
Introduction to Queuing Networks

Solutions to Problem Sheet 3

1. (a) The state space is the whole numbers {0, 1, 2, . . .}. The transition rates are qi,i+1 = λ for all
i ≥ 0 and qi,0 = µ for all i ≥ 1 since, when a bus arrives, the bus stop empties. Thus, the
transition rate matrix is given by

Q =


−λ λ 0 0 . . .

µ −(λ+ µ) λ 0 . . .

µ 0 −(λ+ µ) λ . . .
...

...
...

...
. . .


(b) The Markov chain is not reversible since there is a transition from 2 to 0, but not from 0 to 2,

for example. In more detail, the local balance equation corresponding to those two states reads
π0 · 0 = µπ2, which implies that π2 = 0. (We assume that µ > 0.) Similarly, π3, π4, . . . are
all zero.
Next, there is a transition from 1 to 2, not the other way round. Writing down the corresponding
local balance equation, we get λπ1 = 0π2, which implies that π1 = 0. Finally, looking at the
local balance equation for states 0 and 1, we have λπ0 = µπ1 which implies that π0 = 0
because π1 = 0. Hence, all πn are zero. But there is no such probability distribution!

(c) As the Markov chain isn’t reversible, we need to solve the global balance equations πQ = 0
to find the invariant distribution. Writing out the components of this vector equality, we get

λπ0 = µ(π1 + π2 + π3 + . . .)

λπj = (λ+ µ)πj+1, j = 0, 1, 2, . . . ,

from which it follows that πj =
(

λ
λ+µ

)j
π0 for all j ≥ 0. Combining this with the condition

that
∑∞

j=0 πj = 1, we get

πj =
µ

λ+ µ

( λ

λ+ µ

)j
, j ≥ 0. (1)

The only condition required for there to be an invariant distribution is µ > 0; since buses have
infinite capacity, the queue is stable so long as buses arrive at any positive rate.

(d) Notice that the invariant distribution given in (1) is geometric, of the form (1− ρ)ρj with ρ =
λ/(λ+ µ). Recall that the mean queue length in such a queue is given by E[N ] = ρ/(1− ρ).
(This formula can be derived using generating functions but may be worth remembering.)
Thus, E[N ] = λ/µ. Hence, by Little’s law, the mean sojourn time is given by E[W ] =
E[N ]/λ = 1/µ. The direct way to reach this answer is to note that the times between buses are
exponentially distributed with mean 1/µ and so, by the memoryless property of the exponential
distribution (established in Problem 1), the typical customer has to wait for a mean time of 1/µ
irrespective of how long it was since the last bus arrived.

2. Let us condition on the event W = w. Since the arrival process N(t) is a Poisson process of rate λ,
the number of arrivals in a period of length w is a Poisson random variable with mean λw. In other
words,

P (A = k|W = w) =
(λw)k

k!
e−λw.
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Now, we are told that W has an Exp(µ) distribution, i.e., W has density f(w) = µe−µw on w ≥ 0.
Hence, we get

P (A = k) =

∫ ∞
0

P (A = k|W = w)f(w)dw =

∫ ∞
0

(λw)k

k!
e−λwµe−µwdw

=
µ

λ+ µ

( λ

λ+ µ

)k ∫ ∞
0

(λ+ µ)
((λ+ µ)w)k

k!
e−(λ+µ)wdw

=
µ

λ+ µ

( λ

λ+ µ

)k
.

The last equality holds because the integrand is the density of a Gamma random variable with shape
parameter k and scale parameter λ + µ. Alternatively, to evaluate this integral, make the change of
variables x = (λ+ µ)w and rewrite it as

Ik =

∫ ∞
0

xk

k!
e−xdx.

Integrating by parts, it is easy to verify that Ik = Ik−1. By induction, Ik = I0. But I0 =
∫∞
0 e−xdx,

and so I0 = 1. Therefore, Ik = 1 for all k = 1, 2, . . .

We have thus shown that
P (A = k) =

µ

λ+ µ

( λ

λ+ µ

)k
,

for all k = 0, 1, 2, . . ., which is what we were asked to show.

Compare this with (1) in the solution to the last problem. Do you see why they are the same?

3. (a) The transition rates are given by

qi,i+1 =
λ

1 + i
, qi,i−1 = µ1(i ≥ 1).

Hence, the jump probabilities are given by

pi,i+1 =
qi,i+1

qi
=

λ

λ+ (i+ 1)µ1(i ≥ 1)
= 1− pi,i−1.

