
Introduction to Queuing Networks

Solutions to Problem Sheet 5

1. (a) Consider a unit rate Poisson process. The number of points on the interval [0, λ] has the same
distribution as the random variable N . A Bernoulli p thinning of this Poisson process is a
Poisson process of rate p. Moreover, the points of the thinned process on the interval [0, λ]
have the same distribution as the random variable Y . Hence, Y is a Poisson random variable
with mean λp.

(b) What can we say about the number of pairs of skis outstanding on day 0, which we shall denote
X0. Letting Yt denote the number of pairs borrowed on day t ≤ 0 but not yet returned by day
0, it is clear that we can express X0 as

X0 =
0∑

t=−∞
Yt =

0∑
t=−7

Yt,

since any skis rented before day −7 must have been returned by day 0.
Let Nt denote the total number of pairs of skis borrowed out on day t, and let pt denote the
probability that a pair borrowed on day t has not yet been returned by day 0. Then, it is easy to
see that Yt is Binomial with parameters Nt and pt. Moreover, we are given that Nt is Poisson
with mean 100. Hence, by the answer to part (a), Yt has a Poisson distribution with parameter
100pt.
Also note that the numbers of skis borrowed on different days are independent random vari-
ables, and that the returning decisions for different people are mutually independent. Hence,
Yt for different t are mutually independent. Now, using the fact that the sum of independent
Poisson random variables is Poisson with the sum of the parameters, it follows that X0 is a
Poisson random variable with parameter

0∑
t=−7

100pt = 100
( −3∑
t=−7

pt +

0∑
t=−2

pt

)
.

Since skis are equally likely to be returned any day from 3 to 7 days after they are borrowed,
the probability pt that skis borrowed on day t have not been returned by day 0 is given by
pt = (t+ 7)/5 for −7 ≤ t ≤ −3 and by pt = 1 for t = 0,−1, or −2. Hence, we get

−3∑
t=−7

pt +
0∑

t=−2
pt = 2 + 3 = 5,

and so the number of pairs of skis outstanding on day 0, X0, is Poisson with mean 500.
Note that this is the same as the mean number of rentals 100 per day, times the mean number
of days for which the skis are kept, 5. Compare this with the results for the invariant queue
length distribution in an M/G/∞ queue. The point of this problem is that the model here is a
discrete-time analogue of the M/G/∞ queue.

2. (a) The possible transitions and rates are:

q(n,n+ ei) = λi, q(n,n− ei) = µini, i = 1, 2,

where e1 = (1, 0) and e2 = (0, 1).

1



(b) The detailed balance equations are

λiπ(n) = µi(ni + 1)π(n+ ei), i = 1, 2.

Consider the distribution

π(n1, n2) = ρn1
1

e−ρ1

n1!
ρn2
2

e−ρ2

n2!
n1 = 0, 1, 2, . . . , n2 = 0, 1, 2, . . .

where ρi = λi/µi, i = 1, 2. It is easy to see that this is a probability distribution. Moreover,

µ1(n1 + 1)π(n1 + 1, n2) = µ1(n1 + 1)ρn1+1
1

e−ρ1

(n1 + 1)!
ρn2
2

e−ρ2

n2!

= µ1ρ1ρ
n1
1

e−ρ1

n1!
ρn2
2

e−ρ2

n2!
= λ1π(n1, n2).

Similarly, µ2(n2 + 1)π(n1, n2 + 1) = λ2π(n1, n2). Hence, π satisfies the detailed balance
equations. Therefore, the joint queue length process is reversible with invariant distribution π.

3. (a) The external arrival rates are γ1 = 1, γj = 0, j = 2, . . . , J . The routing probabilities for
1 ≤ j ≤ J − 1 are rj,j+1 = (J − j)/J and rj,j−1 = j/J , while rJ,J−1 = 1.

(b) The traffic equations are as follows:

λ1 = 1 +
2

J
λ2,

λj =
J − j + 1

J
λj−1 +

j + 1

J
λj+1, 2 ≤ j ≤ J − 1,

λJ =
1

J
λJ−1.

To verify that λj =
(
J
j

)
satisfies these equations, observe that

1 +
2

J

(
J

2

)
= 1 + J − 1 = J =

(
J

1

)
,

J − j + 1

J

(
J

j − 1

)
+
j + 1

J

(
J

j + 1

)
=

(J − 1)!

(J − j)!(j − 1)!
+

(J − 1)!

(J − j − 1)!j!

=
(J − 1)!

(J − j)!j!
(j + J − j) =

(
J

j

)
, 2 ≤ j ≤ J − 1,

1

J

(
J

J − 1

)
= 1 =

(
J

J

)
.

(c) Observe that
λj+1

λj
=

J !

