
Problem Sheet on Convex Optimisation

1. Show that the following functions are convex:

(a) f(x) = |x|, x ∈ R.

(b) f(x) = x log x, x ∈ (0,∞). Logarithms are natural unless otherwise specified.

(c) f(x) = x2y2, (x, y) ∈ R2.

(d) f(x) = ‖Ax− b‖2, x ∈ Rn, where A is an m× n matrix, b ∈ Rm, and ‖ · ‖ denotes
the Euclidean norm of a vector. In order to show that f is convex, you may need to
show that a certain matrix is positive semi-definite.

(e) f(x) =


x, x > 0,

y, x = 0,

+∞, x < 0,

where y ≥ 0 is arbitrary.

2. (a) Let S denote the set of all real symmetric n × n matrices. Show that S is a convex
subset of Rn×n.

(b) Recall that all eigenvalues of a symmetric matrix are real. Hence, they can be ordered
from largest to smallest. Let λmax(A) denote the largest eigenvalue of the real sym-
metric matrix A. Let f : S → R be defined by f(A) = λmax(A). Show that f is a
convex function.
Hint. Use the Rayleigh-Ritz formula, which states that

λmax(A) = max
x 6=0

xTAx

xTx
= max
‖x‖=1

xTAx.

3. Let f : R2 → R be a convex function, and letC be a convex subset of R. Define g : R→ R
by

g(x) = min
y∈C

f(x, y).

Show that g is a convex function.

Hint. Start from the definition of convexity. Pick x0 and x1 in R, α ∈ [0, 1] and define
xα = (1− α)x0 + αx1. Suppose that the minimum in the definition of g(x0) (respectively
g(x1), g(xα)) is attained at y0 ∈ C (respectively at y1, yα. The use of the superscript for yα

is to make it clear that no assumption is made about the value of yα, beyond that it is in C;
specifically, yα need not be equal to yα = (1− α)y0 + αy1.).
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4. (a) The linear regression problem in statistics has data in the form of an n× p matrix X
of n observations of p independent variables, and a n× 1 matrix (i.e. a column vector
of length n) y of observations of a single dependent variable. The objective is to find
a p-vector of coefficients β so as to solve the following least-squares problem:

min
β∈Rp

f(β) := ‖Xβ − y‖2,

where, as usual, ‖z‖ denotes the Euclidean norm of the vector z; recall that ‖z‖2 =
zTz.

i. Show that f : R→ R is a convex function. You may need to show that a certain
matrix is positive semi-definite.

ii. Use the first order sufficient condition for unconstrained optimisation to find the
optimal β. You may assume that the matrix XTX is full rank (hence invertible).

(b) Linear regression works well in practice when the number of observations n is much
bigger than the number of variables p. In many “Big Data” problems, this is not the
case. Often p is close to n in size, which can result in overfitting (finding spurious
statistically significant dependencies just be chance), or p can even be bigger than n,
in which case the least squares problem doesn’t have a unique solution for β. One ap-
proach to dealing with such problems is to assume that β is sparse, i.e., that it has few
non-zero coefficients. Often, there is good intuitive justification for this assumption.
This motivates us to try and solve the least squares problem with a sparsity constraint
(constraint on the number of non-zero elements in β). However, this problem is non-
convex and, consequently, intractable. Instead, a common approach is to consider a
“convex relaxation” of this problem.
LASSO, or `1-penalised least squares, seeks to solve the folllowing modification of
the least-squares optimisation problem:

min
β∈Rp

g(β) := ‖Xβ − y‖2 + λ‖β‖1, where ‖β‖1 :=
p∑
i=1

|βi| and λ > 0.

The quantity ‖β‖1 is called the `1 norm of β, and is simple the sum of the absolute
values of its co-ordinates. The constant λ > 0 is the penalty on the `1 norm, and
trades off between how accurately we want to fit the data (the first term in g), and
how much we penalise large values of β, as measured by its `1 norm.
Show that g is a convex function. You may use answers to previous questions to save
yourself some work.

5. A quadratic programming (QP) problem involves the minimisation of a quadratic function
subject to linear constraints. The general form is:

min
x∈Rn

1

2
xTQx+ cTx subject to Ax ≤ b.

Here, Q is a real symmetric n × n matrix, c ∈ Rn, A ∈ Rm×n and b ∈ Rm; inequalities
between vectors are to be interpreted to hold for each coordinate.
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(a) Suppose Q is positive semi-definite. Then show that the QP is a convex optimisation
problem, i.e., that the objective function is convex, and that the set of x ∈ R satisfying
the constraints is a convex set.

(b) Write down the Lagrangian for the problem, and formulate the dual problem.

(c) Write down the KKT conditions for optimality.

(d) Starting from an initial value x0 for the unconstrained version of the above problem,
compute the value x1 you would obtain after one iteration of gradient descent with
exact line search.
Do the same for one step of the Newton method, assuming Q is positive definite, and
hence invertible.
What is the exact solution to the minimisation problem in this case (still uncon-
strained)?
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