
Problem Sheet on Network Optimisation

1. Consider an Internet router with N input ports and N output ports. Each input port main-
tains a separate queue for packets intended for each output port. Let Qij denote the number
of packets at input port i waiting to be delivered to output port j. Time is slotted and,
in each time slot, the router can schedule a matching between the input and output ports,
namely a 1-1 map of input to output ports. For example, if N = 3, a possible matching
is {(1, 3), (2, 2), (3, 1)}, while {(1, 3), (2, 3), (3, 1)} is not a matching. More formally, de-
noting the input and output ports by the sets I andO, a matching is a map σ : I → O such
that {σ(i) = σ(j)} ⇐⇒ {i = j}, 1 ≤ i, j ≤ N .

One scheduling algorithm that is known to have good properties is the MaxWeight algo-
rithm, which schedules a matching of maximum weight in each time slot. In other words,
in each time slot, it seeks to find a matching that achieves

max
σ

N∑
i=1

Qi,σ(i).

Suppose you are given an algorithm for the transshipment problem that takes as input an
incidence matrix A, a vector of node demands b and a vector of edge costs c, and out-
puts an optimal integer-valued solution (if one exists, and declares the problem infeasible
or bounded otherwise). Explain in detail how you would use this algorithm to solve the
MaxWeight matching problem. What could go wrong if the algorithm is guaranteed to
output an optimal solution, but not necessarily an integer-valued solution?

2. König’s theorem: If, in a set of n boys and n girls, every girl knows exactly k boys and
every boy knows exactly k girls, for some k ≥ 1, then it is possible to match the boys and
girls in such a way that the boy and girl in each match know each other.

Give a proof of the above theorem. Hint: Turn the problem into a transshipment problem
by associating a unit supply or demand with each boy or girl node. Guess an initial feasible
solution, which doesn’t have to be a tree solution, to show that the problem is feasible.
Invoke the Integrality Theorem.

3. An n×n matrix X is called a doubly stochastic matrix if all its elements are non-negative,
and each row sums to 1, and each column sums to 1. Note that the matrix need not be
symmetric. (If only the rows are required to sum to 1, the matrix is called stochastic.) An
n × n matrix P is called a permutation matrix if the elements take values in {0, 1}, each
row has exactly one 1, and each column has exactly one 1. Prove the following:

Theorem: Let X be an n×n doubly stochastic matrix. Then there is a permutation matrix
P such that pij = 0 whenever xij = 0.

Hint: Construct a transshipment problem where a unit demand is associated with each row
and a unit supply with each column. Show the problem is feasible and invoke the Integrality
Theorem.
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Remark: The theorem above is a key ingredient in proving a deep result in linear algebra
called the Birkhoff-von Neumann Theorem, which states that every doubly stochatic matrix
X can be written as a convex combination of permutation matrices P1, P2, . . . , Pm. In
other words, there exist non-negative constants α1, α2, . . . , αm summing to 1, such that
X =

∑m
i=1 αiPi. If you are interested in the proof, see Theorem 20.4 in V. Chvatal, “Linear

Programming”, W.H.Freeman and Co., New York, 1983.

4. A hidden Markov model consists of the following ingredients. There is a Markov chainXn,
n = 0, 1, 2, . . . on a finite state space X , with transition probabilities p(i, j), i, j ∈ S; what
this means is that n denotes times, Xn denotes the state at time n, and if the Markov chain
is in state i at time n, then at time n+1 it is in state j with probability p(i, j), irrespective of
its past history. Moreover, if the Markov chain undergoes a transition from state i at time n
to state j at time n+1, it outputs a symbol Yn+1 = y, from a finite output alphabet Y , with
probability π(i, j; y). The outputs Y1, Y2, Y3, . . . are visible, while the statesX0, X1, X2, . . .
are hidden. The model parameters p(·, ·) and π(·, ·; ·) are assumed to be known.

Suppose X0 is known, say X0 = u ∈ X . The goal is to infer Xn having observed
Y1, Y2, . . . Yn−1. The maximum likelihood estimator (MLE) of Xn given Y1, Y2, . . . Yn−1

is defined as any solution x of

max
x:u=X0,X1,...,Xn=x

n−1∏
k=0

p(Xk, Xk+1)π(Xk, Xk+1;Yk+1).

Explain how to reduce this problem to a shortest path problem. How many vertices does
the graph in the shortest path problem have, as a function of n, |X | and |Y|?
Remark: A special case of this problem arises in convolutional codes for error correction.
The Viterbi algorithm for decoding convolutional codes also solves the estimation problem
for hidden Markov models. Both these are examples of dynamic programming problems,
which you will study.
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