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1 Introduction

Consider the problem of assigning a patient to one of a number of different
clinical treatments, whose efficacies are not precisely known. How should we
decide which treatment to use? The problem is impossible to solve if there is
just a single patient, but in practice there is a large number of patients who
arrive for treatment sequentially. A natural approach would be to assign
patients at random initially, until we had built up a good estimate of the
efficacies, and to subsequently assign all patients to the one with the best
estimated efficacy. But how good an estimate is good enough, and what
are the chances that we end up choosing a sub-optimal treatment? There
is clearly a trade-off between exploring the different treatments for a long
time in order to gain more certaintly about having identified the optimal
treatment, and reaching a conclusion quickly in order not to subject a large
number of patients to sub-optimal treatments.

This is a motivating example of the class of problems we will study in the
first half of the course1. What they have in common is a choice between a
finite number of actions, and a random reward or payoff associated with each
action, whose distribution is unknown. However, the scenario is repeated
indefinitely, sequentially over time, which makes it feasible to learn the re-
ward distribution or some summary statistics. The goal is to “maximise”
the total reward in the long run, in a sense to be made precise. In fact,
there is more than one way to make precise the notion of long-run reward,
and we shall be looking at a few different meanings of the term. We now
introduce a formal model to describe this scenario, which is known as the
multi-armed bandit problem.

1This particular example also has an ethical dimension, but that will not be explicitly
included in the models we study.
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Multi-armed bandit problem An agent is faced with a choice of K
arms or actions. Each time the agent plays arm i, it receives a random
real-valued reward or payoff drawn from a distribution νi, independent of
the past. The distributions ν1, ν2, . . . , νK are unknown to the agent. The
agent seeks to maximise a measure of long-run reward.

More formally, we consider a probability space on which we define K mu-
tually independent sequences of random variables, Xi(t), i = 1, 2, . . . ,K,
t ∈ N. We think of Xi(t) as denoting the reward that the agent would have
obtained at time step t by choosing arm i. Thus, for each i, Xi(t), t ∈ N is an
iid (independent and identically distributed) sequence of random variables,
with distribution νi. We assume that these distributions have finite means,
which we denote µi, i = 1, 2, . . . ,K. Define

µ∗ =
K

max
i=1

µi

to be the largest expected reward of any arm.

Let I(t) ∈ {1, . . . ,K} denote the arm played by the agent at time step
t. This arm will be chosen according to some strategy adopted by the
agent, based on the information available to the agent at time t. We now
make explicit our assumptions about this information. We assume that,
at each time step, only the reward for the arm chosen in that time step is
observed. Even though we have, for convenience, defined random variables
corresponding to all arms, their realisations for arms that are not played
are unobserved. Thus, at the beginning of time step t, the only information
available to the agent is the values XI(s)(s), s ≤ t−1. The agent must decide
which arm to play based on this information. We allow the agent to adopt
a randomised strategy. In other words, the agent has access to an external
source of randomness independent of Xi(t), i = 1, 2, . . . ,K, t ∈ N, which
she can use to make her decisions. It suffices to assume that she has access
to a sequence of random variables U(t), t ∈ N, which are iid and uniformly
distributed on [0, 1], and independent of the sequences Xi(·), 1 ≤ i ≤ K.
Now, we can formally describe as a strategy I(·) as a sequence of maps
I(t), t ∈ N, where, more precisely

I(t) = I
(
t, {I(s), s ≤ t− 1}, {XI(s)(s), s ≤ t− 1}, U(t)

)
∈ {1, . . . ,K}.

We now discuss some ways to specify what we mean by the long-run reward.
The most natural choice is perhaps the long-run average reward of a given
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strategy. As this may not necessarily exist, we instead define

X∗ = lim inf
T→∞

1

T

T∑
t=1

E[XI(t)]. (1)

We might then seek a strategy I(t) that maximises X∗. Clearly, for any
strategy in which I(t) is based only on realisations of Xi(s), s ≤ t − 1, we
must have E[XI(t)] ≤ µ∗, for any t. Hence, it follows that X∗ ≤ µ∗. If
we could come up with a strategy for which X∗ = µ∗, then this strategy
is necessarily optimal (for the long-run average reward criterion). It turns
out that this is not hard to achieve; in fact, we shall study a more stringent
criterion, which we now describe.

