
Stochastic Optimisation

Problem Sheet 2

∗∗ Please hand in solutions to question 4 on this sheet. ∗∗

1. Consider a bandit with two independent arms, where the rewards from arm i are i.i.d. with
a N(i, i) distribution, i = 1, 2. In other words, rewards from arm i are normally distributed
with mean i and variance i, so that the second arm has the larger mean reward.

Fix a time horizon T , and consider the heuristic which first plays each arm exactly n times,
and subsequently plays the arm with the higher sample mean reward.

(a) Let µ̂1,n and µ̂2,n denote the sample means of the first n plays of arms 1 and 2 respec-
tively. Using the answer to Q6(b) from Problem Sheet 1, obtain an upper bound on
P(µ̂1,n ≥ µ̂2,n).
Hint. Let Xi(t), i = 1, 2 denote the reward observed on the tth play of arm i. What
can you say about the random variable X1(t)−X2(t)?

(b) Using the answer to the last part, find an upper bound on the regret, R(T ), of this
heuristic. Optimize this upper bound over n, treating n as if it were a real number,
and approximating quantities like T − n by T , on the assumption that n is much
smaller than T .

2. Consider a bandit with two independent Bernoulli arms, with parameters µ1 > µ2. Con-
sider the following simple heuristic for this problem:

• Play arm 1 in the first round.

• If you obtained a reward of 1 in the previous round, play the same arm. Otherwise,
switch to the other arm.

Obtain an approximate expression for the regret of this heuristic up to some large time T .

You do not need to be very precise in your calculations. I am looking for good intuition, and
the correct scaling of the regret with T as T tends to infinity. Feel free to look up results
you need, such as the means of well-known distributions. You do not need to calculate
them from scratch.

3. Consider a bandit with two independent Bernoulli arms, with mean rewards µ1 > µ2.
Define ∆ = µ1 − µ2. Let Ni(t) denote the number of times that arm i has been played in
the first t rounds, where i ∈ {1, 2} and t ∈ N. Let µ̂i,s denote the empirical (or sample)
mean reward obtained in the first s plays of arm i.

Suppose a genie tells you the value of µ1, the mean reward on arm 1 (but not that arm 1 is
better). Then, the appropriate modification to the UCB(α) algorithm is as follows:
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• Play arm 2 in the first round.

• At the end of round t, calculate the index of arm 2, defined as

ι2(t) = µ̂2,N2(t) +

√
α log t

2N2(t)
.

The index of arm 1 is always µ1, which is known (assuming we trust the genie).

• In round t+ 1, play the arm with the higher index, i.e., set I(t+ 1) = 2 if ι2(t) ≥ µ1

and I(t + 1) = 1 otherwise. (We have broken ties in favour of arm 2, but other ways
of breaking ties are equally acceptable.)

We assume in the following that α > 1.

(a) Show that, if arm 2 is played by the above algorithm in round s+1, i.e., I(s+1) = 2,
then one of the following statements must be true:

N2(s) <
2α log s

∆2
, (1)

µ̂2,N2(s) ≥ µ2 +

√
α log s

2N2(s)
. (2)

(b) Recall that N2(t) =
∑t

s=1 1(I(s) = 2), where 1(A) is the indicator of the event A.
For an arbitrary positive integer u, and any t ∈ N, explain why

N2(t) ≤ u+
t∑

s=u+1

1(N2(s− 1) ≥ u and I(s) = 2).

A verbal explanation will suffice, but it should not leave out any essential details.

(c) Define u = d(2α log t)/∆2e. Using the answers to the last two parts, and relevant
probability inequalities, show that

E[N2(t)] ≤ u+
t∑

s=u+1

e−α log s.

Use this to show that E[N2(t)] ≤ u+ 1
α−1 .

(d) Use the answer to the last part to show that the regret of this algorithm is bounded
above as follows:

R(T ) ≤ 2α log T

∆
+

α

α− 1
∆.

