Problem Sheet on Convex Optimisation

1. Show that the following functions are convex:
(a) $f(x)=|x|, x \in \mathbb{R}$.
(b) $f(x)=x \log x, x \in(0, \infty)$. Logarithms are natural unless otherwise specified.
(c) $f(x)=x^{2} y^{2},(x, y) \in \mathbb{R}^{2}$.
(d) $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|^{2}, \mathbf{x} \in \mathbb{R}^{n}$, where A is an $m \times n$ matrix, $\mathbf{b} \in \mathbb{R}^{m}$, and $\|\cdot\|$ denotes the Euclidean norm of a vector. In order to show that f is convex, you may need to show that a certain matrix is positive semi-definite.
(e) $f(x)=\left\{\begin{array}{ll}x, & x>0, \\ y, & x=0, \\ +\infty, & x<0,\end{array}\right.$ where $y \geq 0$ is arbitrary.
2. (a) Let \mathbb{S} denote the set of all real symmetric $n \times n$ matrices. Show that \mathbb{S} is a convex subset of $\mathbb{R}^{n \times n}$.
(b) Recall that all eigenvalues of a symmetric matrix are real. Hence, they can be ordered from largest to smallest. Let $\lambda_{\max }(A)$ denote the largest eigenvalue of the real symmetric matrix A. Let $f: \mathbb{S} \rightarrow \mathbb{R}$ be defined by $f(A)=\lambda_{\max }(A)$. Show that f is a convex function.
Hint. Use the Rayleigh-Ritz formula, which states that

$$
\lambda_{\max }(A)=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\max _{\|\mathbf{x}\|=1} \mathbf{x}^{T} A \mathbf{x}
$$

3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a convex function, and let C be a convex subset of \mathbb{R}. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)=\min _{y \in C} f(x, y)
$$

Show that g is a convex function.
Hint. Start from the definition of convexity. Pick x_{0} and x_{1} in $\mathbb{R}, \alpha \in[0,1]$ and define $x_{\alpha}=(1-\alpha) x_{0}+\alpha x_{1}$. Suppose that the minimum in the definition of $g\left(x_{0}\right)$ (respectively $g\left(x_{1}\right), g\left(x_{\alpha}\right)$) is attained at $y_{0} \in C$ (respectively at y_{1}, y^{α}. The use of the superscript for y^{α} is to make it clear that no assumption is made about the value of y^{α}, beyond that it is in C; specifically, y^{α} need not be equal to $y_{\alpha}=(1-\alpha) y_{0}+\alpha y_{1}$.).
4. (a) The linear regression problem in statistics has data in the form of an $n \times p$ matrix X of n observations of p independent variables, and a $n \times 1$ matrix (i.e. a column vector of length n) \mathbf{y} of observations of a single dependent variable. The objective is to find a p-vector of coefficients β so as to solve the following least-squares problem:

$$
\min _{\beta \in \mathbb{R}^{p}} f(\beta):=\|X \beta-\mathbf{y}\|^{2}
$$

where, as usual, $\|\mathbf{z}\|$ denotes the Euclidean norm of the vector \mathbf{z}; recall that $\|\mathbf{z}\|^{2}=$ $\mathbf{z}^{T} \mathbf{z}$.
i. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function. You may need to show that a certain matrix is positive semi-definite.
ii. Use the first order sufficient condition for unconstrained optimisation to find the optimal β. You may assume that the matrix $X^{T} X$ is full rank (hence invertible).
(b) Linear regression works well in practice when the number of observations n is much bigger than the number of variables p. In many "Big Data" problems, this is not the case. Often p is close to n in size, which can result in overfitting (finding spurious statistically significant dependencies just be chance), or p can even be bigger than n, in which case the least squares problem doesn't have a unique solution for β. One approach to dealing with such problems is to assume that β is sparse, i.e., that it has few non-zero coefficients. Often, there is good intuitive justification for this assumption. This motivates us to try and solve the least squares problem with a sparsity constraint (constraint on the number of non-zero elements in β). However, this problem is nonconvex and, consequently, intractable. Instead, a common approach is to consider a "convex relaxation" of this problem.
LASSO, or ℓ_{1}-penalised least squares, seeks to solve the folllowing modification of the least-squares optimisation problem:

$$
\min _{\beta \in \mathbb{R}^{p}} g(\beta):=\|X \beta-\mathbf{y}\|^{2}+\lambda\|\beta\|_{1}, \quad \text { where }\|\beta\|_{1}:=\sum_{i=1}^{p}\left|\beta_{i}\right| \text { and } \lambda>0
$$

The quantity $\|\beta\|_{1}$ is called the ℓ_{1} norm of β, and is simple the sum of the absolute values of its co-ordinates. The constant $\lambda>0$ is the penalty on the ℓ_{1} norm, and trades off between how accurately we want to fit the data (the first term in g), and how much we penalise large values of β, as measured by its ℓ_{1} norm.
Show that g is a convex function. You may use answers to previous questions to save yourself some work.
5. A quadratic programming (QP) problem involves the minimisation of a quadratic function subject to linear constraints. The general form is:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \text { subject to } A \mathbf{x} \leq \mathbf{b}
$$

Here, Q is a real symmetric $n \times n$ matrix, $\mathbf{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$; inequalities between vectors are to be interpreted to hold for each coordinate.
(a) Suppose Q is positive semi-definite. Then show that the QP is a convex optimisation problem, i.e., that the objective function is convex, and that the set of $x \in \mathbb{R}$ satisfying the constraints is a convex set.
(b) Write down the Lagrangian for the problem, and formulate the dual problem.
(c) Write down the KKT conditions for optimality.
(d) Starting from an initial value x^{0} for the unconstrained version of the above problem, compute the value x^{1} you would obtain after one iteration of gradient descent with exact line search.
Do the same for one step of the Newton method, assuming Q is positive definite, and hence invertible.
What is the exact solution to the minimisation problem in this case (still unconstrained)?

