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1 Discrete time Markov chains

Example: A drunk is walking home from the pub. There are n lampposts
between the pub and his home, at each of which he stops to steady himself.
After every such stop, he may change his mind about whether to walk home
or turn back towards the pub, indepedent of all his previous decisions. He
moves homeward with probability p and pubward with probability 1 − p,
stopping when he reaches either. How do you describe his trajectory?

Let us look at the times that he reaches either a lamppost or the pub or
home. The lampposts are numbered 1 through n, the pub is at location 0
and his home is denoted n + 1. At each time t = 0, 1, 2, . . ., he may be at
any of these locations, and we’ll let Xt denote his location at time t. We
want to know P (Xt+1 = x|X0, . . . , Xt) for all x and t.

From the description above, it should be clear that, conditional on the
drunk’s trajectory up to time t, his position at the next time only depends
on Xt, i.e.,

P (Xt+1 = x|X0, . . . , Xt) = P (Xt+1 = x|Xt). (1)

This is called the Markov property, and a process having this property is
called a Markov process or Markov chain. By repeatedly using (1), we get

P (Xt+1 = x1, . . . , Xt+n = xn|X0, . . . , Xt)

= P (Xt+1 = x1, . . . , Xt+n = xn|Xt), (2)

for all t and n, and all possible states X0, . . . , Xt+n. In words, it says that
the future evolution of the process is conditionally independent of the past
given the present.

Formally, a discrete-time Markov chain on a state space S is a process Xt,
t = 0, 1, 2, . . . taking values in S which satisfies (1) or, equivalently, (2).
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In all the examples we see in this course the state space S will be discrete
(usually finite, occasionally countable). There is a theory of Markov chains
for general state spaces as well, but it is outside our scope.

Other examples

1. A toy model of the weather with, e.g., 3 states, Sunny, Cloudy, Rainy,
and transition probabilities between them.

2. A model of language with transition probabilities for, say, successive
letters in a word, or successive words in a sentence. A 1-step Markov
model may be simplistic for this. Suppose that, instead of having
memory 1, a process has some fixed, finite memory. Can it still be
modelled as a Markov chain?

3. The Ethernet protocol: A computer that has a packet to transmit over
the local area network starts in back-off stage 0 and attempts to trans-
mit it. Every time it fails (because the packet collides with another
computer that is trying to transmit at the same time), it increments
its back-off counter. The back-off counter tells it how long to wait be-
fore attempting again. Once the packet is successfully transmitted, the
back-off counter is reset to 0. In this example, the choice of state is im-
portant. If you choose the state as the value of the back-off counter in
each time step, then it is not Markovian (because its future evolution
depends on how long that back-off counter has had its present value,
not just what this value is). However, if you consider the “embedded
chain” of the counter values just after the back-off counter changes,
then this chain is Markovian.

What does it take to fully describe a Markov chain? Clearly, it suffices
to describe all the conditional probabilities in (2), for all t and n and all
possible combinations of states. In fact, it suffices to just specify the one
step transition probabilities P (Xt+1 = y|Xt = x) for all t, and all x, y ∈ S.
Why is this sufficient?

First note that we can represent all the one step transition probabilities in
the form of a matrix P (t) with entries Pxy(t) = P (Xt+1 = y|Xt = x). From
this, we can compute

P (Xt+2 = z,Xt+1 = y|Xt = x)

= P (Xt+1 = y|Xt = x)P (Xt+2 = z|Xt+1 = y,Xt = x)

= P (Xt+1 = y|Xt = x)P (Xt+2 = z|Xt+1 = y) = Pxy(t)Pyz(t+ 1),
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and so on.

Thus, to describe a Markov process, it suffices to specify its initial distri-
bution µ on S (which may be unit mass on a single state on S), and all
the one step transition probability matrices P (t), t = 0, 1, 2, . . .. We will
typically be interested in the case in which P (t) = P for all t. In this case,
P (Xt+s = y|Xs = x) is the same as P (Xt = y|X0 = x) for any s, t, x and
y. Such a Markov chain is called time homogeneous.

It is easy to see that, for time homogeneous Markov chains, P (Xt = y|X0 =
x) = (P t)xy. (Verify this explicitly for t = 2). In other words, the t-
step transition probability matrix is given by the tth power of the one step
transition matrix.

