
Introduction to Queuing Networks

Solutions to Problem Sheet 6

1. (a) Node 1 refers to the bookshop and Node 2 to the check-out. Node 1 is an M/G/∞ queue
while Node 2 is an M/M/1-FIFO queue. The external arrival rates are γ1 = 1 and γ2 = 0
per minute, while the service rates are µ1 = 1/15 and µ2 = 1/2 per minute (reciprocals of
the corresponding mean service times). The routing probabilities are p10 = 0.7, p12 = 0.3,
p20 = 0.9 and p21 = 0.1. The traffic equations are:

λ1 = 1 + 0.1λ2, λ2 = 0.3λ1,

which have the unique solution λ1 = 100/97, λ2 = 30/97.

(b) We first compute the mean number in each of the two queues (i.e., the mean number of brows-
ing customers, and the mean number waiting to pay at the check-out). Node 1 is an M/G/∞
queue with load ρ1 = λ1/µ1 = 1500/97. Hence, the invariant distribution of N1, the number
of customers at this queue, is Poisson(ρ1), with mean E[N1] = ρ1 = 1500/97. Node 2 is an
M/M/1 queue with load ρ2 = λ2/µ2 = 60/97. So the mean number at this queue (using
known results for the M/M/1 queue) is E[N2] = ρ2/(1− ρ2) = 60/37. Hence, the expected
total number of customers in the bookshop is

E[N ] = E[N1] + E[N2] ≈ 15.46 + 1.62 = 17.1.

The total external arrival rate is γ = γ1 + γ2 = 1 customer per minute. Hence, by Little’s law,
the mean sojourn time is E[W ] = E[N ]/γ = 17.1 minutes.

(c) The number of customers who are browsing is the number in the first queue, which is N1. As
noted above, the invariant distribution of N1 is a Poisson distribution with mean ρ1 = 15.46.
Since new customers enter the shop according to a Poisson process, it follows by the PASTA
property (Poisson arrivals see time averages) that the distribution of customers seen by a new
customer upon arrival is the same as the invariant distribution. Hence, the new customer will
not find a free chair if N1 ≥ 20. Using the hint, we approximate the probability of this event
as

P (N1 ≥ 20) ≈ 21

21− 15.46

1√
40π

exp
(
20− 15.46− 20 loge

20

15.46

)
≈ 0.338 exp(4.54− 20 loge 1.294) ≈ 0.184.

2. (a) Node 1 denotes the prison system, and the external arrival rate γ1 to this node is 4000 per
month. Node 1 is anM/G/∞ queue, with mean service time 1/µ1 equal to 9 months. Individ-
uals leaving prison depart the criminal justice system with probability 0.4 and have probability
0.6 of becoming recidivists. This is denoted by their joining Node 2, which has no external
arrivals (γ2 = 0), and is an M/M/∞ queue with mean service time 1/µ2 equal to 24 months.
All recidivists eventually re-enter prison. (Equivalently, the picture could be drawn with all
departures from Node 1 going to Node 2, and departures from Node 2 going to Node 1 with
probability 0.6 and leaving the system with probability 0.4.)
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(b) For the system as described above, the traffic equations are

λ1 = γ1 + λ2, λ2 = 0.6λ,

which have the solution λ1 = 10, 000 per month and λ2 = 6000 per month. (The equivalent
picture described above would have λ1 = λ2 = 10, 000 per month.)

(c) Prisons constitute an M/G/∞ queue with arrival rate λ1 = 10, 000 per month, and service
rate µ1 = 1/9 per month. TheM/G/∞ queue has invariant distribution which is Poisson with
parameter ρ = λ/µ.
The mean of this Poisson distribution is ρ, which in this case is 90,000.

(d) The variance of a Poisson(ρ) distribution is also ρ. Hence, the standard deviation of the number
in prison is

√
ρ = 300. Using the suggested approximation, there should be 90,900 prison

places provided in the UK.

3. (a) Node 1 refers to the disk and Node 2 to the cache. The external arrival rate to the disk is γ1 = 4
(80% of total arrival rate), while that to the cache is γ2 = 1 (20% of all requests, arriving at
rate 5, can be served directly from cache). Node 1 has a single server operating a FIFO (first-
in-first-out) / FCFS (first-come-first-served) policy while node 2 has a single server operating
a PS (processor sharing) service discipline. The routing probabilities are given by p12 = 1,
p20 = 1 and all other routing probabilities are zero.
The mean service time at the first queue is 200 ms = 0.2s, so the service rate is µ1 = 1/0.2 = 5.
The mean service time at the second queue is given by

E[S2] =

∫ ∞
0

tfT (t)dt = 200

∫ ∞
0

t/100

(1 + t
100)

3

dt

100

= 200

∫ ∞
0

( 1

(1 + x)2
− 1

(1 + x)3

)
dx = 100,

in units of milliseconds. Hence, the mean service time at the second queue is 0.1s, so the
service rate is µ2 = 10.

