Stochastic Optimisation Problem Sheet 3

Please hand in solutions to questions 4 and 5 on this sheet. $* *$

1. Let U be a random variable distributed uniformly on $[0,1]$, and let $\lambda>0$ be a given constant. Show that the random variable $X=(-\log U) / \lambda$ has an exponential distribution with parameter λ. As usual, logarithms are natural, i.e., to base e.
2. Let X be a random variable with a $\operatorname{Beta}(\alpha, \beta)$ distribution, and let $Y=1-X$. Show that Y has a $\operatorname{Beta}(\beta, \alpha)$ distribution.
Hint. You have a choice of two different ways to show this, both of which are pretty straightforward.
3. Let X and Θ be independent random variables, where X has an $\operatorname{Exp}\left(\frac{1}{2}\right)$ distribution, and Θ is uniformly distributed on $[0,2 \pi)$. Let $V=\sqrt{X} \sin \Theta$ and $W=\sqrt{X} \cos \Theta$. Show that V and W are independent standard normal random variables, i.e., with zero mean and unit variance.

Hint. Compute the joint density of V and W and show that it factorises as the product of the densities of two independent standard normal random variables.
4. Consider a Bayesian approach to the problem of inferring the mean of a normal distribution with unknown mean and known variance. More precisely, suppose $X \sim N(\theta, 1)$, where θ is unknown. Fix $\mu_{0} \in \mathbb{R}$ and $\sigma_{0}^{2}>0$, and let π_{0} denote the density of a $N\left(\mu_{0}, \sigma_{0}^{2}\right)$ distribution. Suppose π_{0} denotes the prior distribution of θ. Let $\pi_{1}(\cdot \mid x)$ denote the posterior distribution, conditional on observing a sample of X which takes the value x. In other words,

$$
\pi_{1}(\theta \mid x) \propto \pi_{0}(\theta) f_{\theta}(x)
$$

where \propto stands for 'proportional to' and f_{θ} denotes the density of a $N(\theta, 1)$ random variable. The constant of proportionality will be determined by the requirement that $\pi_{1}(\cdot \mid x)$ be a probability density, i.e., that it integrate to 1 .
Show that $\pi_{1}(\cdot \mid x)$ is the density of a $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ random variable, where

$$
\mu_{1}=\frac{\mu_{0}+x \sigma_{0}^{2}}{1+\sigma_{0}^{2}}, \quad \sigma_{1}^{2}=\frac{\sigma_{0}^{2}}{1+\sigma_{0}^{2}} .
$$

Remark. This shows that the family of normal distributions is a family of conjugate priors for the mean of a normal random variable with known variance.

Hint. Unfortunately, this is a calculation-heavy exercise. You can lighten the burden somewhat by ignoring constants wherever possible.
5. Use the answer to the last question to formulate a version of the Thompson sampling algorithm for a two-armed bandit, where the rewards from arm i are iid, normally distributed, with unknown mean μ_{i} and unit variance. Explain your algorithm in sufficient detail to enable a non-expert to implement it. You may assume that the non-expert has access to a software package that will generate independent random variables with specified parameters, from any of a family of commonly used probability distributions.

