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1 Time reversal of Markov chains

In studying the M/M/1 queue, we made use of reversibility in order to
compute its invariant distribution. While this could have been done, in
principle, by solving the global balance equations, reversibility made it much
easier as we only needed to solve the local balance equations. This becomes
even more important when trying to obtain the invariant distribution of
Markov chains whose state space is multi-dimensional, as is the case for
networks of queues. (For an M/M/1 queue, the state space is Z+, the set of
non-negative integers, whereas for a network of d such queues, it would be
Zd+.) In general, there is no good way of obtaining the invariant distribution
unless the Markov chain is reversible. Unfortunately, not all Markov chains
of interest are reversible! However, there is a class of queueing networks
called Jackson networks which, while they aren’t reversible, can be analysed
using techniques related to time reversal. So we’ll start with a study of those
ideas, leading up to the development of Kelly’s lemma.

Let (Xt, t ∈ R) be a continuous time Markov chain on some countable state
space S, with transition rate matrix Q. Recall that any probability vector
π on the state space S which solves the global balanace equations πQ = 0
(or, writing it out componentwise,

∑
j 6=k πjqjk = −πkqkk = πk

∑
j 6=k qkj for

all k ∈ S) is an invariant distribution of this Markov chain. If an invariant
distribution exists, then it is unique if the Markov chain is irreducible (i.e.,
it is possible to move between any two states, though not necessarily in one
step).

We say that the Markov chainXt is stationary ifXt has the same distribution
as Xt+u for any u and, similarly, all finite-dimensional distributions are left
unchanged by a time shift: the joint distribution of (Xt1 , Xt2 , . . . , Xtk) is the
same as the joint distribution of (Xt1+u, Xt2+u, . . . , Xtk+u) for all u, and all
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k and t1, t2, . . . , tk. This implies that for any fixed t, Xt has distribution π,
and for any fixed t1 ≤ t2 ≤ tk, the joint distribution of (Xt1 , Xt2 , . . . , Xtk)
is given by

P (Xt1 = x1, Xt2 = x2, . . . , Xtk = xk)

= πx1e
Q(t2−t1)(x1, x2) · · · eQ(tk−tk−1)(xk−1, xk),

where eQt(i, j) denotes the ijth element of the matrix eQt.

Warning: Stationarity only implies that the marginal distribution at any
fixed time is the invariant distribution π. It doesn’t imply that joint distri-
butions are products of the invariant distribution; P (Xt1 = x1, Xt2 = x2) 6=
π(x1)π(x2). It also doesn’t say anything about random times. For exam-
ple, the distribution at the first time after 0 that the Markov chain visits x
(a random time) is obviously unit mass concentrated at x rather than the
invariant distribution π.

Suppose that the Markov chain (Xt, t ∈ R) is irreducible with unique in-
variant distribution π, and that it is stationarity. Let Yt = Xs−t denote its
time reversal around some fixed time s. Then (Yt, t ∈ R) is also a stationary
continuous-time Markov chain, with the same invariant distribution π but
with transition rate matrix Q̃ given by

q̃jk =
πkqkj
πj

, j, k ∈ S.

The intuition is that, in the long term, the rate at which one observes jumps
from j to k in forward time is πjqjk. This is because the Markov chain
spends a fraction πj of its time in state j and, when in state j, jumps to
state k occur at rate qjk. So this should also be the rate at which we observe
jumps from k to j for the reversed process. But for the reversed process, by
the same reasoning, this rate is π̃kq̃kj , where π̃ is the invariant distribution
of the reversed process. Hence,

πjqjk = π̃kq̃kj .

But the invariant distribution is the same as the long-term fraction of time
spent in each state (by the ergodic theorem for Markov chains), and hence
is the same whether we are watching the process in forward or reverse time.
So π̃k = πk. Substituting this above, we get q̃kj = πjqjk/πk, as claimed.
We have only made this argument intuitively so far (we took for granted
that the time reversal was Markovian, for instance). See the proof of Kelly’s
lemma below for full details.
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We found reversibility very useful in computing invariant distributions be-
cause it meant that we could solve local or detailed balance equations rather
than global balance equations, and usually the local balance equations are
simpler. There is a similar way in which time reversal can help; if we can
guess the invariant distribution, it gives an easy way of verifying if the guess
is correct.