The transition probability matrix P has the property that all its entries are
non-negative and all its row sums are 1, i.e., Pxy ≥ 0 for all x, y ∈ S, and∑

y∈S Pxy = 1 for all x ∈ S. A matrix having these properties is called a
stochastic matrix.

Classification of states

Consider a Markov chain {Xt, t ≥ 0} on a discrete state space S. A state
x ∈ S is said to be recurrent if, starting from this state, the chain returns
to it with probability 1, i.e.,

P (∃t ≥ 1 : Xt = x|X0 = x) = 1.

It is called transient if this return probability is strictly smaller than 1. If
the state space S is finite, then the mean time to return to a recurrent state
is also finite, but this need not be the case if |S| is infinite. For example,
consider the simple symmetric random walk on the integers, specified by the
transition probabilities,

P (Xt+1 = x+ 1|X(t) = x) = P (Xt+1 = x− 1|X(t) = x) =
1

2
, x ∈ Z.

It can be shown that the probability of returning to 0 (say) is 1, but that
the mean return time is infinite.

State j is said to be accessible from state i if it is possible to go from i to j,
i.e., P tij > 0 for some t ≥ 0. In particular, each state is accessible from itself

since P 0
ii = 1. States i and j are said to communicate if i is accessible from

j and j from i. Note that this defines an equivalence relation. (A relation
R is said to be an equivalence relation if it is (a) symmetric: xRy implies
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yRx for all x and y, (b) reflexive: xRx for all x, and (c) transitive: xRy and
yRz together imply xRz for all x, y and z.) Hence, it partitions the state
space into equivalence classes, which are called communicating classes. (Sets
A1, A2, . . . are said to form a partition of A if ∪∞i=1Ai = A and Ai ∩ Aj = ∅
for all i 6= j.) Note that states in the same communicating class have to all
be transient or all be recurrent.

In our example of the drunkard’s walk, his home and the pub each form a
recurrent communicating class (a trivial one, consisting of a single state),
while all intermediate states (lampposts) are transient and form a single
communicating class, since there is a positive probability of going from any
lamppost to any other.

A finite state Markov chain eventually has to leave the set of transient states
and end up in one or other recurrent communicating class. A communicating
class is said to be closed if the probability of leaving it is zero. Every
recurrent communicating class is closed. The converse need not be true in
infinite-state chains. Finally, the Markov chain is said to be irreducible it
it consists of a single communicating class. In that case, we can talk of
the chain itself being transient or recurrent. If it is a finite-state chain, it
necessarily has to be recurrent.

Invariant distributions

Suppose we observe a finite-state Markov chain over a long period of time.
What can we say about its behaviour? If it starts in a transient state, it
will spend some time in a transient communicating class before entering one
or another recurrent class, where it will remain from then on. Thus, as far
as long-term behaviour is concerned, it is enough to look at the recurrent
classes. Moreover, each such communicating class can be studied in isolation
since the Markov chain never leaves such a class upon entering it. Finally,
the Markov chain within a single class is irreducible.

Hence, we restrict our attention in what follows to irreducible Markov chains.
Consider such a chain on a finite state space S, and let P denote its transition
probability matrix. We have:

Theorem 1 There is a unique probability distribution π on the state space
S such that πP = π.

It is easy to see that every stochastic matrix has the all-1 vector as a right
eigenvector corresponding to the eigenvalue 1. The above theorem says
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that the corresponding left eigenvector is also non-negative, and that there
is only such eigenvector corresponding to an eigenvalue of 1 if the matrix
corresponds to an irreducible chain. (The assumption of irreducibility is
necessary for uniqueness. The identity matrix is a stochastic matrix, but
all its eigenvalues are 1, and there are multiple non-negative eigenvectors.)
We won’t give a proof of this theorem, but one way is to use the Perron-
Frobenius theorem for non-negative matrices (of which stochastic matrices
are a special case).

The probability distribution π solving πP = π is called the invariant distri-
bution or stationary distribution of the Markov chain. The reason is that, if
the chain is started in this distribution, then it remains in this distribution
forever. More precisely, if P (Xt = x) = πx for all x ∈ S, then, for all y ∈ S,

P (Xt+1 = y) =
∑
x∈S

P (Xt = x,Xt+1 = y)

=
∑
x∈S

P (Xt = x)P (Xt+1 = y|X(t) = x)

=
∑
x∈S

πxPxy = (πP )y = π(y).

