Observe that

πx(t+ 1) = π(Px(t)) = (πP )x(t) = πx(t),

i.e., that the inner product of the invariant distribution with the vector of
agent preferences is conserved. Hence,

c = π(c1) = π lim
t→∞

x(t) = lim
t→∞

πx(t) = πx(0),
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where the interchange of limits with inner products is justified because we
are in finitely many dimensions. Hence,

x(t)→ (πx(0))1 as t→∞.

The invariant distribution π is thus a measure of the influence of different
individuals in determining the value on which consensus is reached; the
bigger the value of πj , the greater the weight assigned to agent j’s initial
opinion in the consensus outcome.

Next, we look at the speed of convergence. Recall that we assumed P to be
the transition matrix of an irreducible, aperiodic Markov chain, and hence
that all its eigenvalues except one are strictly smaller than 1 in absolute
value. Now, we can rewrite (2) as

x(t) = c1 +

n−1∑
i=1

λtiαivi,

where |λi| < 1 for all i = 1, 2, . . . , n − 1. Hence, all terms in the sum on
the RHS except the first are decaying geometrically in t. The term decaying
most slowly corresponds to the largest in absolute value of these remaining
eigenvalues, which is |λn−1| by the way we ordered them. Hence, we conclude
that

‖x(t)− (πx(0))1‖ ≤ C|λn−1|t,

for some constant C that depends only on the initial condition. Here ‖ · ‖
denotes the Euclidean norm of a vector. What this result says is that the
“error”, the distance between the opinions at any time t and their final
consensus value, decays geometrically over time, and the rate of decay is de-
termined by the “spectral gap”, namely how far any of the other eigenvalues
is, in absolute value, from the largest one, 1.

2 The classical voter model on complete graphs

Consider a population of n individuals, each of whom has a preference for
one of two political parties, which we shall denote by 0 and 1. They interact
in some way, and change their opinion as a result of the interaction. In
practice, their opinion would also be influenced by external factors, such as
the policies or performance of the parties, but we don’t consider that in our
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models. We want to know how the interaction alone influences the evolution
of preferences over time.

There are many possible ways to model interactions. It may be that indi-
viduals change their opinion if some fraction of their friends or family have a
different opinion and influence them. Individuals may differ in how big this
fraction needs to be before they change their mind, and also in the relative
weights they ascribe to the opinions of different people in their social circle.
While it is possible to build models incorporating many of these features,
we shall consider a much simpler model, described below.

We can think of the n individuals as the nodes of a complete graph, Kn.
The nodes are started in an arbitrary initial state X(0) = {Xv(0), v ∈ V },
where Xv(0) ∈ {0, 1} specifies the initial preference of node v. There are n
independent unit rate Poisson processes, one associated with each node. At
every time that there is an increment of the Poisson process associated with
node v, node v becomes active, chooses a node w uniformly at random from
the set of all nodes (including itself), and copies the preference of node w at
that time. Thus, individuals in this model are easily persuaded and show no
resistance to changing their mind, which is obviously unrealistic. However,
it leads to tractable models.

It should be clear from the description above that X(t), t ≥ 0 is a continuous-
time Markov process as, given the state X(t) at time t, both the time to the
next jump, and the state reached after that jump are independent of the
past of the process before time t. Letting ev denote the unit vector with a 1
corresponding to node v and zeros for all other elements, we can write the
transition rates for this Markov process as follows:

q(x,x + ev) =
1

n
(1− xv)

∑
w∈V

xw,

q(x,x− ev) =
1

n
xv
∑
w∈V

(1− xw).

The 1 − xv term in the first equation says that an increment in the vth

element of x is possible only if this element is 0. In that case, it changes to
1 at rate 1/n, the contact rate between any two nodes, times the number
of nodes which are in state 1, which is given by

∑
w∈V xw. Likewise, the

second equation gives the rate for node v to move from state 1 to state 0.

The state space of the Markov process X(t), t ≥ 0 is {0, 1}V , the set of 0−1
valued vectors indexed by the vertex set. Clearly, the all-0 and all-1 vectors,
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which we’ll denote 0 and 1 are absorbing states; no vertex can change state
if the system has reached either of these states. Moreover, all other states
form a single communicating class as it is possible to move from any of them
to any other. Hence, the Markov process eventually hits one of these two
absorbing states, and becomes absorbed. We say that consensus is reached,
either on the value 0 or the value 1, which is adopted by all nodes. The
questions we want to address are:

• How likely are we to reach consensus on, say, the value 1, given the
initial state?

• How long does it take to reach consensus?

These are the questions we shall address in the remainder of this section.