Lemma 1 (Kelly’s lemma) Let {Xt, t ∈ R} be a stationary CTMP with
transition rates qij. If we can find a set of non-negative numbers q̃ij, i, j ∈ S,
and non-negative numbers πj, j ∈ S summing to one, such that∑

k 6=j
q̃jk =

∑
k 6=j

qjk ∀ j ∈ S, (1)

πjqjk = πkq̃kj ∀ j, k ∈ S, (2)

then the q̃jk are the transition rates for the reversed process and π is an
invariant distribution for both forward and reversed processes.

Proof. If π and Q̃ satisfy the assumptions of the lemma, then for each k ∈ S,
we have ∑

j 6=k
πjqjk =

∑
j 6=k

πkq̃kj by (2)

= πk
∑
j 6=k

qkj by (1)

= −πkqkk,

where the last equality holds because the row sums of the Q matrix are zero
by definition. So π satisfies the global balance equations πQ = 0. Since πj
sum to 1 by the assumptions of the lemma, π is an invariant distribution.

It remains to show that the reversed process is Markovian with transition
rates q̃jk. Fix s ∈ R and define Yt = Xs−t for all t ∈ R. Now, for {Yt, t ∈
R} to be a Markov process, we require that for all τ ∈ R, {Yt, t < τ} is
conditionally independent of {Yt, t > τ} given Yτ . But this is the same as
requiring that {Xt, t > s−τ} be conditionally independent of {Xt, t < s−τ}
given Xs−τ , which holds by the Markov property of the {Xt} process. Hence,
{Yt} is a Markov process.
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We now compute its transition rates. We have

P (Yt+h = k|Yt = j) = P (Xs−t−h = k|Xs−t = j)

=
P (Xs−t−h = k,Xs−t = j)

P (Xs−t = j)

=
P (Xs−t−h = k)P (Xs−t = j|P (Xs−t−h = k)

P (Xs−t = j)

=
πk(qkjh+ o(h))

πj
.

Taking limits as h tends to zero, we see that the transition rates of the
reversed process are q′kj = πkqkj/πj , which is the same as q̃kj given in the
statement of the lemma. Finally, we need to check that π also satisfies the
global balance equations for the transition rates Q̃. This is exactly analogous
to the corresponding proof of πQ = 0 and is omitted. This completes the
proof of the lemma. �

2 Jackson networks

We shall now turn our attention to studying a special class of networks
of queues, called Jackson networks. These are very popular in practical
applications of queueing theory, in part because it is possible to explicitly
calculate their invariant distribution, and it has a particularly simple form.

A network consisting of a finite number, J , of queues is called a Jackson
network if:

1. The arrival processes into different queues are independent Poisson
processes. Let ηj denote the external arrival rate into queue j.

2. Each queue has a single server operating a FCFS policy, and the service
times of customers at each queue are iid exponential random variables,
with distribution Exp(µj) at the jth. Moreover, the service times at
different queues are mutually independent.

3. Routing is Markovian: a customer finishing service at queue j is routed
to queue k with some fixed probability rjk, and leaves the system

with probability rj0 = 1 −
∑J

k=1 rjk. Routing decisions are mutually
independent, and independent of the past history of customers (for
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example, their arrival and service times, and their route through the
network up to that time).

4. The network is open, i.e., with probability one, every customer can
only visit finitely many queues before leaving the network.

The routing matrix R has non-negative entries, and all its row sums must be
less than or equal to 1, as

∑J
j=1 rij is the probability that a customer leaving

queue i is routed to some other queue, rather than leaving the network. Such
a matrix is called substochastic. (Recall that it is called stochastic if the
entries are non-negative and all the row sums are equal to 1.) Note that it
is possible for rjj to be positive, i.e., a customer leaving a queue may return
to it immediately. More generally, a customer may also return after visiting
some other queues. But we cannot have rjj = 1, nor can it be possible for a
customer to revisit any queue with probability 1 because that would require
the customer to circulate around the network forever, which contradicts the
requirement for the network to be open. In particular, at least some of the
row sums of the R matrix have to be strictly smaller than 1. Thus, the
picture of a Jackson network is that a customer enters some queue, visits
a deterministic or random subset of queues (possibly more than once), and
eventually leaves the network.