The invariant distribution describes the long-run behaviour of the Markov
chain in the following sense.

Theorem 2 (Ergodic theorem for Markov chains) If {Xt, t ≥ 0} is a
Markov chain on the state space S with unique invariant distribution π, then

lim
n→∞

1

n

n−1∑
t=0

1(Xt = x) = π(x) ∀ x ∈ S,

irrespective of the initial condition. The convergence holds almost surely.

The above theorem holds for both finite and countable state spaces, assum-
ing the invariant distribution exists, which it may fail to do in the countable
case, even if the Markov chain is irreducible and recurrent. An example is
the simple symmetric random walk, which has no invariant distribution.

The theorem says that π(x) specifies the fraction of time that the Markov
chain spends in state x in the long run. It states a law of large numbers for
the mean of the random variables 1(Xt = x), for any given x ∈ S. Note
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that this is a sequence of random variables which aren’t independent or
identically distributed, so this theorem is not just a corollary of the law of
large numbers in the iid case.

The two theorems above tell us that irreducible finite-state Markov chains
have unique invariant distributions, and that these can be related to the
average time spent by the Markov chain in each state. But how do we
compute the invariant distribution?

In general, we can do this by solving a system of linear equations. Denote
by n the total number of states. Then, the matrix equation π = πP or,
equivalently, π(I − P ) = 0 corresponds to a system of n equations in n
variables. However, only n− 1 of these equations are linearly independent,
which is reflected in the fact that there isn’t a single solution, but a one-
dimensional subspace of solutions: if π is a solution of π(I−P ) = 0, then so
is any multiple of π. But the particular solution we are interested in is also
a probability distribution, which means that it must satisfy the additional
equation π1 = 1, where 1 denotes the all-ones vector of size n. The system
of equations πP = π can be written out as

πj =
∑
i∈S

πipij . (3)

These are called the global balance equations for the Markov chain.

Reversibility

An irreducible Markov chain is said to be reversible if the probability law of
the chain is the same observed either forwards or backwards in time. More
precisely, all finite-dimensional distributions are the same in forward and
reverse time:

P (Xt1 = x1, Xt2 = x2, . . . , Xtk = xk)

= P (Xs−t1 = x1, Xs−t2 = x2, . . . , Xs−tk = xk), (4)

for all k ∈ N, s, t1, t2, . . . , tk ∈ Z and x1, . . . , xk ∈ S.

We first note that a reversible Markov chain must be stationary. To see this,
observe from (4) that

P (Xt1+s = x1, Xt2+s = x2, . . . , Xtk+s = xk)

= P (X−t1 = x1, X−t2 = x2, . . . , X−tk = xk). (5)
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But (4) holds for all s ∈ Z. In particular, it holds for s = 0, which means
that

P (Xt1 = x1, Xt2 = x2, . . . , Xtk = xk)

= P (X−t1 = x1, X−t2 = x2, . . . , X−tk = xk). (6)

By (5) and (6), we have shown that

P (Xt1+s = x1, Xt2+s = x2, . . . , Xtk+s = xk)

= P (Xt1 = x1, Xt2 = x2, . . . , Xtk = xk),

for arbitrary s ∈ Z, which is the definition of stationarity.

Theorem 3 A stationary Markov chain is reversible if and only if there
exists a collection of non-negative numbers πj, j ∈ S, summing to unity
which solve the detailed balance equations

πjpjk = πkpkj , ∀ j, k ∈ S. (7)

When there exists such a collection (πj), it is the invariant distribution of
the Markov chain.

Proof. Suppose first that the process is reversible. Then, as seen above, it
must be stationary, so P (Xt = j) doesn’t depend on t. Define πj = P (X0 =
j). Clearly πj ≥ 0 and

∑
j∈S πj = 1. Since the process is reversible,

P (Xt = j,Xt+1 = k) = P (Xt+1 = j,Xt = k)

for all j, k ∈ S, i.e.,
πjpjk = πkpkj , ∀ j, k ∈ S.

Conversely, suppose there is a collection of non-negative πj summing to
unity and satisfying (7). Then, summing (7) over k ∈ S, we get

πj =
∑
k∈S

πkpkj ∀ j ∈ S.