2.1 Hitting probabilities

We begin by observing that the process representation above yields a Markov
chain on 2n states, where n = |V | is the number of nodes. This is unneces-
sarily large. Given the symmetry in the model, it suffices to keep track of
the number of nodes in each state. If we let Y (t) =

∑
v∈V Xv(t) denote the

number of nodes in state 1 at time t, then Y (t), t ≥ 0 is a Markov process on
the much smaller state space {0, 1, 2, . . . , n}. The states 0 and n are absorb-
ing, and our questions above reduce to determining the htting probabilities
of each of these states, as well as the absorption time. First, note that the
transition rates for the new Markov process Y (t) are given by

q(k, k + 1) =
(n− k)k

n
, q(k, k − 1) =

k(n− k)

n
. (3)

To see this, note that a transition from k to k+1 happens if any of the n−k
nodes in state 0 becomes active (which happens at a total rate of n − k)
and chooses one of the nodes in state 1 to contact (which has probability
k/n). Likewise, the second term corresponds to one of the k nodes in state
1 becoming active and choosing a node in state 0 as its random contact. In
order to compute the hitting probabilities of the two absorbing states 0 and
n, starting from an arbitrary initial state, we shall make use of results from
the theory of martingales, which we now introduce, first in discrete time and
then in continuous time.
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Definition A stochastic process Xt, t ∈ N ∪ {0} is called a martingale if
E[Xt+1|Xt, Xt−1, . . . , X0] = Xt for all t.

Note that this is different from the Markov property. It doesn’t say that the
probability distribution of Xt+1 given the past depends only on Xt; it only
says that the mean only depends on Xt. However, it is very restrictive about
the form of this dependence, as it says that the mean has to be equal to Xt.
Intuitively, we think of a martingale as representing one’s fortune in a fair
game of chance. The fortune after the next play (next roll of dice or spin of
the roulette wheel or whatever) is random, but is equal in expectation to the
current fortune. An example would be a game of dice in which you win five
times your bet (plus your stake) if the die comes up 6, and lose your stake
otherwise. Note that this game would be a martingale whatever fraction of
your wealth you decided to stake each time.

It is clear, by induction, that E[Xt+s|Xt, Xt−1, . . . , X0] = Xt for all s ≥ 1.
Taking t = 0, E[Xs] = E[X0] for all s ≥ 1. In fact, it turns out this
relationship not only holds for all fixed (deterministic) times s, but also for
random times satisfying certain conditions.

Definition A random time T is called a stopping time for a stochastic
process Xt, t ∈ N ∪ {0} if the event T = t is measurable with respect to
{Xs, s ≤ t}.

In less measure-theoretic language, the random T is a stopping time if you
can decide whether T = t just by observing Xs, s ≤ t. In other words, T is
a function of the past and present, not of the future.

Example. Let Xt be the fortune after t time steps in a game where you bet
1 pound repeatedly on rolls of a die where you get 6 pounds (including your
stake) if the die comes up 6. Suppose your initial fortune X0 is 10 pounds.
Let T1 be the first time that your fortune is either 20 pounds or zero. Let
T2 be the time one time step before your fortune hits zero. Then T1 is a
stopping time, whereas T2 is not. (Both are perfectly well-defined random
variables on the sample space of infinite sequences of outcomes of rolls of
the die.)

Theorem 2 (Optional Stopping Theorem) Let Xt, t ∈ N∪{0} be a bounded
martingale (i.e., there is a finite constant M such that |Xt| ≤ M for all
t ≥ 0), and let T be a stopping time for it. Suppose that T is finite almost
surely, i.e., P(T <∞) = 1. Then E[XT ] = E[X0].

8



The requirement that the martingale be bounded can be relaxed, but needs
to be replaced with conditions that are more complicated to state, and to
check in applications. It will suffice for us to confine ourselves to the bounded
case.

The definitions and theorem above extend to continuous time martingales.
We won’t restate the theorem, or the definition of a stopping time, which
are identical, but just the definition of a martingale, which extends in the
obvious way.

Definition A continuous-time stochastic process Xt, t ≥ 0 is called a mar-
tingale if E[Xt+s|(Xu, u ≤ t)] = Xt for all s, t ≥ 0.

Let us now go back to the continuous-time Markov process Yt, t ≥ 0 rep-
resenting the number of nodes in state 1. We saw in equation (3) that the
rates for going from k to k+1 and k−1 are equal. Hence, it is equally likely
that the first jump from state k is to either of these states, which implies
the following lemma.

Lemma 1 The stochastic process Yt, t ≥ 0 is a martingale.