(b) We first compute the mean number of jobs (requests) at each queue. Node 1 is an M/M/1-
FIFO queue with arrival rate λ1 = 4 and service rate µ1 = 5. Hence, its load ρ1 = λ1/µ1 =
0.8. By the known formula for the mean queue length at an M/M/1 queue,

E[N1] =
ρ1

1− ρ1
=

0.8

0.2
= 4.

Node 2 is an M/G/1-PS queue with total arrival rate λ2 = 4+1 = 5 (including both external
arrivals at rate 1, and re-routed customers from Node 1 at rate 4) and service rate µ2 = 10, so
that its load is ρ2 = 0.5. Moreover, by the insensitivity property of M/G/1-PS queues, it has
the same invariant distribution as an M/M/1 queue with the same load. Consequently, it has
the same mean number of jobs,

E[N2] =
ρ2

1− ρ2
=

0.5

0.5
= 1.

Hence, the mean number of jobs in the system, in equilibrium, isE[N ] = E[N1]+E[N2] = 5.
The total external arrival rate of jobs is γ = 5 per second. Consequently, by Little’s law, the
mean sojourn time of a job is E[W ] = E[N ]/γ = 1 second.
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(c) Suppose a FIFO discipline is used at the second queue, which has total arrival rate λ2 = 5 and
service rate µ2 = 10. In order to compute the mean sojourn time at the second queue, we use
the Pollaczek-Khinchin formula, which says that

E[W2] =
λ2E[S2

2 ]

2(1− ρ2)
+ E[S2] = 5E[S2

2 ] + 0.1.

It remains to compute E[S2
2 ], the second moment of the service time distribution. We have

E[S2
2 ] =

∫ ∞
0

0.02t2

(1 + t
100)

3
dt =∞,

since the integrand is asymptotic to a constant times 1/t, whose integral diverges. Therefore,
the mean sojourn time at the second queue is infinite, which implies that the mean sojourn time
in the system as a whole is infinite. We conclude that in this case FIFO is not preferable to PS!

4. We will model the system as a queueing network with 3 nodes. Node 1 corresponds to the pre-
processing stage and is a ·/G/1 − LIFO (last-in-first-out) queue with service rate µ1 = 1/5 per
minute. (The service rate is the reciprocal of the mean service time.) Node 2 corresponds to the
manual server (Treatment 1) and is a ·/M/1 queue with service rate µ2 = 1/20 per minute. Node 3
corresponds to Treatment 2 and is a ·/G/∞ queue with µ3 = 1/60 per minute.

The external arrival rate is γ and the arrival process is Poisson. Routing decisions are Markovian,
independent of current and past states and other routing decisions. The routing probabilities are
r12 = α, r13 = 1 − α, r20 = 1, r31 = 0.1 and r30 = 0.9, with all other routing probabilities
being zero. You might want to draw a diagram to represent the queueing network, marking the
service disciplines and service rates at the nodes, and marking the routing probabilities on the edges
between nodes.

Recall that ·/M/1−FIFO, ·/G/∞, ·/G/1−PS and ·/G/1−LIFO queues are quasi-reversible:
if the arrival process is Poisson, then so is the departure process in equilibrium. Hence, the queues
at all 3 nodes in our system are quasi-reversible.

Since we have Poisson arrivals, Markov routing and quasi-reversible queues, the queueing net-
work is a generalised Jackson network (or BCMP network). This means that its invariant distri-
bution is product-form:

π(n1, n2, n3) =
3∏
i=1

πi(ni) = (1− ρ1)ρn1
1 · (1− ρ2)ρ

n2
2 ·

ρn3
3

n3!
e−ρ3 .

Here ρi = λi/µi is the load at the ith server, and λi is the total arrival rate at the ith server, including
both external and re-routed arrivals.

The first two queues have an invariant distribution which is geometric because they are single-server
queues, while the third queue, being an infinite-server queue, has an invariant distribution which is
Poisson.