Let I(t), t ∈ N denote a sequence of chosen arms. The regret in the first n
time steps, corresponding to this choice, is given by

Rn =
K

max
k=1

n∑
t=1

E
(
Xk(t)−XI(t)(t)]

)
=

n∑
t=1

(
µ∗ − E[XI(t)(t)]

)
. (2)

Remark: Some authors call the above quantity the pseudo-regret, and
define regret as

R̃n =
K

max
k=1

n∑
t=1

(
Xk(t)−XI(t)(t)]

)
,

which depends upon the sample path, and is hence a random variable rather
than a number. Note that R̃n includes intrinsic randomness which cannot
be learnt (as it is independent of the past, by definition) whereas Rn only
involves expectations, which can be learnt from observations. As we are
interested in quantifying how quickly it can be learnt, it makes sense to
focus on Rn as the performance metric.

The study of bounds on achievable regret will take up the remainder of this
chapter. But before that, we need to recall some mathematical preliminaries.

2 Probability Inequalities

What can we say about the probability of a random variable taking values
in a certain set if we only know its moments, for instance, or its generating
function? It turns out that they give us some bounds on the probability of
the random variable taking values in certain specific sets. We now look at
some examples.
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Markov’s inequality Let X be a non-negative random variable with fi-
nite mean EX. Then, for all c > 0, we have

P(X ≥ c) ≤ EX
c
.

The proof is straightforward. For an event A, let 1(A) denote its indicator.
In other words, 1(A) is the random variable defined as 1(A)(ω) = 1 if ω ∈ A
and 1(A)(ω) = 0 if ω /∈ A. Fix c > 0. We have

EX ≥ E[X1(X ≥ c)] ≥ E[c1(X ≥ c)] = cP(X ≥ c).

Re-arranging this gives us Markov’s inequality. (Why does X have to be
non-negative?)

Chebyshev’s inequality Let X be a random-variable, not necessarily
non-negative, with finite mean EX and finite variance Var(X). Then, for
all c > 0, we have

P(|X − EX| ≥ c) ≤ Var(X)

c2
.

The proof is an easy consequence of Markov’s inequality. Note that the
event |X − EX| ≥ c is the same as the event (X − EX)2 ≥ c2, and apply
Markov’s inequality to the non-negative random variable Y = (X − EX)2.
Use the fact that EY = Var(X).

The result extends conveniently to sums of iid (independent and identically
distributed) random variables, since the variance of the sum is the sum of
the variances. Let X1, X2, . . . Xn be iid random variables, with finite mean
µ and finite variance σ2. Then, for all c > 0, we get

P
(∣∣∣ n∑

i=1

Xi − nµ
∣∣∣≥ nc) ≤ σ2

nc2
.

Chernoff bounds LetX be a random-variable, not necessarily non-negative,
and suppose that its moment-generating function E[eθX ] is finite for all θ.
Then, for all c ∈ R, we have

P(X ≥ c) ≤ inf
θ>0

e−θc E[eθX ], P(X ≤ c) ≤ inf
θ<0

e−θc E[eθX ].

In fact, Chernoff only stated special cases of this inequality, and earlier
versions were proved by Bernstein. But the general form follows easily from
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Markov’s inequality, and it has widely come to be known as Chernoff’s
bound, so we continue to use this terminology. The proof follows by noting
that the event X ≥ c is identical to the event eθX ≥ eθc for all θ > 0
(the inequality gets reversed for θ < 0), applying Markov’s inequality to the
non-negative random variable Y = eθX , and taking the best bound over all
possible θ.

The result extends easily to sums of iid random variables. LetX1, X2, . . . , Xn

be iid, and let φ(θ) = E[eθX1 ]. Then, for all c ∈ R, we have

P
( n∑
i=1

Xi ≥ nc
)
≤ inf

θ>0
e−nθc

(
E[eθX ]

)n
,

P
( n∑
i=1

Xi ≤ nc
)
≤ inf

θ<0
e−nθc

(
E[eθX ]

)n
.