2.1 Traffic equations

Consider a single queue in a Jackson network in isolation. It gets external
arrivals according to a Poisson process. In addition, customers also enter
the queue after having been served at some other queue and being rerouted.
Let us denote by λj the total arrival rate into queue j, of both new and
rerouted customers. How can we compute λj?

Suppose each queue in the network is stable, i.e., the queue length doesn’t
grow unboundedly over time. Then, it must be the case that, in the long
run, every customer entering the queue must eventually leave the queue
(otherwise the queue would build up). Hence, the long-run departure rate
from queue j must be the same as the long-run arrival rate, which we denoted
λj . Now, the arrivals into queue j are made up of the external arrivals, as
well as departures from other queues that get routed to it. Hence, we must
have

λj = ηj +
J∑
i=1

λirij , j = 1, . . . , J, (3)
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since a fraction rij of all departures from queue i are routed to queue j.
These equations, one for each j = 1, . . . , J , are called the traffic equations.
We can write them in matrix form as

λ = η + λR, (4)

where λ and η are row vectors, and R is the J × J routing matrix withe
entries rij . The traffic equations have a unique solution, given by

λ = η(I −R)−1 = η
(
I +R+R2 +R3 + . . .

)
. (5)

The reason that the matrix I −R is invertible, and that the series I +R+
R2 + . . . converges, has to do with the assumption of the Jackson network
being open. The intuition is as follows. The ijth element of the matrix
Rn is the probability that a customer leaving queue i ends up in queue j
after n routing steps (rij is the probability of going from queue i to queue
j in one step); hence

∑∞
n=1(R

n)ij denotes the expected total number of
visits to queue j made by a customer leaving queue i before it leaves the
system. The assumption that the queueing network is open is equivalent to
the assumption that this expected total number of visits is finite for every
pair of queues; a customer can’t circulate around for ever.

Examples

1. Consider a network of 3 queues with external arrival rate η1 = 2 into
the first queue, no external arrivals into the other queues, and with
routing matrix

R =

0.3 0.5 0
0 0.2 0.8

0.3 0 0.7


The traffic equations can be written as

λ1 = η1 + 0.3λ1 + 0.3λ3,

λ2 = 0.5λ1 + 0.2λ2,

λ3 = 0.8λ2 + 0.7λ3.

Solving these equations, we obtain λ1 = 10, λ2 = 25
4 and λ3 = 50

3 .

2. Consider the same network above but with routing matrix

R =

0.3 0.5 0
0 0.2 0.8
0 0.3 0.7


6



This network is not open since customers who enter queues 2 or 3 can’t
leave this subset of queues. Hence, the total number of customers in
these two queue will tend to infinity over time, though some customers
who enter the system will leave, since r10 = 1− 0.8 = 0.2 > 0.

3. Consider the same network above but with routing matrix

R =

0.3 0 0
0 0.2 0.8
0 0.3 0.7


The network is again not open. In this case though, all customers who
enter queue 1 eventually leave the network (after a geometric number
of returns to queue 1), and there are no arrivals into queues 2 or 3.
If there are any customers in this subset of queues initially, they will
continue to circulate forever, but these queues won’t grow over time.

2.2 Invariant distribution of Jackson networks

Consider a Jackson network with J nodes, and let X(t) = (X1(t), . . . , XJ(t))
denote the vector of queue lengths at time t. Then, (X(t), t ∈ R) is a contin-
uous time Markov process (CTMP). To see this, note that the conditional
distribution of X(t + s) given X(u) for all u ≤ t depend only on X(t) and
on the arrivals, services and routing decisions between times t and t+ s. By
the assumptions defining a Jackson network, these are independent of X(u),
u < t (and also of X(t)).