In order to compute the stationary distribution π, we use the fact that the Markov process is
a birth-death process. Hence, it is reversible if it has an invariant distribution. Assuming that
there is an invariant distribtuion π, it must solve the detailed balance equations πiqij = πjqji
for all i, j in the state space, i.e.,

πiλ

i+ 1
= πi+1µ⇒ πi+1 =

ρ

i+ 1
πi,

where ρ is defined as λ/µ. Iterating the above equation, we get πi = (ρi/i!)π0. The invariant
distribution π must also be a probability distribution, i.e., it should sum to 1. It is clear that
this can be achieved for any ρ by setting π0 = e−ρ. Hence,

πi =
ρi

i!
e−ρ, i = 0, 1, 2, . . .

is an invariant distribution for the reversible Markov process X(t). Moreover, it is the unique
invariant distribution since the chain is irreducible.
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(b) i. We consider the queue in equilibrium and condition on there being an arrival in time
(t, t+ dt) which decides to join the queue. Using Bayes formula, we get

P (Xt = i|job arrives in (t, t+ dt) and decides to join queue)

=
P (Xt = i, and job arrives in (t, t+ dt) and decides to join queue)

P (job arrives in (t, t+ dt) and decides to join queue)

=
P (Xt = i)P (job arrives in (t, t+ dt) and decides to join queue|Xt = i)∑∞
j=0 P (Xt = j)P (job arrives in (t, t+ dt) and decides to join queue|Xt = j)

=
πiλdt

1
1+i∑∞

j=0 πjλdt
1

1+j

=
ρi/(i+ 1)!∑∞
j=0 ρ

j/(j + 1)!
.

In order to obtain the third equality above, we have used the fact that the arrival process
is Poisson of rate λ, and so the probability of an arrival in (t, t + dt) is λdt, independent
of the past (and hence of the current state Xt, which is a function of the past of the arrival
and service processes). The probability that the arriving job decides to enter the queue
does of course depend on Xt, which we have taken into account. Now,

∞∑
j=0

ρj

(j + 1)!
=

1

ρ

∞∑
k=1

ρk

(k!
=

1

ρ

( ∞∑
k=0

ρk

k!
− ρ0

0!

)
=
eρ − 1

ρ
,

since 0! = 1 by convention. (The empty product is taken to be the multiplicative identity,
by convention, just as the empty sum is taken to be the additive identity, zero.) Substituting
this above, we obtain

P (Xt = i|job arrives in (t, t+ dt) and decides to join queue) =
1

eρ − 1

ρi+1

(i+ 1)!
.

This is the distribution of the number of customers already present in the system, as seen
by a typical arrival who decides to join the queue. Note that it is different from the invari-
ant distribution.

ii. The calculation here is very similar, except that we condition on there being an arrival in
time (t, t+ dt) who decides not to join the queue. Using Bayes formula, we get

P (Xt = i|job arrives in (t, t+ dt) and decides not to join queue)

=
P (Xt = i, and job arrives in (t, t+ dt) and decides not to join queue)

P (job arrives in (t, t+ dt) and decides not to join queue)

=
P (Xt = i)P (job arrives in (t, t+ dt) and decides not to join queue|Xt = i)∑∞
j=0 P (Xt = j)P (job arrives in (t, t+ dt) and decides not to join queue|Xt = j)

=
πiλdt

i
1+i∑∞

j=0 πjλdt
j

1+j

=
iρi/(i+ 1)!∑∞
j=0 jρ

j/(j + 1)!
.

Now,
∞∑
j=0

jρj

(j + 1)!
=
∞∑
j=0

(j + 1− 1)ρj

(j + 1)!
=
∞∑
j=0

ρj

j!
−
∞∑
j=0

ρj

(j + 1)!
.

The first sum above is eρ, while the second sum was evaluated in the last part, and was
found to be (eρ − 1)/ρ. Hence,

∞∑
j=0

jρj

(j + 1)!
=

(ρ− 1)eρ + 1

ρ
.
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Substituting this in the expression for the conditional probability of seeing i customers
conditioned on the arrival deciding not to join the queue, we get

P (Xt = i|job arrives in (t, t+ dt) and decides not to join queue) =
iρi+1

(i+ 1)!

1

(ρ− 1)eρ + 1
.

This is the distribution as seen by a typical arrival who decides to balk. Note that it is
different both from the invariant distribution, and from the distribution seen by an arrival
who decides to join the queue.