Hoeffding’s inequality This is a version of Chernoff’s bounded for sums
of iid bounded random variables (random variables taking values in a bounded
interval), which doesn’t require knowledge of their moment-generating func-
tions (mgfs), but only of their mean.

Theorem 1 (Hoeffding) Let X1, X2, . . . Xn be iid random variables, tak-
ing values in [0, 1], and let µ = E[X1]. Then,

P
( n∑
i=1

Xi − nµ > nt
)
≤ e−2nt2 , ∀ t > 0.

The proof uses the following lemma, also due to Hoeffding, which provides
a uniform bound on the mgf of bounded random variables.

Lemma 1 Let X be a random variable taking values in [0, 1], with mean µ.
Then,

E[eθ(X−µ)] ≤ eθ2/8, ∀ θ ∈ R.

We now use the above lemma to prove Hoeffding’s theorem. We won’t prove
the lemma as stated, as the proof is quite analytical and not very insightful.
Instead, we shall present a proof of a weaker version of the lemma, with the
constant 8 in the denominator replaced by 2; this proof uses an interesting
technique called symmetrisation.
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Proof of Hoeffding’s theorem. First, observe from Chernoff’s bound that

P
( n∑
i=1

Xi − nµ > nt
)
≤ e−θnt

(
E[exp(θ(X1 − µ))]

)n
,

for all θ > 0. Using Lemma 1 to bound the mgf, we get

1

n
logP

( n∑
i=1

Xi − nµ > nt
)
≤ −θt+

θ2

8
, ∀ θ > 0.

We see that the RHS is minimised at θ = 4t, which is positive if t is positive.
The corresponding upper bound coincides with the bound in the statement
of Theorem 1. �

Before discussing the proof of Lemma 1, we need to recall a fact about
convex functions.

Defintion. A function f : R → R ∪ {+∞} is said to be convex if, for all
x, y ∈ R and all α ∈ [0, 1], we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

The inequality is considered to be satisfied if both sides are +∞.

It is easy to check if a smooth function is convex; if f is twice continuously
differentiable, then f is convex if and only if f ′′(x) ≥ 0 for all x ∈ R.

Jensen’s inequality. Let f be a convex function and let X be a random
variable. Then, E[f(X)] ≥ f(E[X]). (The inequality is considered to be
satisfied if both sides as +∞.)

Proof of (weaker version of) Lemma 1. Let X ′ be an independent copy of
X, so that it has the same mean µ. It is easy to verify that f(x) = eθx is a
convex function for any θ ∈ R. Hence, by Jensen’s inequality,

E[e−θX
′
] ≥ exp(−θE[X ′]) = e−θµ.

Consequently, we obtain that

E[eθ(X−µ)] ≤ E[E[eθ(X−X
′)|X]] = E[eθ(X−X

′)], (3)

where the equality holds because of the independence of X and X ′.

Since X and X ′ take values in [0, 1], X−X ′ takes values in [−1, 1]. Moreover,
as X and X ′ have the same distribution, X − X ′ has mean zero and a
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distribution that is symmetric around zero. Let S be a discrete random
variable that takes values ±1, with equal probability 1/2, and is independent
of X and X ′. We have by the symmetry of X −X ′, and its independence
from S, that X −X ′ has the same distribution as S(X −X ′). Hence, for all
θ ∈ R,

E[eθ(X−X
′)] = E[eθS(X−X

′)] = E[E[e(θ(X−X
′))S |X,X ′] ≤ 1

2
(eθ + e−θ). (4)

To see the last inequality, not that, conditional on X and X ′, θ(X−X ′) = η
for some η ∈ [−θ, θ], as X−X ′ ∈ [−1, 1]. Now use the fact that x 7→ ex+e−x

is decreasing on (−∞, 0) and increasing on (0,∞) and symmetric around 0.
Finally, we observe using Taylor series that

1

2
(eθ + e−θ) =

∞∑
n=0

θ2n

(2n)!
≤
∞∑
n=0

(θ2/2)n

n!
= exp(θ2/2). (5)