Proof. Fix t ≥ 0. If Yt = 0 or Yt = n, then Yt remains constants at all
subsequent times, and hence E[Ys|(Yu, u ≤ t)] = Yt for all s ≥ t. Hence, it
only remains to verify this equality if Yt = k for some k ∈ {1, 2, . . . , n− 1}.
We suppose from now that this is the case.

Clearly, Ys is constant and equal to Yt for all s ∈ (t, τ) where τ is the
random time of the first jump after time t. Hence E[Ys|(Yu, u ≤ t)] = Yt for
all s ∈ (t, τ). Moreover,

E[Yτ |(Yu, u ≤ t)] =
1

2
(Yt + 1) +

1

2
(Yt − 1) = Yt.

Thus, the equality E[Ys|(Yu, u ≤ t)] = Yt holds for all s up to and including
the first jump time after t. By induction on the sequence of jump times, it
holds for all s ≥ t.

This way of proving that Yt is a martingale basically reduces the continuous-
time process to a discrete-time process watched at the jump times. Another
approach is to look at the change over infinitesimal time intervals. Observe
from equation (3) that

E[Yt+dt − Yt|(Yu, u ≤ t)] = (+1) · (n− k)k

n
dt+ (−1) · (n− k)k

n
dt = 0,
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since the possible values of Yt+dt − Yt are +1 or −1, and we multiply them
by the corresponding rates and take the average. (Jumps of 2 or more have
probability o(dt), which we ignore.) The fact that the change in condi-
tional expectation is zero over infinitesimal time intervals implies that the
conditional expectation is constant, and hence that Yt is a martingale. �

It is now straighforward to compute the hitting probability of each of the
absorbing states starting from any given initial state k. Let T = inf{t ≥ 0 :
Yt = 0 or n} denote the random time to absorption. Then, T is clearly a
stopping time, and we have by the Optional Stopping Theorem that

E[YT ] = E[Y0] = k.

But
E[YT ] = nP(YT = n) + 0P(YT = 0),

and so

P(YT = n) =
E[YT ]

n
=
k

n
.

This gives us the probability of hitting n before 0 as a function of the initial
state k.

2.2 Hitting times

We shall derive bounds on the time to consensus by establishing a duality
with coalescing random walks. Suppose we want to know whether, on a
specific sample path of the random process, consensus has been reached by
a given time, τ . We can determine this by following the evolution of the
process, given its initial condition, from time 0 to time τ . Alternatively, we
can do so by following the evolution backwards from τ . Imagine that, at
time τ , each node is occupied by a single particle.

Let τ − T1 denote the last time before τ (first time looking backwards) that
there is a contact between any two nodes. Suppose that, at time τ − T1, a
node denoted v1 copies a node denoted u1. As v1 is involved in no further
communications after time τ − T1, and neither is any other node, it is clear
that the state of v1 at time τ , and consequently the state of all nodes at
time τ , is fully determined by the state of all nodes other than v1 at time
τ − T1. We represent this by saying that the particle at v1 has moved to u1
and coalesced with the particle there at time τ − T1.
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As we continue following the process backwards from time τ − T1, there
may be a time τ − T2 at which some node v2 6= v1 copies some other node,
denoted u2. We are not interested in times before τ − T1 at which v1 copies
some other node, because that won’t affect the final state of v1. Again,
we represent this by the particle at v2 moving to u2. If u2 6= v1, then the
moving particle coalesces with the one occupying u2. If u2 = v1, then the
particle at u2 moves to v1 but there is no particle there to coalesce with.

The above is a verbal description of the process, looking backwards in time
from τ , but we would like a probabilistic model. What can we say about
the random time T1, which is the first time looking back from τ that a
contact occured between two nodes? Nodes becomes active at the points of
independent unit rate Poisson processes. It is worth noting that the time
reversal of a Poisson process is also a Poisson process of the same rate.
Hence, looking back from τ , node activation times are again independent
unit rate Poisson processes. When a node v becomes active, it contacts
a node u chosen uniformly at random (again, time reversal doesn’t change
this) and copies its state. In our description, this corresponds to the particle
at v moving to u, and coalescing with the particle already there, if any.
Thus, the process backwards from τ corresponds to particles performing
independent continuous time random walks on the complete graph until
they meet another particle and coalesce. Coalesced particles behave just
like any other particle. We thus arrive at the following probabilistic model
for the process looking back from τ .