4. (a) Let X(t) denote the number of customers in the system at time t. Then X(t) is a CTMC with
transition rates given by

qi,i+1 =

{
α, i = 0

λ, i ≥ 1,
qi,i−1 =


0, i = 0,

µ, i = 1,

2µ, i ≥ 2.

Since this is a birth and death process, it is reversible if it has an invariant distribution. Assum-
ing that there is one, and denoting it by π, it must solve the detailed balance equations

πiqi,i+1 = πi+1qi+1,i

for all i ≥ 0. Thus,

π1 = π0
q01
q10

=
α

µ
π0, πi+1 =

λ

2µ
πi, i ≥ 1.

Hence, πi = α
µ

(
λ
2µ

)i−1 for i ≥ 1. Since π has to be a probability vector, we have

∞∑
i=0

πi = π0

(
1 +

α

µ

1

1− λ
2µ

)
= π0

(
1 +

2α

2µ− λ

)
= 1,

which implies that π0 = 2µ−λ
2α+2µ−λ , as required.

(b) We have by Bayes’ theorem that

P (XA = 0) =
P (X(t) = 0 and arrival in (t, t+ dt))

P (arrival in (t, t+ dt))

=
π0α

π0α+
∑∞

i=1 πiλ
, (2)

whereas, for i ≥ 1,

P (XA = i) =
P (X(t) = i and arrival in (t, t+ dt))

P (arrival in (t, t+ dt))

=
πiλ

π0α+
∑∞

i=1 πiλ
. (3)

Now the denominator on the RHS in (2) and (3) is the same, but π is multiplied by different
constants (α and λ) in the numerator depending on whether i = 0 or i ≥ 1. Since π0 is neither
0 nor 1, P (XA = i) can’t be the same as πi for all i. Thus, the distribution seen by arrivals is
not the same as the invariant distribution.

5. (a) The stationary distribution is πn = (1− ρ)ρn, n ≥ 0.
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(b) Let X(t) denote the number of customers in the system at time t. Since the system is in
equilibrium, X(t) is a random variable with distribution π. Between time t and the arrival of
C∗, which happens an Exp(λ) time after t, there are clearly no arrivals (since C∗ is defined as
the first arrival after t), but there may be some service completions. Let X∗ denote the number
of customers in the system at the arrival of C∗, excluding C∗. Then,

P (X∗ = j) =
∞∑
k=j

P (X(t) = k,X∗ = j) =
∞∑
k=j

πkP (X
∗ = j|X(t) = k). (4)

We evaluate the last conditional probability as follows. Suppose there are currently n jobs in
the system. What is the probability that the next service completion happens before the next
arrival? Since the time to the next arrival is Exp(λ), irrespective of how long it has been since
the last arrival, and the time to the next service completion is Exp(µ), this probability is µ

µ+λ
(check this for yourself). Hence, for the event {X∗ = j} to occur, conditional on X(t) = k,
there must be exactly k − j service completions before the arrival of C∗. If j 6= 0, this means
that the arrival must happen before the (k − j + 1)th service completion; if j = 0, all k
customers should be served before the arrival of C∗. Thus, we have,

P (X∗ = 0|X(t) = k) =
( µ

µ+ λ

)k
,

P (X∗ = j|X(t) = k) =
( µ

µ+ λ

)k−j λ

µ+ λ
, j ≥ 1.

(Compare this with Problem 2. There, we calculated the number of arrivals during a service
completion. Here, we are calculating the number of service completions during an inter-arrival
period. Both are geometrically distributed, but the geometric distribution here is truncated at
the number of customers in the system since there can’t be more service completions than
that.) Substituting the above formulae in (4), we get

P (X∗ = 0) =

∞∑
k=0

(1− ρ)ρk
( µ

µ+ λ

)k
=

∞∑
k=0

(1− ρ)
( ρ

1 + ρ

)k
= (1− ρ)

(
1− ρ

1 + ρ

)−1
= (1− ρ)(1 + ρ),

whereas, for j ≥ 1,

P (X∗ = j) =

∞∑
k=j

(1− ρ)ρk
( µ

µ+ λ

)k−j λ

µ+ λ

=
∞∑
i=0

(1− ρ)ρj+i ρ

1 + ρ

( 1

1 + ρ

)i
= (1− ρ)ρj

∞∑
i=0

( ρ

1 + ρ

)i+1

= (1− ρ)ρj
[(

1− ρ

1 + ρ

)−1
− 1
]
= (1− ρ)ρj+1,

as we were asked to show.
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