4. Consider a bandit with two independent Gaussian arms. Rewards on arm i constitute a
sequence of iid N(µi, 1) random variables, i.e., normal with mean µi and variance 1.

(a) Let µ̂i,n denote the sample mean reward on arm i after n plays of this arm. Using a
result from Homework 1, show that

P
(
µ̂i,n > µi +

√
α log t

2n

)
≤ exp

(
−α log t

4

)
.

Express the last quantity as a power of t.
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(b) Explain in a few sentences why the same bound holds for the probability of the event

that µ̂i,n < µi −
√

α log t
2n

.

(c) Replicate the analysis of the UCB algorithm to obtain a regret bound of the form
R(T ) ≤ c1 + c2 log T , where c1 and c2 are constants that may depend on α, µ1 and
µ2. Find explicit expressions for these constants.
The analysis will not work for all α > 1. You will need α to be bigger than some
other number. Find that number.

5. Let X and Y be Bernoulli random variables with parameters p and q respectively, where
p, q ∈ [0, 1]. Recall that the relative entropy or the KL-divergence of the Bern(q) distribu-
tion with respect to the Bern(p) distribution is defined as

K(q; p) = q log
q

p
+ (1− q) log

1− q
1− p

,

with x log x defined to be zero if x is zero. Recall also that the total variation distance
between these distributions, denoted dTV (Bern(q),Bern(p)) is equal to |p − q|. Prove
Pinsker’s inequality, which states that

K(q; p) ≥ 2
(
dTV (Bern(q),Bern(p))

)2
.

Hint. Fix p and show that the function f(q) = K(q; p) − (q − p)2 is convex. Then show
that f(p) = 0 and f ′(p) = 0. For a convex function, the latter equality implies that p is
a minimiser of the function f ; you may use this fact without proof, but should look up a
proof or convince yourself why it is true.

6. (optional hard problem)
Let X and Y be random variables with probability distributions P and Q respectively.
Suppose P and Q have densities p and q with respect to a reference measure m; usually
m is Lebesgue measure on the real line. Then, the relative entropy or KL-divergence of Q
with respect to P is defined as

K(Q;P ) =

∫
q(x) log

q(x)

p(x)
dm(x).

If m is Lebesgue measure, we just write dx instead of dm(x). In the following, you may
use without proof the fact, which follows from Jensen’s inequality, that K(Q,P ) ≥ 0 for
all probability distributions P and Q.

The total variation distance between P and Q (which is symmetric) is defined as

dTV (Q,P ) = sup
A
|Q(A)− P (A)|,

where P (A) and Q(A) are the probabilities of the set A under the probability measures P
and Q. In other words,

P (A) = P(X ∈ A) =

∫
A

p(x)dm(x), Q(A) = P(Y ∈ A) =

∫
A

q(x)dm(x).

The supremum is taken over all (measurable) sets A.
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(a) Let A∗ = {x : q(x) ≥ p(x)}. Explain why dTV (Q,P ) = Q(A∗) − P (A∗). Maybe
use Venn diagrams. You don’t need to provide a formal proof.

(b) For any (measurable) set A such that P (A) is not equal to zero or one, show that

K(Q,P ) ≥ K(Q(A), P (A)),

where the term on the right refers to the KL-divergence of a Bern(Q(A)) distribution
from a Bern(P (A)) distribution.
Hint. Split the integral in the definition of K(Q,P ) into an integral over A and an
integral over Ac. Let QA and PA respectively denote the probability distributions
Q(·)/Q(A) and P (·)/P (A) on A. Express the integral over A as K(QA;PA) plus
something. Do the same for Ac.

(c) Using the answers to the last two parts, prove the general version of Pinsker’s in-
equality, which states that for any two probability measures P and Q (and not just for
Bernoulli distributions),

K(Q;P ) ≥ 2
(
dTV (Q,P )

)2
.
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