Initially, there are n particles, one at each node of the complete graph.
Particles move independently of each other. Each particle waits for a random
time exponentially distributed with unit mean, then moves to a node chosen
uniformly at random (including itself). If there is a particle at that node, the
two particles coalesce, and henceforth behave as a single particle obeying the
same rules. It is clear from this description that the process can be modelled
as a Markov chain Zt, t ≥ 0 on the state space P(V ), the set of all subsets
of the vertex set. The state at time t denotes the set of nodes occupied by a
particle. The event that consensus has occured by time τ is then equivalent
to the event that the set Zτ of occupied nodes at time τ of the backwards-
time process is a set of nodes which all have the same initial condition in
the forward-time process. Thus, this event depends on the initial condition
in general. We would like to obtain a bound on the consensus time that
doesn’t depend on the initial condition. The only way to ensure that all
nodes in Zτ have the same initial state, irrespective of the initial condition,
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is if Zτ is a singleton set, i.e., consists of a single node. This is the case if
all n particles have coalesced into a single particle. We will now analyse the
distribution of the random time for this event to occur.

In a general graph, we would have to keep track of the locations of all
extant particles, but as we are working on the complete graph, all nodes are
identical. Hence, we only need to keep track of the number of particles at
any time t, which we shall denote by Wt. Let Tk denote the first time that
Wt = k. We have Tn = 0 as we start with n particles. We want to estimate
T1, the random time that all particles have coalesced to a single one. Now,
what can we say about Tk−1 − Tk? Each of the k particles alive at time
Tk becomes active according to a unit-rate Poisson process, and moves to
a node chosen uniformly at random from all n nodes (including its current
location). Using the fact that Bernoulli splittings of Poisson processes are
Poisson, we can model this by associating independent Poisson processes of
rate 1/n with each directed edge of a complete directed graph on n nodes.
If the Poisson clock on the directed edge (u, v) goes off, then the particle at
u moves to v and coalesces with the particle there, if any. As we are only
interested in coalescences, it is enough to look at those directed edges which
link occupied nodes. As there are k occupied nodes, there are k(k− 1) such
edges. Each of these has an independent rate 1/n Poisson clock associated
with it. Using the fact that superpositions of independent Poisson processes
are Poisson, the time until the clock on some edge between occupied nodes
rings is given by an Exp(k(k− 1)/n) random variable. When this happens,
two particles coalesce. Hence,

Tk−1 − Tk ∼ Exp
(k(k − 1)

n

)
, E[Tk−1 − Tk] =

n

k(k − 1)
= n

( 1

k − 1
− 1

k

)
.

Recalling that Tn = 0, we obtain that

E[T1] =
n∑
k=2

E[Tk−1 − Tk] = n− 1.

As we argued above, the random time T1 is an upper bound on the time to
consensus. Thus, the above result tells us that the mean time to consensus is
bounded above by n, the number of nodes. While we did not derive a lower
bound, this is in fact the correct scaling relationship. A more detailed but
tedious calculation shows that the mean time to consensus, starting from
an initial condition in which a fraction α of nodes are in state 0, is given
by nh(α), where h(α) = −α logα − (1 − α) log(1 − α) denotes the binary
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entropy function evaluated at α. Thus, the time to reach consensus on the
complete graph scales linearly in the number of nodes, in contrast to the
rumour spreading time, which scales logarithmically.

3 The voter model on general graphs

Let G = (V,E) be a directed graph. Each node v ∈ V can be in one of two
states, 0 or 1. We denote by Xv(t) the state of node v at time t, and by X(t)
the vector, (Xv(t), v ∈ V ). The process by which nodes change their state
is as follows. Associated with each directed edge (v, w) ∈ E is a Poisson
process of rate qvw > 0, at the points of which node v copies the state of
node w. The Poisson processes associated with distinct edges are mutually
independent. It follows from this description that X(t) is a Markov process.

We assume that the graph G is strongly connected, i.e., that there is a
directed path from v to w for every pair of nodes v, w. If there is such
a directed path, then node w can influence node v. Clearly, the all-0 and
all-1 states, which we denote by 0 and 1 respectively, are absorbing. The
assumption says that every node can influence every other node, and hence
that all states other than 0 and 1 form a single communicating class, from
which both these states are accessible. Hence, the Markov chain eventually
reaches one of these absorbing states, and we want to know the probability
of reaching 0 and 1 starting from an arbitrary initially state.

Note that the assumption of strong connectivity is essential for absorption
in one of these two states to be guaranteed. To see this, we consider a
counterexample. First, consider a graph consisting of 3 nodes: V = {u, v, w}
and E = {(v, u), (v, w)}. Consider the initial state, Xu(0) = 0, Xw(0) = 1,
and arbitrary Xv(0). In this graph, both u and w can influence v but v
can’t influence them, and they can’t influence each other. Hence, Xu(t) = 0
for all t ≥ 0, Xw(t) = 1 for all t ≥ 0, while Xv(t) keeps oscillating between
0 and 1. Hence, there is no absorption in this example. Equally, if the
graph is disconnected, there may be multiple absorbing states, one for each
connected component of the graph.