Since these are the global balance equations and π is a probability vector
solving them, π is the invariant distribution of the chain. Thus, if the Markov
chain is stationary, then

P (Xt = j0, Xt+1 = j1, . . . , Xt+m = jm) = π(j0)pj0,j1 · · · pjm−1,jm ,
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and

P (Xτ = jm, Xτ+1 = jm−1, . . . , Xτ+m = j0) = πjmpjm,jm−1 · · · pj1,j0 ,

for arbitrary t, τ and m, and arbitrary j0, . . . , jm ∈ S. Now, by (7), the two
right hand sides above are equal. Thus, taking s = t+ τ +m, we get

P (Xt = j0, Xt+1 = j1, . . . , Xt+m = jm)

= P (Xs−t = j0, Xs−(t+1) = j1, . . . , Xs−(t+m) = jm),

for all j0, . . . , jm. In other words, Xt, Xt+1, . . . , Xt+m have the same joint
distribution as Xs−t, Xs−(t+1), . . . , Xs−(t+m). This completes the proof. �

If we know that a certain Markov chain is reversible, then it is much easier
to compute the invariant distribution; we only need to solve the system
of equation πxPxy = πyPyx for all x, y ∈ S along with the normalisation∑

x∈S πx = 1.

But this seems to bring up a circularity. How do we know that a Markov
chain is reversible before computing its invariant distribution, since re-
versibility is defined in terms of the invariant distribution? The answer
is that we don’t, but if we optimistically assume it to be the case and try
to solve for π, then we will find a solution if and only if the Markov chain
is reversible. (Otherwise, we will come across an inconsistency.) We now
illustrate this with an example, which is in fact on a countable state space.

Birth and death Markov chains

Let {Xt, t ≥ 0} be a Markov chain on the state space {0, 1, 2, . . .} with
transition probabilities given by Pk,k+1 = pk and Pk,k−1 = qk = 1 − pk for
all k ≥ 1, while P01 = 1.

Let us suppose that this Markov chain is reversible and try to compute its
invariant distribution. Defining p0 = 1, we obtain the equations

πkqk = πk−1pk−1, k ≥ 1

These equations have the non-negative solution

πk = π0

∏k−1
j=0 pj∏k
j=1 qj

.

8



The solution can be normalised to a probability distribution by a suitable
choice of π0 provided that

∞∑
k=1

∏k−1
j=0 pj∏k
j=1 qj

<∞. (8)

For an arbitrary sequence pn, n = 0, 1, 2, . . ., it is hard to tell whether
the condition in (8) is satisfied. One special case is when pn = p and
qn = q = 1− pfor all n ≥ 1. In that case, we can rewrite (8) as

∞∑
k=1

( p

1− p

)k
<∞,

which is satisfied if and only if p < 1−p, i.e., p < 1/2. Under this condition,
the Markov chain is reversible with unique invariant distribution

πk = (1− ρ)ρk where ρ =
p

1− p
< 1.

If p > 1 − p, then the Markov chain is transient and escapes to infinity.
If p = 1 − p, we have the simple symmetric random walk, but reflected at
the origin. In this case, the Markov chain is recurrent but fails to have an
invariant distribution. (The mean return time to any state is infinite. This
situation is called null-recurrence.)

To summarise the above discussion, we have shown that birth-death chains
are always reversible provided they have an invariant distribution, i.e., if
they are not transient or null-recurrent. If we were to restrict the birth-
death chain to a finite state space by having a reflecting boundary at some
level n (so that Pn,n−1 = 1), then the resulting finite-state chain would
always be reversible.

2 Continuous time Markov chains

Consider a continuous time process Xt, t ≥ 0 on a discrete state space S.
The process is called a continuous time Markov chain (CTMC) or a Markov
process on this state space if

P (Xt+s = y|{Xu, u ≤ s}) = P (Xt+s = u|Xs), (9)
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for all states y and all s, t ≥ 0. In words, this again says that the future is
conditionally independent of the past given the present.

If the above probability only depends on t and Xs but not on s, then we say
that the Markov chain is time homogeneous. In that case, we can represent
the conditional probabilities in (9) in the form of a matrix P (t) with entries

Pxy(t) = P (Xt+s = y|X(s) = x) = P (Xt = y|X0 = x).

