Elements of Linear Programming Problem Sheet

1. Consider the following linear program:

$$
\begin{aligned}
& \text { Maximize } x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
& \text { Subject to } \\
& \quad x_{1}-2 x_{2}+x_{3}+x_{4} \leq 4, \\
& \quad-x_{1}+3 x_{2}-x_{3}+2 x_{4} \geq 5, \\
& x_{1}+x_{2}+x_{3}+x_{4}=10, \\
& x_{1} \geq 0, x_{3} \leq 0 .
\end{aligned}
$$

Formulate an equivalent standard equality linear program.
2. (a) Consider the following optimization problem.

$$
\text { Minimize } \max _{1 \leq k \leq p}\left|\sum_{j=1}^{n} c_{k j} x_{j}+d_{k}\right| \quad \text { (with respect to } x_{1}, \ldots, x_{n} \in \mathbb{R} \text {) }
$$

Subject to

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \quad \text { for } j=1, \ldots, n . \tag{1}
\end{align*}
$$

Formulate this problem as a linear programming problem.
(b) Consider the following optimization problem.

$$
\text { Minimize } \sum_{k=1}^{p}\left|\sum_{j=1}^{n} c_{k j} x_{j}+d_{k}\right| \quad \text { (with respect to } x_{1}, \ldots, x_{n} \in \mathbb{R} \text {) }
$$

Subject to

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \quad \text { for } j=1, \ldots, n \tag{2}
\end{align*}
$$

Formulate this problem as a linear programming problem.
3. (a) Using the graphical method, solve the following linear program.

Minimize $x+y$
Subject to $2 x+3 y \geq 1, x-y \geq 0, x \geq 0, y \leq 0$.
(b) Using the graphical method, solve the following linear program.

Minimize $x+y$
Subject to $2 x+3 y \geq 1, x-y \geq 0, x \geq 1, y \leq 2$.
(c) Using the graphical method, solve the following linear program.

$$
\begin{aligned}
& \text { Minimize } x+y \\
& \text { Subject to } 2 x+5 y \geq 1, x-y \geq 0, x \leq 0 \text {. }
\end{aligned}
$$

(d) Using the graphical method, solve the following linear program.

$$
\begin{aligned}
& \text { Minimize } x+y \\
& \text { Subject to }-2 x+y \geq 2, x-2 y \leq-2, x \leq 0, y \geq 0 \text {. }
\end{aligned}
$$

(e) Using the graphical method, solve the following linear program.

$$
\begin{aligned}
& \text { Maximize } 7 x+6 y \\
& \text { Subject to } 7 x+2 y \geq 28, x+6 y \geq 12,14 x+12 y \leq 168 \text {. }
\end{aligned}
$$

4. Find all basic feasible solutions of the following linear program:

$$
\begin{aligned}
& \text { Minimize } x_{1}+x_{2} \\
& \text { Subject to } \\
& \begin{array}{lll}
x_{1}+x_{2} \quad+x_{3} \quad=6 \\
\quad+x_{2} \quad+x_{4} & =3 \\
\quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, & x_{4} \geq 0
\end{array}
\end{aligned}
$$

Using the obtained result, find an optimal solution.
5. Consider the following linear program:

$$
\begin{aligned}
& \text { Minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { Subject to } \\
& \qquad \sum_{j=1}^{n} a_{j} x_{j}=b \\
& \quad x_{1} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

Here, $a_{1}, c_{1}, \ldots, a_{n}, c_{n} \in \mathbb{R}$ and $b \in(0, \infty)$.
(a) Derive a simple test for checking the feasibility.
(b) Assuming that the optimal solution is finite, compute the optimal cost value.
6. Consider the following linear program:

$$
\begin{aligned}
& \text { Minimize } \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { Subject to } \\
& \qquad \sum_{j=1}^{n} a_{j} x_{j}=b \\
& \quad \sum_{j=1}^{n} x_{j}=1 \\
& \quad x_{1} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

Assuming $a_{1}<a_{2}<\cdots<a_{n-1}<b<a_{n}$, check if the linear program is feasible. If it is, find the optimal cost value.
7. (a) Combining the duality principle and the graphical method, solve the following linear program:

Minimize $x_{1}-x_{2}+x_{3}$
Subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \quad+x_{3}=3 \\
& x_{1}+x_{2} \quad-x_{3}=1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

(b) Combining the duality principle and the graphical method, solve the following linear program:

$$
\begin{aligned}
& \text { Maximize } x_{1}+x_{2}+x_{3} \\
& \text { Subject to } \\
& \quad x_{1}+2 x_{2} \quad+x_{3}=1 \\
& 2 x_{1}+x_{2} \quad-x_{3}=4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

(c) Combining the duality principle and the graphical method, solve the following linear program:

$$
\begin{aligned}
& \text { Minimize } 2 x_{1}+3 x_{2}+3 x_{3}+6 x_{4}+4 x_{5} \\
& \text { Subject to } \\
& \quad 2 x_{1}+x_{2} \quad-2 x_{3}+3 x_{4} \quad-2 x_{5}=-1 \\
& x_{1}+3 x_{2} \quad+x_{3}+2 x_{4} \quad+x_{5}=1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0 .
\end{aligned}
$$

(d) Combining the duality principle and the graphical method, solve the following linear program:

$$
\begin{aligned}
& \text { Minimize } 2 x_{1}+3 x_{2}+5 x_{3}+2 x_{4}+3 x_{5} \\
& \text { Subject to } \\
& \quad x_{1}+x_{2} \quad+2 x_{3}+x_{4} \quad+3 x_{5} \geq 4 \\
& \quad 2 x_{1}-2 x_{2} \quad+3 x_{3}+x_{4} \quad+x_{5} \geq 3 \\
& \quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0, x_{5} \geq 0 .
\end{aligned}
$$

8. (a) Consider the following linear program:

$$
\text { Minimize } x_{1}+5 x_{2}+2 x_{3}+13 x_{4}
$$

Subject to

$$
\begin{gathered}
5 x_{1}-6 x_{2} \\
x_{1}-x_{2} \\
x_{3}-2 x_{4} \quad=0 \\
x_{1} \geq 0, x_{2}+9 x_{4}=0, x_{3} \geq 0, x_{4} \geq 0
\end{gathered}
$$

Using the duality principle, check if

$$
x_{1}=0, x_{2}=2, x_{3}=3, x_{4}=0
$$

is an optimal solution.
(b) Consider the following linear program:

$$
\begin{aligned}
& \text { Minimize }-6 x_{1}-6 x_{2}-4 x_{3} \\
& \text { Subject to } \\
& \begin{array}{ccc}
4 x_{1}+6 x_{2} & +2 x_{3}+x_{4} & =24 \\
4 x_{1}+4 x_{2} & +3 x_{3} & =20 \\
2 x_{1}+3 x_{2} & +x_{3} & =8 \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, & x_{4} \geq 0
\end{array}
\end{aligned}
$$

Using the duality principle, check if

$$
x_{1}=2, x_{2}=0, x_{3}=4, x_{4}=8
$$

is an optimal solution.

