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1. Let X denote a random variable with the Rayleigh distribution with parameter σ, and with
density f given in the question. Then, it’s mean is given by

E[X] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

x2

σ2
exp
(
− x2

2σ2

)
dx

=
1

2

∫ ∞
−∞

x2

σ2
exp
(
− x2

2σ2

)
dx

=

√
2π

2σ

∫ ∞
−∞

x2φ(x)dx = σ

√
π

2
,

where the third equality holds by symmetry, and the last equality follows from the hint.

Hence, a method of moments estimator for the parameter σ is

σ̂MoME =

√
2

π
X =

√
2

π

x1 + x2 + . . .+ xn
n

.

Next, to find the maximum likelihood estimator, we first compute the log-likelihood of the
data. Using the density f given in the question, we get that the log-likelihood function is

`(σ;x1, x2, . . . , xn) =
n∑
k=1

(
log

xk
σ2
− x2k

2σ2

)
= −2n log σ − 1

2σ2

n∑
k=1

x2k +
n∑
k=1

log xk.

To find the value of σ that maximises this function, we set the derivative to zero:

d`

dσ
=
−2n
σ

+
1

σ3

n∑
k=1

x2k = 0.

Solving this, we get the maximum likelihood estimator to be

σ̂MLE =

√√√√ 1

2n

n∑
k=1

x2k

2. (a) The mean of a Geom(p) distribution is 1/p. Equating this to the sample mean gives
us the method of moments estimator:

1

p̂MoME

=
1

k

k∑
i=1

Xi =
N

k
, i.e., p̂MoME =

k

N
,

which is the same as our first estimator.
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To obtain the MLE, we first compute the log-likehood of the data as a function of the
parameter p:

`(p;X1, X2, . . . , Xk) =
k∑
i=1

(
log p+(Xi−1) log(1−p)

)
= k log p+(N−k) log(1−p).

Now we can obtain the MLE by setting the derivative to zero and solving the resulting
equation:

d`

dp
=
k

p
− N − k

1− p
= 0 ⇒ p̂MLE =

k

N
.

Thus, all three estimators are the same, and equal to k/N .

(b) The method of moments estimator depends only on the sample mean of the Xi’s,
which is N/k, rather than on the individual values. In the case of the MLE, the
likelihood of any sequence depends only on the number of heads and tails in the
sequence, and not on where those heads and tails are located; this is a consequence of
the coin tosses being iid.

(c) Please ignore this part of the question, as it is quite a bit harder than I thought! It
involves computing the mean and second moment of 1/N , which is not straightfor-
ward. If you want to solve this, you can look up the mean and moments of the negative
binomial distribution.

3. The mean of U is a/2 (by symmetry or calculation); equating this to the sample mean gives
the MoME,

âMoME =
2

n

n∑
i=1

xi.

To compute the likelihood function, note that the density of the uniform distribution is
given by

f(x) =

{
1/a, 0 ≤ x ≤ a,

0, otherwise.

The likelihood function is given by

L(a;x1, x2, . . . , xn) =

{
1
an
, if a ≥ maxni=1 xi,

0, otherwise.

Now, an is an increasing function of a and 1/an a decreasing function. Hence, to maximise
it, we need to choose a as small as possible. However, if we choose it so that a < maxni=1 xi,
i.e., if any of the xi are bigger than a, then the likelihood is zero (as the event xi > a is
impossible if all the Xi are distributed uniformly between 0 and a).

Hence, the likelihood is maximised by choosing,

âMLE =
n

max
i=1

xi.
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We now compute the mean and variance of each of these estimators. Firstly, if U is uni-
formly distributed on [0, a], then E[U ] = a/2, the density of U is given by f above, and

Var(U) =
∫ a

x=0

(
x− a

2

)2
f(x)dx =

∫ a/2

y=−a/2
y2

1

a
dy =

a2

12
.

As âMoME = 2(X1 +X2 + . . .+Xn)/n, and X1, X2, . . . , Xn are iid with the same distri-
bution as U , we get

E[âMoME] =
2

n

∑
i=1

E[Xi] =
2

n
nE[U ] = a,

which means that âMoME is unbiased (its mean is equal to the true value of the parameter).
Using the independence of the Xi, the variance of the estimator is

Var(âMoME) =
4

n2

n∑
i=1

Var(Xi) =
4n

n2
Var(U) =

a2

3n
.

Hence, the mean-squared error (MSE) of the estimator is

MSE(âMoME) = (bias)2 + variance =
a2

3n
.

Next, we compute the density of the MLE. It is easier to compute the cdf. We have

P(âMLE ≤ y) = P
(

n
max
i=1

Xi ≤ y
)
=

n∏
i=1

P(Xi ≤ y),

as the Xi are independent, and as their maximum is smaller than y if and only if each of
them is smaller. Hence,

F (y) = P(âMLE ≤ y) =


0, y < 0,

(y/a)n, 0 ≤ y ≤ a,

1, y > 1.