(j + 1)!(J − j − 1)!

j!(J − j)!
J !

=
J − j
j + 1

,

which is bigger than 1 if j < (J − 1)/2 and smaller than 1 if j > (J − 1)/2. Thus, λj is
increasing for j ≤ (J−1)/2+1 and decreasing for j > (J−1)/2, which means that it attains
its maximum value at j = (J − 1)/2 (and j = (J + 1)/2).
Hence, for the network to be stable, we need µ >

(
J

(J−1)/2
)
. For J = 5, this corresponds to

µ >
(
5
2

)
= 10.
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4. (a) The traffic equations are as follows:

λ1 =
1

2
+

1

4
λ2,

λj =
1

2
+

3

4
λj−1 +

1

4
λj+1, 2 ≤ j ≤ J1,

λJ =
J + 3

4
+

3

4
λJ−1.

Given that λ1 = 1, the first equation above implies that λ2 = 4(1/ − 1
2) = 2. Then, taking

j = 2 in the second equation above yields λ3 = 4(2− 1
2 −

3
4 · 1) = 3.

(b) This leads us to guess that λj = j. It clearly satisfies the general equation for λj , since

1

2
+

3

4
(j − 1) +

1

4
(j + 1) = j.

We also have J+3
4 + 3

4(J − 1) = J , so the equation for J is satisfied as well.
Since λj = j for j = 1, 2, . . . , J , and we need µ > λj for all j for the network to be stable,
we need µ > J .

5. (a) The external arrival rates to the two queues are η1 = λ and η2 = 0, while the routing parame-
ters are r12 = r, r10 = 1− r and r20 = 1. By solving the traffic equations or directly, we can
see that the total arrival rates into the two queues are λ1 = λ and λ2 = λr. Since both queues
are infinite-server queues with service rate µ, the transition rates are as follows:

q(n,n+e1) = λ, q(n,n−e1) = µn1(1−r), q(n,n−e1+e2) = µn1r, q(n,n−e2) = µn2.

Here n = (n1n2) denotes the number of customers in the two queues, and e1 and e2 are the
unit vectors (10) and (01) respectively.

(b) In reverse time, the external arrival rate into Q2 is η′2 = λr since this is the total arrival rate
into Q2, and hence also the departure rate from Q2 to outside, in forward time. Likewise, the
external arrival rate into Q1 in reverse time is η′1 = λ(1 − r), and the routing parameters are
r′21 = 1 and r′10 = 1. Thus, the transition rates for the time-reversed Markov chain are

q′(n,n+e1) = λ(1−r), q′(n,n+e2) = λr, q′(n,n−e1) = µn1, q
′(n,n+e1−e2) = µn2.

(c) We guess that the invariant distribution is product-form, with each queue having the invariant
distribution corresponding to an M/M/∞ queue, namely a Poisson distribution. In other
words, we guess that the invariant distribution is

π(n1, n2) =
ρn1
1 ρ

n2
2

n1!n2!
e−(ρ1+ρ2),

where ρ1 = λ1/µ = λ/µ and ρ2 = λ2/µ = λr/µ. Thus, defining ρ = λ/µ, we can rewrite
the above as

π(n1, n2) =
ρn1+n2rn2

n1!n2!
e−ρ(1+r),

To check the conditions of Kelly’s lemma, we first check that the total transition rate out of
any state n is the same in forward and reversed time. In forward time,

qn = q(n,n+ e1) + q(n,n− e1) + q(n,n− e1 + e2) + q(n,n− e2) = λ+ µ(n1 + n2),
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whereas in reversed time,

q′n = q′(n,n+ e1) + q′(n,n+ e2) + q′(n,n+ e1 − e2) + q′(n,n− e1) = λ+ µ(n1 + n2).

These are equal and so the first condition of Kelly’s lemma is satisfied.
Next, we need to check that for all states n and m, π(n)q(n,m) = π(m)q′(m,n). Consider,
for example, m = n− e1 + e2. In this case,

π(n)q(n,n− e1 + e2) =
ρn1+n2rn2

n1!n2!
e−ρ(1+r)µn1r =

ρn1−1+n2rn2+1

(n1 − 1)!n2!
e−ρ(1+r)λ1(n1 > 0),

while

π(n− e1 + e2)q
′(n− e1 + e2,n) =

ρn1−1+n2+1rn2+1

(n1 − 1)!(n2 + 1)!
e−ρ(1+r)1(n1 > 0)µ(n2 + 1)

=
ρn1−1+n2rn2+1

(n1 − 1)!n2!
eρ(1+r)λ1(n1 > 0).

Thus, π(n)q(n,n−e1+e2) = π(n−e1+e2)q′(n−e1+e2,n) for all n. The other equalities
of Kelly’s lemma can be checked similarly.
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