Let Q be a rate matrix (infinitesimal generator) with off-diagonal elements
qvw as specified above; the diagonal elements are then given by the require-
ment that the row sums should all be zero. Since Q is the rate matrix of
a finite state Markov chain on the state space V , it has an invariant distri-
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bution π, namely a probability vector on the vertex set V which solves the
global balance equations πQ = 0. Under the assumption that the graph is
strongly connected, the invariant distribution is unique, and strictly positive
(i.e., πv is not zero for any v ∈ V ). Define M(t) = πX(t), the product of
the row vector π and the column vector X(t). We now claim the following.

Lemma 2 The stochastic process M(t) = πX(t) =
∑

v∈V πvXv(t) is a mar-
tingale.

Proof. Observe that

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] =
∑

v∈V :Xv(t)=0

πvP(Xv(t+ dt) = 1|X(t))

−
∑

v∈V :Xv(t)=1

πvP(Xv(t+ dt) = 0|X(t)) + o(dt), (4)

since the possible changes in the state X(t) over an infinitesimal time interval
dt are the change in state of some single node from 0 to 1 or 1 to 0; by the
definition of M(t), a change in state of Xv from 0 to 1 increases M(t) by
πv, while a change from 1 to 0 decreases it by πv. Now, by the description
of the model,

P(Xv(t+ dt) = 1|X(t), Xv(t) = 0) =
∑

w:(v,w)∈E,Xw=1

qvwdt,

P(Xv(t+ dt) = 0|X(t), Xv(t) = 1) =
∑

w:(v,w)∈E,Xw=0

qvwdt.

In each case, we add up the rates qvw of contacting nodes w in the opposite
state to node v. Substituting these transition probabilities in (4), we get

E[M(t+ dt)−M(t)|(X(u), u ≤ t)]
=

∑
(v,w)∈E:

Xv(t)=0,Xw(t)=1

πvqvwdt−
∑

(v,w)∈E:
Xv(t)=1,Xw(t)=0

πvqvwdt+ o(dt)

=
∑

(v,w)∈E:Xv(t)=0,Xw(t)=1

(πvqvw − πwqwv)dt+ o(dt).

It is convenient to extend the sum to all vertex pairs (v, w) rather than just
(v, w) ∈ E; we may do this as qvw = 0 by definition whenever (v, w) /∈ E.
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Thus, we can rewrite the above equation as

E[M(t+ dt)−M(t)|(X(u), u ≤ t)]
=

∑
v,w∈V :Xv(t)=0,Xw(t)=1

(πvqvw − πwqwv)dt+ o(dt).

Now, let us add and subtract∑
v,w∈V :Xv(t)=0,Xw(t)=0

πvqvw ≡
∑

v,w∈V :Xv(t)=0,Xw(t)=0

πwqwv

on the RHS of above expression, to obtain that

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] =∑
v∈V :Xv=0

∑
w∈V

πvqvwdt−
∑

v∈V :Xv=0

∑
w∈V

πwqwvdt+ o(dt). (5)

Now, for each v ∈ V , observe that
∑

w∈V πvqvw = πv
∑

w∈V qvw = 0, since
the row sums of the rate matrix Q are zero. Moreover,

∑
w∈V πwqwv = 0

because π was assumed to be an invariant distribution, i.e., it satisfies the
global balance equations πQ = 0. Substituting in (5), we conclude that

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] = o(dt),

which implies that M(t) is a martingale, as claimed. �

It is now straightforward to compute the hitting probability of the all-zero
and all-one states, starting from an arbitrary initial condition X(0). Let
M(0) = πX(0) denote the value of the martingale corresponding to this ini-
tial condition. Let T denote the absorption time in one of the two absorbing
states, and note that it is a stopping time. Hence, by the Optional Stopping
Theorem, E[M(T )] = M(0) = πX(0). But

E[MT ] = P(X(T ) = 1) · π1 + P(X(T ) = 0) · π0

= P(X(T ) = 1) · 1 + P(X(T ) = 0) · 0.

It follows that

P(X(T ) = 1) = E[M(T )] = M(0) = πX(0).

Notice the similarity of the final result with that of the de Groot model.
There, the value on which consensus was reached was πX(0). Here, con-
sensus is reached on either 0 or 1, but the expected value is still the same,
πX(0). In particular, the invariant distribution π still determines the influ-
ence of different nodes or agents in determining the final outcome.
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