
Introduction to Statistics

Solutions 2

1. By the Neyman-Pearson lemma, the optimal hypothesis test is a likelihood ratio test. So
let us begin by computing the likelihoods. In this problem, we have a single observation
X , which is the number of cars passing a given point over a 5-minute period. The ran-
dom variable X has a Poisson(75) distribution under the null hypothesis, H0, of normal
operation, and a Poisson(15) distribution under the alternative, H1, that there has been an
accident. Thus, the probability of observing X = n under the null and alternative hypothe-
ses respectively are given by

p0(n) =
λn0
n!
e−λ0 , p1(n) =

λn1
n!
e−λ1 , λ0 = 75, λ1 = 15.

Hence, the likelihood ratio is

L1(n)

L0(n)
=
p1(n)

p0(n)
=
(λ1
λ0

)n
e−(λ1−λ0).

The optimal test is of the following form: reject H0 if L1(n)/L0(n) > T , for a specified
threshold T . The problem now is to determine this threshold, or an equivalent one stated
in a simpler way. Using the above expression for the likelihood ratio, we have

L1(n)

L0(n)
> T ⇔ n log

λ1
λ0
− λ1 + λ0 > log T ⇔ n <

λ0 − λ1 − log T

log(λ0/λ1)
.

We have used the fact that λ0−λ1 > 0 to obtain the last equivalence. Defining T ′ to be the
term on the right in the last inequality, we can restate the optimal hypothesis test as: reject
H0 if n < T ′.

The question now is how to choose T ′. The false alarm probability is P0(X < T ′) and the
detection failure probability is P1(X ≥ T ′), where P0 and P1 refer to probabilities under
the null and alternative hypotheses respectively. As X has a Possion(75) distribution under
H0, and we want to guarantee a false alarm probability no bigger than 10−3, we need to
choose the threshold T ′ = 48, and reject H0 if X ≤ 48.

The other item of information in the question is irrelevant.

Remark. It may be intuitively obvious that an optimal test should be of the formX < T ′ for
some T ′, but a full justification requires writing down the likelihood function and invoking
the Neyman-Pearson lemma.

2. (a) The sum of independent Gaussian random variables has a Gaussian distribution with
mean equal to the sum of the means, and variance equal to the sum of the variances.
(More generally, if the random variables have a joint Gaussian distribution but are
not independent, then their sum, or indeed any linear combination, has a Gaussian
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distribution; however, its variance will also involve all the covariances between the
random variables in the linear combination.)
Hence, the number of requests over a 5-minute period has a Gaussian distribution
with mean 500 and variance 500 under normal conditions, and with mean 2500 and
variance 500 when subjected to an attack.

(b) It is not clear from the question what data is available; in particular, are the request
counts available over each 1-minute period or only over the 5-minute period? It turns
out that it doesn’t matter (for the Gaussian distribution with known variances - it might
matter in other models!); the optimal test only uses the total count over the 5-minute
period.
Let X be a random variable denoting the number of requests over a 5-minute period.
Obviously, X is a discrete random variable, but we are approximating it by a continu-
ous one. The question says that it is well approximated by a GaussianN(µ0, σ

2) under
normal conditions, and by a Gaussian, N(µ1, σ2) under an attack, where µ0 = 500,
µ1 = 2, 500 and σ2 = 500. Thus, the likelihood ratio for observing x is given by

L1(x)

L0(x)
=

1√
2πσ2

e−
(x−µ1)

2

2σ2

/ 1√
2πσ2

e−
(x−µ0)

2

2σ2 ,

and the log-likelihood ratio is

log
L1(x)

L0(x)
=

(x− µ0)
2 − (x− µ1)

2

2σ2
=
µ1 − µ0

σ2
x+

µ2
0 − µ2

1

2σ2
.

We know from the Neyman-Pearson lemma that an optimal hypothesis test is based on
comparing the likelihood ratio, or equivalently the log-likelihoo ratio, to a threshold.
Thus, the optimal test is to reject H0 if

µ1 − µ0

σ2
x+

µ2
0 − µ2

1

2σ2
≥ T,

for a suitably chosen threshold, T . Rearranging the above inequality, we can restate
the test as rejecting H0 if

x ≥ T ′ =
1

µ1 − µ0

(
T +

µ2
1 − µ2

0

2σ2

)
.