(Warning: I have used notation somewhat inconsistently. P (t) doesn’t cor-
respond to the same thing as what I called P (t) in the discrete time setting.
There, it referred to the one-step transition probabilites at time step t in a
time-inhomogeneous chain. Here, I am using it for transition probabilities
over a period of length t (or t time steps in the discrete analogue) for a
time-homogeneous chain.)

Whereas in the discrete time case, if the Markov chain was time homoge-
neous, its transition probabilities could be described by a single matrix P ,
here we seem to need a separate matrix P (t) for each time interval t. The
matrices {P (t), t ≥ 0} satisfy the following properties:

P (0) = I, P (t+ s) = P (t)P (s). (10)

(Why?)

Poisson process: This is a counting process Nt, t ≥ 0, (an integer-valued
process which counts the number of ‘points’ or ‘events’ up to time t). We
say that a counting process is a Poisson process of rate (or intensity) λ if
the following hold:

• [1] The random variable Nt+s −Nt is independent of {Nu, 0 ≤ u ≤ t},
for all s, t ≥ 0.

• [2] The random variable Nt+s − Nt has a Poisson distribution with
mean λs, i.e.,

P (Nt+s −Nt = k) =
(λs)k

k!
e−λs, k = 0, 1, 2, . . . (11)

Property 2 above can be equivalently restated in either of the following two
ways:
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• [2a] For all t ≥ 0,

P (Nt+h −Nt = 1) = λh+ o(h)

P (Nt+h −Nt = 0) = 1− λh+ o(h)

P (Nt+h −Nt ≥ 2) = o(h),

where, for a function f , we write f(h) = o(h) if f(h)/h→ 0 as h→ 0.
Loosely speaking, we say a function is o(h) if it tends to zero faster
than h.

• [2b] Let T1, T2, T3, . . . be the increment times of the counting process
(Nt, t ≥ 0), i.e.,

Tn = inf{t ≥ 0 : Nt ≥ n}.

The process (Nt, t ≥ 0) is a Poisson process of rate λ if the random
variables Tn+1 − Tn are independent and identically distributed (iid)
with the Exp(λ) distribution, i.e., P (Tn+1 − Tn ≥ t) = exp(−λt) for
all t ≥ 0.

Recall that a random variable X has the Exp(λ) distribution if P (X > t) =
e−λt. Now, by Bayes’ theorem,

P (X > t+s|X > t) =
P (X > t+ s ∩X > t)

P (X > t)
=

exp(−λ(t+ s))

exp(−λt)
= P (X > s).

If we think of X as the time to occurence of an event, then knowing that the
event hasn’t occured up to time t tells us nothing about how much longer
we need to wait for it to occur; the distribution of the residual time until it
occurs doesn’t depend on how long we have already waited. This is referred
to as the memoryless property of the exponential distribution.

We shall establish the equivalence of [2], [2a] and [2b] by showing that [2]⇒
[2a]⇒ [2b]⇒ [2]. The first implication is obvious by letting s tend to zero.

For the second implication, it suffices to show that T1 has an Exp(λ) distri-
bution since, by [1], T1, T2 − T1, T3 − T2, . . . are iid. Let F denote the cdf
of T1. Observe that

P (T1 ∈ (t, t+ h]) = P (Nt = 0, Nt+h −Nt ≥ 1)

= P (Nt = 0)P (Nt+h −Nt ≥ 1|Nu = 0, 0 ≤ u ≤ t)
= P (Nt = 0)P (Nt+h −Nt ≥ 1)

= (1− λh+ o(h))P (T1 > t),
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where the third equality follows from [1] and the last equality from [2a]. The
above equation implies that

P (T1 ∈ (t, t+ h]|T1 > t) = 1− λh+ o(h),

i.e., that 1 − F (t + h) = (1 − λh + o(h))(1 − F (t)). Letting h tend to zero,
we obtain F ′(t) = −λ(1− F (t)). Solving this differential equation with the
boundary condition F (0) = 0, we get F (t) = 1− exp(−λt), which is the cdf
of an Exp(λ) random variable. Thus, we have shown that T1 has an Exp(λ)
distribution, as required.

To show the last implication, we show (11) by induction on k. Without loss
of generality, let t = 0. For k = 0, (11) reads P (Ns = 0) = e−λs. Since the
event Ns = 0 is the same as T1 > s, this follows from the exponential distri-
bution of T1. Next, suppose that (11) holds for all j ≤ k. By conditioning
on the time to the first increment, we have

P (Ns = k + 1) =

∫ s

0
f(u)P (Ns = k + 1|Nu = 1)du

=

∫ s

0
f(u)P (Ns−u = k)du

=

∫ s

0
λe−λu

(λ(s− u))k

k!
e−λ(s−u)du

= e−λs
(λs)k+1

(k + 1)!
.