Let us now compute the transition rates of this CTMP. Suppose the Markov
process is in state n ∈ ZJ+. What are the possible transitions from this
state? The process could go to state n + ei if there is an external ar-
rival into queue i. (Here, ei denotes the ith unit vector, namely the vector(
0 . . . 0 1 0 . . . 0

)
where there is a 1 in the ith position and zeros

elsewhere.) If ni ≥ 1, it could also go to state n − ei if there is a service
at queue i, and the customer departs the system upon service, or to state
n−ei+ej if there is a service at queue i and the customer is thereupon routed
to queue j. We can write down the rates for all these transitions in terms
of the external arrival rates, the service rates and the routing probabilities.
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We have

q(n,n + ei) = ηi, (6)

q(n,n− ei) = µiri01(ni ≥ 1), (7)

q(n,n− ei + ej) = µirij1(ni ≥ 1). (8)

We want to compute the invariant distribution of this CTMP. The direct
approach to doing so would be to solve the global balance equations, but it
isn’t obvious how to solve them (and since they are a system of infinitely
many simultaneous equations, they can’t be solved numerically). So we shall
approach it indirectly, using Kelly’s lemma. In order to use Kelly’s lemma,
we need to guess at both the invariant distribution and the transition rates
of the time reversed Markov chain, and then verify that the guess is correct.

We start with the time reversal. Consider the Jackson network described
above. What is the rate at which customers enter queue i from outside in
the reversed process? In the long run, this has to be the same as the rate
at which customers from queue i depart the system in the forward process.
Since customers enter queue i at total rate λi (here λ is the solution of
the traffic equations and λi includes both external arrivals and rerouted
customers), then this must also be the total rate at which customers leave
queue i, assuming that the queue is stable, i.e., that λi < µi. Of all customers
leaving queue i, a fraction ri0 depart the system. Hence, the long run rate
at which customers from queue i depart the system in the forward process
is λiri0. This leads us to guess that this is the rate of external arrivals into
queue i for the reversed process which we denote η̃i, i.e., that

η̃i = λiri0, i = 1, . . . , J. (9)

Note that it is far from obvious that the process of departures from some
queue to outside the network (and hence the arrival process in reverse time)
is Poisson. At this point, we are simply guessing that it is so and writing
down our guess for the corresponding transition rates.

Likewise, if we assume that the time reversal is also a Jackson network, we
can guess its various other parameters. The service rate at queue i, which
is the reciprocal of the mean time between when a customer starts being
served and finishes being served, is the same in forward and reverse time
(start and finish reverse roles, which leaves the time between start and finish
unchanged). Likewise, the total rate at which customers enter, or depart, a
queue is the same in forward and reverse time provided all queues are stable,
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so that all arrivals depart. Using tildes to denote time-reversed parameters,
we can thus write

λ̃i = λi, µ̃i = µi, i = 1, . . . , J. (10)

Next, the rate at which customers move from queue i to queue j in forward
time is λirij , since they leave queue i at rate λi and a fraction rij of them
move to queue j. This has to be the same as the rate at which customers
move from queue j to queue i in reversed time which, by the same reasoning,
is λ̃j r̃ji. From this, we obtain the routing parameters of the time-reversed
Jackson network as

r̃ji =
λirij

λ̃j
=
λirij
λj

. (11)

We can check that the matrix R̃ is substochastic. Clearly, r̃ji given by (11)
is non-negative. Moreover,

J∑
i=1

r̃ji =
1

λj

J∑
i=1

λirij =

∑J
i=1 λirij

ηj +
∑J

i=1 λirij
≤ 1,

where we have used the traffic equation (3) for λj in order to get the second
equality above. You might also want to check for yourselves that the vector
λ satisfies the traffic equations with the time-reversed parameters η̃ and R.

Having guessed at the time-reversed parameters, we guess that the time
reversed process behaves as a CTMP with transition rates given by equations
analogous to (6,7,8), but with ηi and rij replaced by η̃i and r̃ij respectively.

