- 1. Show that the following functions are convex:
 - (a) $f(x) = |x|, x \in \mathbb{R}$.
 - (b) $f(x) = x \log x, x \in (0, \infty)$. Logarithms are natural unless otherwise specified.
 - (c) $f(x) = x^2 y^2, (x, y) \in \mathbb{R}^2$.
 - (d) $f(\mathbf{x}) = ||A\mathbf{x} \mathbf{b}||^2$, $\mathbf{x} \in \mathbb{R}^n$, where A is an $m \times n$ matrix, $\mathbf{b} \in \mathbb{R}^m$, and $|| \cdot ||$ denotes the Euclidean norm of a vector. In order to show that f is convex, you may need to show that a certain matrix is positive semi-definite.

(e)
$$f(x) = \begin{cases} x, & x > 0, \\ y, & x = 0, \\ +\infty, & x < 0, \end{cases}$$
 where $y \ge 0$ is arbitrary.

- (a) Let S denote the set of all real symmetric n × n matrices. Show that S is a convex subset of ℝ^{n×n}.
 - (b) Recall that all eigenvalues of a symmetric matrix are real. Hence, they can be ordered from largest to smallest. Let λ_{max}(A) denote the largest eigenvalue of the real symmetric matrix A. Let f : S → R be defined by f(A) = λ_{max}(A). Show that f is a convex function.

Hint. Use the Rayleigh-Ritz formula, which states that

$$\lambda_{\max}(A) = \max_{\mathbf{x}\neq\mathbf{0}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \max_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x}.$$

3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a convex function, and let C be a convex subset of \mathbb{R} . Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \min_{y \in C} f(x, y)$$

Show that g is a convex function.

Hint. Start from the definition of convexity. Pick x_0 and x_1 in \mathbb{R} , $\alpha \in [0, 1]$ and define $x_{\alpha} = (1 - \alpha)x_0 + \alpha x_1$. Suppose that the minimum in the definition of $g(x_0)$ (respectively $g(x_1), g(x_{\alpha})$) is attained at $y_0 \in C$ (respectively at y_1, y^{α} . The use of the superscript for y^{α} is to make it clear that no assumption is made about the value of y^{α} , beyond that it is in C; specifically, y^{α} need not be equal to $y_{\alpha} = (1 - \alpha)y_0 + \alpha y_1$.).

4. (a) The linear regression problem in statistics has data in the form of an n × p matrix X of n observations of p independent variables, and a n × 1 matrix (i.e. a column vector of length n) y of observations of a single dependent variable. The objective is to find a p-vector of coefficients β so as to solve the following least-squares problem:

$$\min_{\beta \in \mathbb{R}^p} f(\beta) := \|X\beta - \mathbf{y}\|^2,$$

where, as usual, $\|\mathbf{z}\|$ denotes the Euclidean norm of the vector \mathbf{z} ; recall that $\|\mathbf{z}\|^2 = \mathbf{z}^T \mathbf{z}$.

- i. Show that $f : \mathbb{R} \to \mathbb{R}$ is a convex function. You may need to show that a certain matrix is positive semi-definite.
- ii. Use the first order sufficient condition for unconstrained optimisation to find the optimal β . You may assume that the matrix $X^T X$ is full rank (hence invertible).
- (b) Linear regression works well in practice when the number of observations n is much bigger than the number of variables p. In many "Big Data" problems, this is not the case. Often p is close to n in size, which can result in overfitting (finding spurious statistically significant dependencies just be chance), or p can even be bigger than n, in which case the least squares problem doesn't have a unique solution for β. One approach to dealing with such problems is to assume that β is sparse, i.e., that it has few non-zero coefficients. Often, there is good intuitive justification for this assumption. This motivates us to try and solve the least squares problem with a sparsity constraint (constraint on the number of non-zero elements in β). However, this problem is non-convex and, consequently, intractable. Instead, a common approach is to consider a "convex relaxation" of this problem.

LASSO, or ℓ_1 -penalised least squares, seeks to solve the following modification of the least-squares optimisation problem:

$$\min_{\beta \in \mathbb{R}^p} g(\beta) := \|X\beta - \mathbf{y}\|^2 + \lambda \|\beta\|_1, \quad \text{where } \|\beta\|_1 := \sum_{i=1}^p |\beta_i| \text{ and } \lambda > 0.$$

The quantity $\|\beta\|_1$ is called the ℓ_1 norm of β , and is simple the sum of the absolute values of its co-ordinates. The constant $\lambda > 0$ is the penalty on the ℓ_1 norm, and trades off between how accurately we want to fit the data (the first term in g), and how much we penalise large values of β , as measured by its ℓ_1 norm.

Show that g is a convex function. You may use answers to previous questions to save yourself some work.

5. A quadratic programming (QP) problem involves the minimisation of a quadratic function subject to linear constraints. The general form is:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^T Q\mathbf{x} + \mathbf{c}^T \mathbf{x} \text{ subject to } A\mathbf{x} \leq \mathbf{b}.$$

Here, Q is a real symmetric $n \times n$ matrix, $\mathbf{c} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$; inequalities between vectors are to be interpreted to hold for each coordinate.

- (a) Suppose Q is positive semi-definite. Then show that the QP is a convex optimisation problem, i.e., that the objective function is convex, and that the set of $\mathbf{x} \in \mathbb{R}$ satisfying the constraints is a convex set.
- (b) Write down the Lagrangian for the problem, and formulate the dual problem.
- (c) Write down the KKT conditions for optimality.
- (d) Starting from an initial value x⁰ for the unconstrained version of the above problem, compute the value x¹ you would obtain after one iteration of gradient descent with exact line search.

Do the same for one step of the Newton method, assuming Q is positive definite, and hence invertible.

What is the exact solution to the minimisation problem in this case (still unconstrained)?