Here, f is the density function of T1, the time to the first increment. The
second equality follows from [1], and the third from [2b] and the induction
hypothesis. Thus, we have shown that [2b] implies [2], completing the proof
of the equivalence of [2], [2a] and [2b].

The reason that this process is called a Poisson process is that the number
of points within an interval of duration t has a Poisson distribution, with
mean λt. Intuitively, you can think of each infinitesimal interval of length
dt as having a point with probability λdt, and no points with probability
1 − (λdt). The probability of having two or more points is of order (dt)2,
which is negligible.(This is a restatement of [2a]).

The Poisson process also has the property that the numbers of points in
disjoint intervals are mutually independent random variables. Key to this
indepedence is the memoryless nature of the exponential distribution, which
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describes the time between successive points or events. This is what makes
the Poisson process a Markov process.

Chapman-Kolmogorov equations

It turns out that the Poisson process contains most of the features of general
continuous-time Markov processes. Let us return to such a process on a
countable state space S, with transition probability matrices {P (t), t ≥ 0}.
We saw earlier that these matrices obeyed equation (10). Thus,

P (t+ δ)− P (t) = P (t)(P (δ)− I) = (P (δ)− I)P (t).

This suggests that, if 1
δ (P (δ)−I) converges to some matrix Q as δ decreases

to zero, then
P ′(t) = QP (t) = P (t)Q. (12)

This is correct if the Markov process is finite-state, so the matrices P (t) are
finite-dimensional. For countable state chains, the first equality still holds
but the second may not. The two equalities are known, respectively, as
the Chapman-Kolmogorov backward and forward equations. The equations
have the solution

P (t) = eQt = I +Qt+
(Qt)2

2!
+ . . .

What does the matrix Q look like? Since P (δ) and I both have all their row
sums equal to 1, it follows that the row sums of P (δ) − I, and hence of Q
must all be zero. Morever, all off-diagonal terms in P (δ) are non-negative
and those in I are zero, so Q must have non-negative off-diagonal terms.
Thus, in general, we must have

qij ≥ 0 ∀ i 6= j; qii = −
∑
j 6=i

qij ,

where qij denotes the ijth term of Q. Define qi = −qii, so qi ≥ 0. In fact,
qi > 0 unless i is an absorbing state. (Why?)

The matrix Q is called the generator (or infinitesimal generator) of the
Markov chain. The evolution of a Markov chain can be described in terms
of its Q matrix as follows. Suppose the Markov chain is currently in state
i. Then it remains in state i for a random time which is exponentially
distributed with parameter qi. In particular, knowing how long the Markov
chain has been in this state gives us no information about how much longer

13



it will do so (memoryless property of the exponential distribution). At the
end of this time, the chain jumps to one of the other states; the probability
of jumping to state j is given by qij/

∑
k 6=i qik = qij/qi, and is independent

of how long the Markov chain spent in this state, and of everything else in
the past.

If we observed the CTMC only at the jump times, we’d get a DTMC on
the same state space, with transition probabilities pij = qij/qi. Conversely,
we can think of a CTMC as a DTMC which spends random, exponentially
distributed times (instead of unit time) in each state before transiting to
another state.

In particular, everything we said about recurrence, transience, communicat-
ing classes and irreducibility translates to CTMCs.

Theorem 4 Suppose {Xt, t ≥ 0} is an irreducible Markov process on a
finite state space S. Then there is a unique probability distribution π on S,
called the invariant distribution, such that πQ = 0. Moreover, for all j ∈ S,

π(j) = lim
t→∞

1

t

∫ t

0
1(X(t) = j)dt.

It is left to you as an exercise to show that, if πQ = 0, then πP (t) = π for
all t ≥ 0, where P (t) = eQt.

Reversibility

A CTMC on S is said to be reversible if there is a probability distribution
π on S such that πiqij = πjqji for all i, j ∈ S. Then π is also the invariant
distribution of the Markov chain. To see this, observe that for all j ∈ S,

(πQ)j =
∑
i∈S

πiqij =
∑
i∈S

πjqji = πj
∑
i∈S

qji = 0.