Differentiating this, we obtain the density of the maximum-likelihood estimator to be

fMLE(x) = nxn−1/an,

on the interval [0, a], and zero outside this interval. Consequently, its mean and second
moment are given by

E[âMLE] =

∫ a

0

xfMLE(x)dx =

∫ a

0

nxn

an
dx =

n

n+ 1
a,

and

E[â2MLE] =

∫ a

0

x2fMLE(x)dx =

∫ a

0

nxn+1

an
dx =

n

n+ 2
a2.

Consequently, Var(âMLE) =
(

n
n+2
− n2

(n+1)2

)
a2 = n

(n+1)2(n+2)
a2. Thus, we get,

bias(âMLE) = E[âMLE]− a = − 1

n+ 1
a,
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while

MSE(âMLE) = bias2 + variance =
2n+ 2

(n+ 1)2(n+ 2)
a2 =

2

(n+ 1)(n+ 2)
a2.

Note that for large n, the MSE of the maximum likelihood estimator is approximately
2a2/n2, i.e., it decays as 1/n2, whereas the MSE of the method of moments estimator only
decays as 1/n. Thus, in this problem, the MLE is asymptotically a much better estimator.

4. Following the hint and writing X = Y + α, where Y has an Exp(λ) distribution, we note
that the mean and variance of X are given by

E[X] = E[Y ] + α =
1

λ
+ α,

Var(X) = Var(Y ) =
1

λ2
.

Equating these to the sample mean and variance, and solving the equations, we get the
method-of-moments estimators,

λ̂MoME =
( 1
n

n∑
i=1

x2i −
( 1
n

n∑
i=1

xi
)2)−1/2

,

α̂MoME =
1

n

n∑
i=1

xi −
1

λ̂MoME

.

In order to compute the MLE, we write down the log-likelihood of the data as a function
of the parameters (α, λ):

`(α, λ;x1, x2, . . . , xn) =

{
n log λ+ nλα− λ

∑n
i=1 xi, if α ≤ minni=1 xi,

−∞, otherwise.

Note that the latter case corresponds to the zero probability event that some xi is smaller
than α; as the likelihood is zero in this case, the log-likelihood is negative infinity.

Now, as λ is positive, the term nλα is increasing. Hence, to maximise the log-likelihood
with respect to α, we need to take α as large as possible, subject to the constraint α ≤
minni=1 xi. This is clearly achieved by taking α = minni=1 xi, irrespective of the value of λ.
Thus, the MLE for α is given by

α̂MLE =
n

min
i=1

xi.

Next, for this value of α, we carry out the maximisation over λ by setting the derivative of
the log-likelihood function to zero. We get the equation

n

λ
+ n

n

min
i=1

xi −
n∑
i=1

xi = 0,

whose solution is

λ̂MLE =
( 1
n

n∑
i=1

xi −
n

min
i=1

xi

)−1
.
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5. Let us first consider the counter. The log-likelihood of observations x1, x2, . . . , xn is given
by

`(λ;x1, x2, . . . , xn) =
n∑
k=1

(
xi log λ− λ+ log(xi!)

)
.

Setting the derivative with respect to λ and solving, we obtain the MLE for the counter,
which we denote by λ̂c. We have

λ̂c =
1

n

n∑
i=1

xi.

This is for a given data sequence x1, . . . , xn. We model the data as iid random variables
X1, . . . , Xn with a Poisson(λ) distribution, which has mean λ and variance λ. Hence, the
estimator λ̂c has mean and variance given by

E[λ̂c] =
1

n

n∑
i=1

E[Xi] = λ,

Var(λ̂c) =
1

n2

n∑
i=1

Var(Xi) =
λ

n
.

In particular, it is unbiased, and so the MSE is the same as the variance, and equal to λ/n.

Next, we consider the detector. Let y1, y2, . . . , yn denote the data seen by the detector,
where the yi are realisations of iid random variable Yi, and Yi = 1 if Xi ≥ 1 and Yi = 0 if
Xi = 0. Since Xi are Poisson(λ), we see that P(Yi = 0) = e−λ = 1− P(Yi = 1); in other
words, Yi is Bernoulli(1− e−λ). We can now write down the log-likelihood function:

`(λ; y1, y2, . . . , yn) =
n∑
k=1

(
yk log(1− e−λ)− (1− yk)λ

)
.

Hence,
d`

dλ
=

e−λ

1− e−λ
n∑
k=1

yk −
n∑
k=1

(1− yk).

Setting this equal to zero and simplifying, we get

e−λ =
1

n

n∑
k=1

(1− yk).

Thus, the MLE for the detector, which we denote by λ̂d, is given by

λ̂d = − log
( 1
n

n∑
k=1

(1− yk)
)
.

Please ignore the remainder of the question. The above estimator fails if the data is such
that all yi are equal to 1. This can happen with non-zero probability. But in this event,
λ̂d = − log 0 = +∞, which is not a valid estimate. In this situation, we simply have no
useful information on λ, other than that it has to be large, so there is no good estimation
procedure using only the detector. It is true that the probability of this occuring decays
rapidly as n increases, but it is always non-zero.
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