Combining (3), (4) and (5), we obtain that

E[eθ(X−µ)] ≤ eθ2/2,

which is the version of Lemma 1 that we set out to prove. �

3 A heuristic based on hypothesis testing

In this section, we consider a heuristic for the simplest version of the prob-
lem, with an emphasis on gaining intuition rather than finding optimal al-
gorithms. Consider a bandit with two arms. The rewards X1(n), n ∈ N
from the first arm are iid Bernoulli random variables with parameter µ1,
while those from the second arm, X2(n), n ∈ N are iid Bern(µ2). Assume
without loss of generality that µ1 > µ2, that the parameters µ1 and µ2 are
known to the player, but it is not known which arm has which parameter.
Finally, suppose that the player is given a fixed time horizon T , and seeks
to minimise the regret up to time T .

An obvious idea is the following: play each arm a fixed number of times, N ,
and subsequently play the arm that had the larger empirical mean reward.
The question is how to choose N to minimise the regret of this strategy.
We shall address this question using Chernoff bounds for binomial random
variables.
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Lemma 2 Let X have a binomial distribution, Bin(n, α), with parameters
n ∈ N, α ∈ (0, 1). Then, for any β > α, we have that

P(X ≥ βn) ≤ e−nK(β;α),

where

K(β;α) =

{
β log β

α + (1− β) log 1−β
1−α , if β ∈ [0, 1],

+∞, otherwise,

with x log x defined to be 0 if x = 0.

Similarly, if β′ < α, then

P(X ≤ β′n) ≤ e−nK(β;α).

Here, K(β;α) is called the relative entropy, or Kullback-Leibler divergence,
of a Bern(β) distribution with respect to a Bern(α) distribution. The proof
of the lemma is left as a homework problem.

We will use this result to analyse the proposed strategy. Notice that S1(N) :=∑N
t=1X1(t) has a Bin(N,µ1) distribution, while S2(N) :=

∑N
t=1X2(t) has a

Bin(N,µ2) distribution. Moreover, these two random variables are indepen-
dent, as the sequences X1(·) and X2(·) are independent of each other. Let
β ∈ (µ2, µ1). Then, we have by Lemma 2 that

P(S1(N) < βN,S2(N) > βN) ≤ e−N(K(β;µ1)+K(β;µ2)) = e−NJ(µ1,µ2),

where
J(µ1, µ2) = inf

β∈[µ2,µ1]
K(β;µ1) +K(β;µ2).

The value of β which solves the minimisation problem above describes the
most likely way for the event S1(N) < S2(N) to occur. While it is not
obvious, it turns out that it also captures the exponential decay rate of the
probability of this event. More precisely,

P(S1(N) < S2(N)) ≤ e−NJ(µ1,µ2),

and

lim
N→∞

1

N
logP(S1(N) < S2(N)) = −J(µ1, µ2).

We will not prove this here. But taking this for granted, we will describe
how to choose N to minimise regret.
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If the correct decision is taken, regret is incurred only during the exploration
phase, and is equal to N(µ1 − µ2), since the wrong arm is played N times,
incurring a regret of µ1−µ2 each time. If the incorrect decision is taken, then
the regret incurred is (T −N)(µ1 − µ2) is the wrong arm is played N times
during the exploration phase, and T − 2N times during the exploitation
phase. Hence, the overall regret up to time T is given by

R(T ) = (µ1 − µ2)(T − 2N)P(S1(N) < S2(N)) + (µ1 − µ2)N
≈ (µ1 − µ2)

(
N + Te−NJ(µ1,µ2)

)
.

It is easy to see that the last expression is minimised for N close to the
solution of TJ(µ1, µ2)e

−NJ(µ1,µ2) = 1, i.e., whenN = log T/J(µ1, µ2)+O(1).
Moreover, the corresponding regret is

R(T ) =
(µ1 − µ2)
J(µ1, µ2)

log T +O(1).

It can be shown that, if µ1 and µ2 are very close to each other, then
J(µ1, µ2) ≈ (µ1−µ2)2, and the above expression becomesR(T ) = log T/(µ1−
µ2) +O(1). We shall see later that this expression captures the correct scal-
ing of the best achievable regret, for large T and small µ1 − µ2.
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