To obtain the second equality above, we have used the definition of re-
versibility. Then, since πj is a constant that does not depend on the index i
in the sum, we can pull it out of the sum. Finally, we use the fact that the
row sums of Q are zero.

Example: The M/M/1 queue

This is a just a birth-death process in continuous time but can be interpreted
in terms of a queue. This and other models of queues find a variety of appli-
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cations in describing communication networks, insurance, water reservoirs
etc.

Consider a queue into which customers arrive according to a Poisson process
of intensity λ. In other words, customers arrive at random times T1, T2, . . .,
and Tk − Tk−1 form an iid sequence of Exponential(λ) random variables.
The kth customer requires service for a random length of time, which is
Exponential(µ), and service times of different customers are iid. There is
a single server, which serves customers in the order of their arrival. We’ll
assume that λ < µ, i.e., it takes less time to serve a customer on average
(1/µ) than it takes until the next customer arrives (1/λ on average). If this
were not the case, then the queue would become infinitely long.

In the notation for this type of queue, the first M refers to the arrival process
being Markovian, the second M to the service process being Markovian, and
the 1 to the number of servers. An M/G/2 queue would have Markovian
arrivals, general service time distribution, and two servers.

Let Xt denote the number of customers in the queue at time t. We show that
Xt evolves as a Markov process. If Xt = 0, then the next event has to be the
arrival of a new customer, and the time to this arrival is Exponential(λ),
independent of how long the chain has been in state 0, or anything else
about its past. Thus, q0 = λ, i.e., q00 = −λ. Since the chain can only
move to state 1 from state 0, and the Q matrix has rows summing to zero,
it must be that q01 = λ. Next, suppose Xt = n for some n > 0. The next
event could be either the arrival of a new customer or the departure of the
customer currently being served. Think of these as two clocks running in
parallel, one of which (new arrival) will go off after an Exponential(λ) time,
and the other (departure) after an Exponential(µ) time. How long is it till
one of these goes off, and what are the chances of each of them being first?

To answer that, let X and Y be independent exponential random variables
with parameters λ and µ, describing the random times that clocks A (arrival)
and S (service) go off, respectively. Then,

FX(t) = 1− e−λt, FY (t) = 1− e−µt.

Let Z = min{X,Y } denote the time until the first of these two clocks goes
off. We want to compute the cdf of Z and find out what the probability is
that Z = X (i.e., a new arrival happens before the service of the customer
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at the head of the line is completed). Observe that

P (Z > t) = P (min{X,Y } > t) = P (X > t, Y > t)

= P (X > t)P (Y > t) = e−(λ+µ)t,

so that FZ(t) = 1 − e−(λ+µ)t. Thus, the time Z to the next jump of the
Markov chain is exponentially distributed with parameter λ + µ. Hence,
qn = λ + µ, where qnn = −qn denotes the nth diagonal element in the Q
matrix.

What are the probabilities that the next jump corresponds to an arrival or
departure respectively? We can compute P (Y > X) by conditioning on all
possible values of X. We have,

P (Y > X) =

∫ ∞
0

fX(x)P (Y > X|X = x)dx

=

∫ ∞
0

fX(x)P (Y > x)dx (by the independence of X and Y )

=

∫ ∞
0

λe−λxe−µxdx =
λ

λ+ µ
.

This is the probability that the next jump corresponds to an arrival (clock
A goes off before clock B). The complementary probability µ

λ+µ is the prob-
ability that the customer in service departs before the next arrival. Letting
qn,n+1 and qn,n−1 denote the elements of the Q matrix corresponding to the
transitions from n to n + 1 and n − 1 customers respectively, it must then
be the case that

qn,n+1

qn,n+1 + qn,n−1
=

λ

λ+ µ
,

qn,n−1
qn,n+1 + qn,n−1

=
µ

λ+ µ
.

Combining this with the fact that qn,n+1 + qn,n−1 = qn = λ+µ, we get that
qn,n+1 = λ and qn,n−1 = µ.

Thus, we have fully specified the Q matrix, which means we have fully
described the Markov process. It is left as an exercise to you to check that
this Markov process is reversible with the invariant distribution π given by

πn = (1− ρ)ρn, n ≥ 0, where ρ =
λ

µ
< 1.
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