The question now is how to choose the threshold T ′ in order to achieve the required
bound on the false positive probability, which we can write as P0(X ≥ T ′), the
probability of rejecting the null hypothesis when it is true. Now, underH0, the random
variable X has a N(µ0, σ

2) distribution. In order to use the information given in the
normal, we need to transform it into a standard Gaussian random variable. We know
that if we define Z as Z = (X−µ0)/sigma, thenX will have a Gaussian distribution
with mean 0 and variance 1, it will be anN(0, 1) random variable. We can now rewrite
the event X ≥ T ′ as

Z ≥ T ′ − µ0

σ
.

From the question, this event has probability 10−4 if (T ′−µ0)/σ = 2.75. Substituting
µ0 = 500 and σ2 = 500, we get T ′ = 500+2.75×

√
500 ≈ 561.5. Thus, we reject the

null hypothesis of normal operation if the number of requests over a 5-minute period
exceeds 562.

2



3. Model assumptions: (a) The lifetimes of the 10 tyres are a simple random sample from the
population of lifetimes for all tyres currently produced by that company. (b) The population
distribution for those lifetimes is N(µ, σ2), where both µ and σ are unknown.

Hypotheses: H0: µ = 42 versus H1: µ < 42.
The null hypothesis H0 corresponds to no difference between the actual mean of the popu-
lation for that company’s tyres and the claimed mean lifetime of 42(×1000) miles.

Test Statistic: Since the sample mean X is the natural estimator of µ, we base our test
statistic on X − µ0 = X − 42. Since σ2 is unknown, we take as our test statistic

T (X1, . . . , Xn) =
√
n
X − µ0

S
, where S2 =

1

n− 1

n∑
i=1

(Xi −X)2

is the sample variance. Then, T (X1, . . . , Xn) has a tn−1 distribution when H0 is true (i.e.
when µ = µ0 = 42).

For the given data, n = 10, x = 41, and s2 = 12.89, so the observed test statistic is
tobs =

√
10(41− 42)/

√
12.89 = −0.88. Also, since n = 10, T ∼ t9 when H0 is true.

Significance test: Since the alternative of interest is H1: µ < 42, the values of T which are
less consistent with H0 than t are the set of values {T < t}. Thus the range of values for
which the test would reject H0 is of the form C = {T < c∗}. A test has significance level
α if P(Reject H0|H0 true) = α. Thus, for a 0.05-level test, c∗ is defined by the condition

0.05 = α = P(RejectH0|H0 true) = P(T < c∗ |H0 true) = P(t9 < c∗).

Using t-tables or a suitable software package, c∗ = −1.83.

As the test statistic calculated from observations, T = −0.88, is bigger than c∗, we cannot
reject the null hypothesis at the 5% significance level.

4. Model assumptions: (a) The weights of the 25 packets are a simple random sample from
the population of weights for all packets produced that day. (b) The population distribution
is N(µ, 42), where µ is unknown.

Hypotheses: H0: µ = 200 versus H1: µ 6= 200.
The null hypothesis H0 corresponds to no difference between the actual mean of the popu-
lation of weights for that day and the advertised weight of 200g. The alternative hypothesis
H1 corresponds to there being a difference (which could be either positive or negative).

Test Statistic: Since the sample mean X is the natural estimator of µ, we base our test
statistic on X − µ0 = X − 200. Since the population standard deviation σ0 = 4 is known
and n = 25, we can take as our test statistic T (X1, . . . , Xn) =

√
n(X − µ0)/σ0 = 5(X −

200)/4, where X ∼ N(µ, σ2
0/n) = N(µ, 16/25).

Thus, when H0 is true (i.e. when µ = µ0 = 200) we have T = 5(X − 200)/4 ∼ N(0, 1).

The data give x = 202.3 so the observed test statistic is tobs = 2.84.

Significance test: Since the alternative of interest is H1: µ 6= 200, the values of T which
are less consistent with H0 than a value t are the set of values {|T | > |t|}. Thus the range
of values for which the test would reject H0 is of the form C = {|T | > c∗}. A test has
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significance level α if P(Reject H0 |H0 true ) = α. Thus, for a 0.01-level test, c∗ is defined
by the condition

0.01 = α = P(RejectH0|H0 true) = P(|T | > c∗ |H0 true)

= P(|Z| > c∗) (where Z ∼ N(0, 1))

= 2(1− Φ(c∗)).

Therefore,
c∗ = Φ−1(1− 0.005) = 2.58.

As the observed test statistic 2.84 is bigger than c∗, we reject the null hypothesis at the 1%
significance level.
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