Next, we need to guess the invariant distribution for this Markov process.
The total arrival rate into queue i is λi, the service rate is µi and service
times are exponential, and there is a single server. Therefore, if the arrival
process into queue i were Poisson, the invariant distribution of this queue
would be geometric, πi(n) = (1 − ρi)ρni , n = 0, 1, 2, . . ., where ρi = λi/µi.
Unfortunately, the total arrival process is not Poisson in general (though the
external arrival process is). Intuitively, the reason is that, if it is possible
for a departure from queue i to eventually revisit queue i with positive
probability, then if there have been a lot of arrivals to queue i in the past,
this will increase the conditional rate of future arrivals as some of these
will return to queue i later. Thus, the future of the arrival process is not
independent of its past, which means that it cannot be Poisson.

Nevertheless, let’s be wildly optimistic and assume that the invariant queue
length distribution at each queue is geometric, as above. In fact, let’s go
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even further and assume that the joint distribution is product form, i.e.,
that

π(n1, n2, . . . , nJ) =
J∏
i=1

πi(ni) =
J∏
i=1

(1− ρi)ρni
i . (12)

This would be the case if the queues were independent, but in fact they are
not independent. So there really is no good justification for our guess but
let’s try it out anyway.

Now that we have a guess for the invariant distribution π and the reversed
transition rate matrix Q̃, we are in a position to check the assumptions of
Kelly’s lemma. To check the first assumption, we need to show that∑

m 6=n

q̃(n,m) =
∑
m 6=n

q(n,m). (13)

Now, all the possible transitions out of state n and their rates are specified
by equations (6,7,8). Hence,

∑
m 6=n

q̃(n,m) =

J∑
i=1

(
η̃i + µ̃i1(ni > 0)

(
r̃i0 +

J∑
j=1

r̃ij

))

=
J∑
i=1

(λiri0 + µi1(ni > 0)),

where we have used (9), (10), and the fact that r̃i0 = 1 −
∑J

j=1 r̃ij by
definition, to obtain the last equality. Likewise,

∑
m 6=n

q(n,m) =
J∑
i=1

(ηi + µi1(ni > 0)).

Hence, in order to verify (13), we need to verify that

J∑
i=1

λiri0 =

J∑
i=1

ηi. (14)

But the LHS of the above expression is the total rate at which customers
leave the system, while the RHS is the total rate at which customers enter
the system. Since the network is open, these two quantities have to be the
same, provided all queues are stable, i.e., λi < µi for all i = 1, . . . , J . If
this condition is not satisfied, then the system does not have an invariant
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distribution since at least some of the queues grow to infinity. (If this in-
tuitive argument is not to your satisfaction, then you can prove (14) more
formally. Let 1 denote the column vector of all ones, of length J . Then,∑J

i=1 ηi = η1, while

J∑
i=1

λiri0 =

J∑
i=1

λi(1−
J∑
j=1

rij) = λ(I −R)1,

which is equal to η1 by (4).)

Next, we need to check the second assumption of Kelly’s lemma, i.e., for all
possible states m and n, we need to show that π(n)q̃(n,m) = π(m)q(m,n).
If both transition probabilities q̃(n,m) and q(m,n) are zero, then this equa-
tion holds with 0=0. So we only need to check this condition when at least
one of the corresponding transition probabilities is non-zero. Fix i between
1 and J , and consider m = n + ei. Then,

q̃(n,m) = η̃i = λiri0,

by (9), whereas

q(m,n) = µiri01(mi > 0) = µiri01(ni + 1 > 0) = µiri0.

Hence, the condition, π(n)q̃(n,m) = π(m)q(m,n), that we need to check
can be written as

J∏
j=1

(1− ρj)ρ
nj

j λiri0 =
∏
j 6=i

(1− ρj)ρ
nj

j (1− ρi)ρni+1
i µiri0.

If we cancel out all common terms, the above reads λi = ρiµi, which holds
by the definition of ρi. Thus, we have verified the second assumption of
Kelly’s lemma for m = n+ ei, for any i between 1 and J . We similarly need
to verify it for m = n−ei and m = n−ei+ej . As the steps are very similar,
the details are omitted, though you might want to check it for yourself.