The next step is to compute the arrival rates λi at the different queues by solving the network traffic
equations. Assuming that the system is stable (all the work entering each queue eventually leaves
it), the traffic equations are:

λ1 = γ + 0.1λ3, λ2 = αλ1, λ3 = (1− α)λ1,

where γ is the external arrival rate. Solving these equations, we get

λ1 =
γ

0.9 + 0.1α
, λ2 =

αγ

0.9 + 0.1α
, λ3 =

(1− α)γ
0.9 + 0.1α

.
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(a) For stability, we require ρ1 < 1 and ρ2 < 1. There is no restriction on ρ3 because node 3 is an
infinite-server queue. Substituting µ1 = 1/5 and µ2 = 1/20, we obtain the stability condition

γ < min
{
0.18 + 0.02α,

0.045

α
+ 0.005

}
.

The first term is smaller if α < 1/4 while the second term is smaller if α > 1/4. Hence, we
can write the stability condition as

γ < γ(α) =

{
0.18 + 0.02α, 0 ≤ α ≤ 1/4,

(0.045/α) + 0.005, 1/4 ≤ α ≤ 1.

Clearly, γ(α) is maximised at α = 1/4, and the maximum value is γ(1/4) = 0.185.

(b) We now take α = 0.25, and γ = γ(α)/2 = 0.0925. Substituting these values in the traffic
equations, we get

λ1 = 0.1, λ2 = 0.025, λ3 = 0.075, ⇒ ρ1 = 0.5, ρ2 = 0.5, ρ3 = 4.5.

Now, the mean number in system is the sum of the mean numbers in each queue, which is
ρ/(1− ρ) if the queue size distribution is geometric, and ρ if it is Poisson. Hence,

E[N ] =
ρ1

1− ρ1
+

ρ2
1− ρ2

+ ρ3 = 6.5.

Finally, the mean length of time needed to process a single item is the mean sojourn time of an
item, which is given by Little’s law:

E[W ] =
1

γ
E[N ] =

6.5

0.0925
= 70.27 minutes.

Note that Little’s law is valid, not just for a single queue, but also for networks of queues. You
can think of the network as a black box. External arrivals enter the black box, are processed
for some time, and then leave the black box. The processing times may have a complicated
distribution, and may not even be independent of each other or of the inter-arrival times. Nev-
ertheless, Little’s law still applies. It is extremely general and only requires stability of the
queueing system.

5. (a) There are N nodes in series. All nodes are ./G/∞ queues. The service time is general as
its distribution has not been specified. There are (effectively) infinitely many servers at each
node. As each job gets its own server, the question of service discipline is moot.
For departures from each intermediate node (i.e., nodes between 1 andN−1 inclusive, there is
probability 0.5 of going to the next queue, probability 0.25 of returning to the first queue (due
to an error having been found in the application), and probability 0.25 of leaving the system
(giving up). Departures from queue N leave the system (with a driving licence). Hence the
routing probabilities are

rj,j+1 =
1

2
, rj,1 =

1

4
, rj,0 =

1

4
1 ≤ j ≤ N − 1, rN0 = 1.

(b) Let λj denote the total arrival rate into the jth node. The traffic equations are:

λ1 = η +

N−1∑
j=1

1

4
λj ,

λj =
1

2
λj−1, j = 2, . . . , N.
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Thus, λj = 2−(j−1)λ1 for j = 1, . . . , N and

λ1 = η +
1

4

N−1∑
j=1

2−(j−1)λ1 = η +
1

2
(1− 2−(N−1)λ1,

from which it follows that

λ1 =
2N

2N−1 + 1
η, λj =

2N+1−j

2N−1 + 1
η, 2 ≤ j ≤ N.

(c) As each node is an M/G/∞ queue, the number of customers in node j in steady state is
Poisson with mean λj/µj . Here µj = 1 for all j. Therefore, the total number of customers in
system in steady state is given by

N∑
j=1

λj =
2Nη

2N−1 + 1

N∑
j=1

2−j+1 =
2(2N − 1)

2N−1 + 1
η.

As the external arrival rate is η, it follows by Little’s law that the mean sojourn time is

2N

2N−1 + 1

weeks. As all queues are infinity server queues, this quantity is finite for all η.

(d) (not seen) The rate at which applicants leave the system with a licence is the departure rate
from node N , which is the arrival rate into this node, namely

λN =
2η

2N−1 + 1
.

As the rate at which applicants enter the system is η, it follows that the fraction of applicants
who are successful is

2

2N−1 + 1
.
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