Since the assumptions of Kelly’s lemma are verified, its conclusions hold,
i.e., our guesses for the invariant distribution π and the reversed parameters
Q̃ are correct. Let us summarise this important result as a theorem.

Theorem 1 Consider a network consisting of J single server nodes, with
external arrivals into node i according to a Poisson process of rate ηi, iid
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exponential service times at node i with mean 1/µi, and routing matrix R
specifying the probabilities rij that a customer leaving node i is routed to
node j. Suppose that the routing decisions at each node are iid, and that
the routing matrix is such that the network is open. Suppose too that the
arrival and service processes and routing decisions at different nodes are
mutually independent. Finally, assume that the network is stable, i.e., that
the solutions λj, j = 1, . . . , J , of the traffic equations satisfy λj < µj for all
j = 1, . . . , J . Then, this Jackson network has unique invariant distribution
π given by

π(n) =
J∏
j=1

(1− ρj)ρ
nj

j ,

where ρj = λj/µj.

3 Generalisations

A natural question to ask at this point is whether there are other queueing
network models for which we can compute invariant distributions. There
are a small number of other such examples, some of which we now describe.
We start with single queues and then go on to networks.

M/G/∞ queue Consider a queue with Poisson arrivals at rate λ, iid service
times with an arbitrary distribution (G stands for general), and infinitely
many servers (so that all customers are served in parallel). Denote the
mean service time by E[S] and define ρ = λE[S]. If the service time had
the Exp(µ) distribution, then the mean service time would be 1/µ, so the
definition of ρ is consistent with its definition in the M/M/∞ queue. The
invariant queue length π for the M/G/∞ queueing model is the same as for
the corresponding M/M/∞ model, namely the Poisson(ρ) distribution:

π(n) =
ρn

n!
e−ρ, n = 0, 1, 2, . . .

We say that the invariant distribution in the M/G/∞ queue has the in-
sensitivity property; it only depends on the mean service time and is not
sensitive to the actual distribution of the service time.

M/G/1-PS queue This is a queue with Poisson arrivals, general service
time distributions and a single server which uses a processor-sharing service
discipline. This means that it allocates an equal portion of its service ca-
pacity to each customer in the queue. Say for example that the queue is
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initially empty, a customer enters at time T1 = 0 with a service time re-
quirement of S1 = 10 units, the next customer arrives at time T2 = 3 with
a service requirement of S2 = 5 units, and the third customer arrives at
time T3 = 20. The first customer gets the full attention of the server from
time 0 till time 3, so will have a residual service requirement of 10-3=7 units
at the arrival time of the second customer. From time T2 onwards, both
customers in system each get only half the attention of the server. Their
residual service requirements at time T2 = 3 are 7 and 5 units respectively.
It will thus take 10 time units for the service of the second customer to fin-
ish, and this customer will depart at time 3+10=13. During these 10 time
units, the first customer will also receive 5 units of service, so its residual
service requirement at time 13 will be 7-5=2 units. After the departure of
the second customer, the first customer will get the undivided attention of
the server, hence it will take 2 time units to finish being served. Thus, the
first customer will depart at time 15, before the third customer has entered.

The above example describes how a processor-sharing queue works. Cus-
tomers arrive at times T1, T2, T3, . . . bringing with them random service
requirements S1, S2, S3, . . ., which are iid with a general distribution. Let λ
denote the rate of the Poisson arrival process. Then T2−T1, T3−T2, . . . are
iid Exp(λ) random variables. There is infinite waiting room at the queue,
and a single server which works at unit rate. The server divides its effort
equally among all customers who are in the queue. Let E[S] the mean ser-
vice time, and define ρ = λE[S]. The invariant distribution π of this queue
is geometric, given by

π(n) = (1− ρ)ρn, n = 0, 1, 2, . . .

In other words, the invariant distribution is the same as for an M/M/1 queue
with the same mean service time requirement. The invariant distribution is
also insensitive in that it only depends on the mean service time and not
on the service time distribution.

M/G/1-LIFO or M/G/1-LCFS queue This is a queue with Poisson ar-
rivals, whose rate we denote by λ, and iid service times with general distribu-
tion, whose mean we denote by E[S]. We define ρ = λE[S]. There is a single
server and infinite waiting room. The service discipline is Last-In-First-Out,
also called Last-Come-First-Served. To be more precise, the service disci-
pline is LIFO/LCFS with pre-emptive resume. Pre-emptive means that,
when a new job/customer comes in, the server drops the job it is working
on, and moves to the new job. Resume means that any work already done on
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that job is not wasted; when the server is finished with the new jobs, it can
resume work on the old job from where it left off. The results stated below
only apply to this model. Non-preemptive, and pre-emptive restart (where
work done on dropped jobs is wasted and has to be restarted from scratch)
disciplines have quite different behaviour. The invariant distribution, π, for
the M/G/1-LIFO is geometric,

π(n) = (1− ρ)ρn, n = 0, 1, 2, . . . ,

which is the same as for an M/M/1 queue with the same mean service time
requirement. The invariant distribution is again insensitive in that it only
depends on the mean service time and not on the service time distribution.

The FIFO service policy that we started studying in the context of M/M/1
queues seems the most natural, and is also the most familiar from daily life.
So it might appear that PS and LIFO policies are mathematical abstractions
of little practical use. In fact, they are quite widely used in practice, espe-
cially in computer systems. A computer may be working on several different
tasks or “threads” in parallel. It will typically do so by using a ‘round-robin’
service discipline, doing a little bit of work on each task before moving on
to the next. If the amount of work done on each task before moving to the
next is small compared to the size of the task, then the processor-sharing
model is a good approximation to the round-robin model, and much more
tractable mathematically. The TCP protocol, which regulates data trans-
mission over the Internet, shares the link bandwidth approximately equally
among all transmissions sharing a link. Processor sharing models are widely
used to describe its behaviour. The LIFO policy is also used to schedule
tasks in computer systems, where tasks are placed in a ‘stack’ from bottom
to top by one process and retrieved from top to bottom by another.

What is the reason for all these different disciplines? One reason to pre-
fer processor-sharing over FIFO in some situations is that customers derive
some benefit from partially completed tasks, and so it may be better to
partially complete multiple jobs in parallel rather than perform them se-
quentially, starting one only after the previous one has finished. Another
reason is that, if jobs require highly variable service times, a single large job
can hold up many smaller jobs in FIFO but this doesn’t happen with PS.
It also happens with LIFO but has a smaller impact. Whereas in FIFO,
the longer a job the more jobs it holds up (as it holds up all jobs which
arrived while it was being worked on), in LIFO it only holds up the jobs
whose service it interrupted. Thus, in LIFO, both short and long jobs hold
up only the same number of jobs on average.
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Having considered these different queueing models in isolation, we now con-
sider networks made up of such queues. It turns out that, if any combination
of these queues, namely M/M/1, M/G/∞ (including M/M/∞ as a special
case), M/G/1-PS, or M/G/1-LIFO, are connected together in a network
with Markovian routing, and if the routing matrix satisfies the requirements
for the network to be open, then the invariant distribution is product form,

π(n) =
J∏
i=1

πi(ni),

where each πi is either geometric or Poisson, depending on whether it is a
single-server or infinite-server queue respectively.

Unfortunately, there are only a few models of queueing networks for which it
is possible to explicitly calculate invariant distributions, of which the above
are the most common examples. In practical applications, one may typically
try to use one of these models even if it doesn’t exactly fit the situation.
Another alternative is to start with a more accurate model that can’t be
solved explicitly, but use simulation to study its behaviour. Simulation is
perhaps the only ‘general-purpose’ modelling technique, and is useful for
generating quantitative predictions, but is not very good at yielding qual-
itative insights. This course aimed to introduce you to some of the most
commonly used models and analytical techniques in queueing theory, and
to equip you to apply them to a range of real-life problems.
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